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Abstract

During cued speech and movement, information propagates from primary sensory

areas, through association areas, to primary and supplementary motor and language

areas. Traditionally, the neural activity in each region has been probed independently

at the level of individual neurons or small neuronal populations. This approach suffers

from a lack of information about how different neuronal populations interact to relay

information through the cortical network, actuate movement or speech, and monitor

feedback. Recently, however, advances in computational capacity have permitted the

modeling of dynamic neural propagation with high spatial and temporal resolution.

These dynamic network models may contain new information about processing that

can inform cortical mapping for clinical and scientific purposes, or improve the ability

to decode movement or speech from neural signals. Such decoded movement or speech

may be used as a control signal for brain machine interfaces.

This dissertation explores the utility of time-varying neural connectivity features

for mapping the neural correlates of movement and speech, and decoding movement

and speech from neural signals. All neural data are recorded from human subjects
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ABSTRACT

using electrocorticography, and the directional flow of neural activity is computed

with multivariate autoregressive models. First, I characterize motor connectivity

maps during hand movement, and demonstrate that connectivity computed from

both temporal and spectral features varies with movement. Then I compare a grasp

decoder based on traditional neural features to one based on connectivity features,

and show that the connectivity-based decoder improves on the performance of the

traditional decoder. Next, I characterize connectivity networks during speech, and

use them to show that top-down modulation of neural processing may contribute

to behavioral priming. Finally, I decode articulatory features during speech using

traditional and connectivity features at multiple spatial scales (clinical ECoG and

microECoG). I show that connectivity features within and between these spatial scales

can improve speech decoding. This work demonstrates that effective connectivity

models computed from human neurophysiological data are a rich source of features

with the potential to improve both clinical and scientific mapping of the cortical

activity underlying movement and speech, and brain machine interfaces that decode

control signals from cortical activity.

Primary Reader: Dr. Nitish V. Thakor, Ph.D.

Secondary Reader: Dr. Nathan Crone, M.D.
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Chapter 1

Background and Motivation

Recent technological advances in electrode recording capacity [1–3] and comput-

ing capability have led to the emergence of a new approach in understanding the

relationship between cortical activity and behavior: cortical connectivity analysis, or

the modeling of the propagation of information through the brain. Traditionally, the

activity of single neurons or small neuronal populations have been correlated with

primitives of movement or speech, such as position and velocity [4–6], or articulated

phoneme [7–10]. However, the propagation of information through input sensory

areas to association cortex and output motor areas is as relevant to understanding

cortical processing as the activity of local processing units. To fully map cortical

activity to behavioral parameters, large- and small-scale cortical interactions must be

considered.

Accurately characterizing the relationship between cortical activity and task per-
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formance is a neuroscientific and medical goal with wide-ranging clinical applications.

The approach to analysis is context-dependent. Different techniques are required for

mapping cortical activity to behavioral activity and decoding behavioral activity from

cortical activity. In the following sections, I describe the state of the art in mapping

and decoding motor and speech cortical activity, outline the hypothesized pathways

of information propagation during motor and language tasks, briefly discuss the ap-

proach used to characterize neural signals, and conclude with a summary of the

specific aims of this work and remaining chapters.

1.1 Cortical Mapping

Mapping the relationship between cortical activity and behavioral activity is an

invaluable tool in planning surgical resections for the treatment of epilepsy or tumor

[11–14], in addition to relevance for neuroscientific investigation such as understanding

motor tuning [15] and the widespread cortical activation underlying speech production

[16]. Such surgical resections are sometimes recommended when epilepsy is refractory

to medication, which occurs in up to 30% of patients [17]. Prior to the resection,

clinicians localize the site of seizure origination and “eloquent cortex”, or cortical sites

that are deemed necessary for the performance of motor, sensory, language, and other

activities that are relevant to the patient’s quality of life. Identification of the site

of seizure origination is performed by neurologists reading intracranial EEG (iEEG
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[18], electrical signals recorded from penetrating electrodes [19] and electrodes placed

subdurally [20] or epidurally [21] on the surface of the brain (electrocorticography, or

ECoG). Identification of eloquent cortex is typically performed using electrocortical

stimulation mapping (ESM [22–24]), in which current is delivered through the ECoG

electrodes, and the resulting disruption of task performance or initiation of movement

or sensation is documented.

ESM is by nature time-consuming, due to the need to individually stimulate sites

of interest, and in some cases causes pain, discomfort, after-discharges, or seizures

[25, 26]. Such seizures are not useful in determining the site of seizure origination.

Additionally, there have been reports of short-term and persistent language deficits

following resections guided by ESM [14]. An alternative approach to cortical mapping

based solely on cortical recordings could complement or even replace ESM. Such

functional mapping has been demonstrated using fMRI [27] and the iEEG signal [28],

an area of recent interest due to the possibility for signal decoding as well as real-time

functional mapping. One feature of the iEEG, the high gamma power, or the power in

iEEG oscillations with a frequency greater than 70 Hz, is particularly promising, as it

has been shown to reflect local population firing rates [29,30]. However, the sensitivity

and specificity of these functional mapping approaches in identifying eloquent cortex,

as compared to ESM, are too low to rely upon them alone. An ability to map

the propagation of information through the cortex during sensory processing and

integration; motor planning and execution; and lexical retrieval, phonological code
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retrieval, syllabification, and articulation could improve clinicians’ understanding of

the most relevant cortical sites for these tasks in individual patients.

1.2 Cortical Decoding

Brain-machine interfaces (BMI) or brain-computer interfaces (BCI) decode move-

ment or communication intent from neural activity for rehabilitation and assistive

devices for patients with paralysis, limb loss, stroke, and locked-in syndrome [31].

Paralysis affects over 5.5 million people in the United States [32], and limb loss has

become a recent priority for defense funding due to the occurrence of amputations

related to military conflicts [33]. Stroke is a leading cause of severe disability [34], and

locked-in syndrome, which can result from ALS, stroke, or a variety of other causes,

leads to complete paralysis. In some cases, limited communication via eye movement

or blink is possible [35].

A variety of measures of neural activity have been used in BMIs, including signals

from noninvasive methods such as electroencephalography (EEG [36, 37]), magne-

toencphalography (MEG [38]), functional magnetic resonance imaging (fMRI [39,40]),

and functional near-infrared spectroscopy (fNIRS [41]); and invasive methods such as

individual units recorded with microelectrodes [42], the local field potential (LFP)

recorded with penetrating microelectrodes [43], and iEEG [44]. Generally speaking,

noninvasive approaches either permit decoding of limited one- or two-dimensional
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outputs (EEG and fNIRS), or require equipment that is too cumbersome to be used

outside a hospital or laboratory setting (MEG and fMRI). For example, EEG dur-

ing motor imagery has been used to control a cursor [45], wheelchair [46], and four

degrees of freedom of a robotic prosthetic limb [47]. FNIRS has been used to detect

a binary decision (yes/no) by decoding prefrontal cortical processing compared to

rest [48]. Therefore, measures of neural activity recorded from implanted electrodes

are likely necessary to decode multiple-dimensional outputs to control a motor or

speech prosthesis for use outside a laboratory setting.

Recent advances have brought implanted motor prosthetics to humans with paral-

ysis. In 2006, a group demonstrated a pilot BMI controlled by the firing of individual

neurons recorded with a penetrating microelectrode array in a human with quadriple-

gia [42]. Most notably, the subject was able to control a computer cursor and open

and close a prosthetic hand. More recently, seven degree-of-freedom control of a pros-

thetic limb was achieved in a human with quadriplegia using single- and multi-unit

activity recorded with 192 microelectrodes [49]. However, questions have been raised

about the long-term stability of signal recordings and tissue response when using pen-

etrating microelectrodes [50, 51], so some groups have complemented neural spiking

signals with LFP or ECoG signals. The first demonstration of an ECoG-based BMI

was published in 2004 [44]. One-dimensional cursor control was achieved with bi-

nary classification of motor or speech imagery. By 2013, a human with quadriplegia

was able to control a three-dimensional cursor using the neural signals underlying
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attempted arm movements, recorded with a very high-density ECoG array over the

hand and arm area of sensorimotor cortex [52]. In spite of these advances, limitations

to these approaches remain. Significant training, on the order of days to weeks, is

typically required before optimal user control is obtained, and control may at first be

unintuitive. Additionally, control is based on reach trajectory and grasp confirmation,

rather than the more abstract control concepts typically used with a native limb. A

large-scale cortical map of the propagation of information through areas related to

sensory processing and motivation, in addition to primary sensorimotor areas, may

ultimately provide additional information for motor decoding [53–55], leading to more

intuitive and more precise control that incorporates higher-level motor goals.

A common approach to the development of a BMI for communication has been

the use of the P300 event-related potential (ERP), recorded with EEG, to select

individual letters from a grid [56, 57]. Letters, or subsets of letters, are highlighted

or flashed sequentially, and the P300 is elicited when the user’s intended letter is

flashed. This approach, though appealing because it is noninvasive, suffers from a

slow data transfer rate, on the order of one to ten selections per minute, and lack

of intuitive control. Preliminary efforts to decode speech more directly have relied

largely on the ECoG signal [8, 9, 58, 59], but a demonstration has also been made

using a neurotrophic electrode [7]. Promising early results have achieved up to 36%

accuracy in decoding classes of phonemes. It is possible that the propagation of

information through neural populations will be informative for such speech BMIs, as
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the selection of a word, phonological code retrieval, syllabification, and articulation

require the coordination of a number of spatially distant cortical areas in the temporal,

parietal, and frontal lobes [16]. In light of the detailed phonemic information detected

with high density ECoG [60], an important consideration is the scale (clinical ECoG,

high density ECoG, or both) at which this propagation of neural activity should be

measured.

1.3 Neural Activity Propagation in Mo-

tor Systems

Although ESM largely finds motor effects near the central sulcus [61–63], and mo-

tor BMIs typically decode from primary sensorimotor areas [64], it has been demon-

strated that a variety of cortical areas, including premotor cortex [65–68], supplemen-

tary motor area [69], and parietal areas near the intraparietal sulcus [70], contribute

to motor planning and execution. Fig. 1.1 demonstrates the propagation of neural

activity before and during visually-guided reach to grasp [65–79].

Parietal reach region (PRR) has been demonstrated to activate in relationship to

motor goals and planning, particularly when spatial processing of reach is needed, and

encodes information in gaze-centered coordinates [74, 76, 79]. It has been found that

anterior intraparietal area (AIP) encodes complementary information about fine fin-

ger movements and grasp during goal-directed, visually guided reach-to-grasp [73,78].
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Figure 1.1: Schematic of hypothesized functional connectivity in motor cortical areas
during visually-guided reach to grasp. The central sulcus is marked with a black line.
Visual information is propagated from occipital cortex to parietal reach region (red
reach pathway) and anterior intraparietal area (green grasp pathway), which are in-
volved in postural planning. Parietal areas project to motor areas in the frontal lobe,
including premotor and primary motor cortex. Primary motor cortex integrates in-
formation from parietal reach region and dorsal premotor cortex (reach), and anterior
intraparietal area, ventral premotor cortex, and supplementary motor area (grasp).
Interplay between primary motor cortex and primary somatosensory cortex (purple)
monitors expected and actual somatosensory feedback.
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Premotor cortex has been shown to be important for planning and coordinating move-

ment dorsally (reach) and ventrally (grasp) [68]. Supplementary motor area (SMA) is

active during a variety of movement types, including bimanual and sequential move-

ments, and has corticospinal outputs, leading to hypotheses that it is involved in

the coordination of dexterous hand movements [75] or sequential movements [69,72].

Primary motor cortex integrates inputs from these upstream areas [77], in addition

to feedback from primary somatosensory cortex [71], and has large corticospinal out-

puts [80]. Its neural activity is related to a number of movement parameters, including

muscle movement and position [81], velocity [82], joint angle [83, 84], muscle syner-

gies [85], and postures [86, 87].

1.4 Neural Activity Propagation in Lan-

guage Systems

Speech preparation and articulation requires a coordinated cascade of informa-

tion propagation through a number of cortical areas. Fig. 1.2 shows a simplified

schematic of hypothesized cortical propagation preceding and during speech produc-

tion, in this case during a visually cued task [16]. (For a more detailed figure with

the relevant cortical areas highlighted, see Fig. 5.10.) Following early visual process-

ing of the stimulus, fusiform gyrus is involved in word or category identification [88].

This information is passed to middle temporal gyrus, which is active during lexical
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retrieval [89], or the identification of the word to be spoken. Posterior superior tempo-

ral gyrus (Wernicke’s area) transforms the lexical concept to phonological code [90],

following which Broca’s area participates in syllabification and additional articula-

tory preparation [91]. Cortical processing converges in inferior primary motor cortex,

which is responsible for articulation of the vocal tract [92]. Finally, somatosensory

feedback from primary somatosensory cortex in parietal cortex and auditory feed-

back from the superior temporal lobe and other auditory areas monitor articulation

through interactions with primary motor cortex [93,94].

Figure 1.2: Simplified schematic of hypothesized functional connectivity in cortical
areas involved in speech production. The central sulcus is marked with a black line.
Middle temporal gyrus is involved in lexical retrieval; superior temporal gyrus is
involved in phonological code retrieval; inferior frontal cortex is involved in phonolog-
ical code retrieval, syllabification, and articulatory planning; primary motor cortex
is involved in articulation; and somatosensory and auditory cortex provide feedback
during articulation.
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1.5 Measurements of Neural Activity and

Propagation

Processing information propagation through widespread cortical areas during move-

ment and speech is likely to be informative for mapping how cortical activity leads to

movement and speech, and decoding movement and speech parameters from cortical

signals. In this dissertation, I will therefore model the connectivity, or propagation

of neural activity, between cortical areas relevant to movement and speech. ECoG,

an indicator of cortical activity recorded with electrodes implanted on the surface of

the brain [95], is a promising modality for measuring cortical connectivity, due to

wide coverage of the brain, millisecond-scale temporal resolution, and centimeter- to

millimeter-scale spatial resolution. As discussed above, the ECoG signal has recently

become a modality of interest for use in brain-machine interfaces (BMI) [44,96–105].

ECoG’s utility as a control signal for a BMI was demonstrated in 2004 on a one-

and two-directional cursor control task [44]. It has since been used in cursor control

tasks [96, 97], [99, 100], [103, 104], reach decoding [98], and grasp and individual fin-

ger decoding [101, 102, 105]. High-density ECoG arrays have also shown promise in

mapping neural correlates of speech [60].
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1.6 Summary and Dissertation Organiza-

tion

In this dissertation, my objective is to map the dynamics of interactions between

cortical areas during movement and speech, and to use these dynamics for decoding

hand movements and spoken syllables. My specific aims are:

Aim 1 Use a connectivity-based approach to map cortical network dynamics during

dexterous motor tasks.

I hypothesize that cortical network dynamics will encode information about the

kinematics of dexterous motor tasks. Discovering consistent task-related changes

in motor network dynamics will indicate that connectivity features may be infor-

mative for motor decoding, a significant result.

Aim 2 Use a connectivity-based approach to decode grasp aperture from human

neural signals.

I hypothesize that features will be present in connectivity networks that encode

palmar grasps. This work will be the first to apply time-varying directed connec-

tivity information to kinematic decoding.

Aim 3 Use a connectivity-based approach to map cortical network dynamics during

object naming.

I hypothesize that cortical networks involved in object naming will demonstrate

consistent changes across subjects between initial and repeated exposure to object
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stimuli. This finding would establish the presence of reliable speech networks that

may be informative for speech decoding. This analysis will also demonstrate the

utility of connectivity mapping for testing the predictions of models of cortical

mechanisms.

Aim 4 Use a connectivity-based approach to decode spoken syllables.

I hypothesize that features will be present in connectivity networks that encode

place of articulation and vowel formant frequency. This work will be the first to

apply time-varying directed connectivity information to speech decoding, and will

determine for the first time the relevance of microECoG connectivity for decoding

speech components such as syllables.

Chapter 2 provides an overview of approaches for measuring cortical connectiv-

ity: coherence, phase estimation, and multivariate models. Chapter 2 includes a

discussion of the relative merits of the methods used in this dissertation. Chapters

3-6 will each detail the motivation, research, and results for individual specific aims.

Chapter 3 explores changes in cortical connectivity during palmar grasp and individ-

uated finger movement, establishing that connectivity features vary consistently with

movement. Chapter 4 demonstrates that such changes in cortical connectivity can be

used to decode grasp aperture during palmar grasp from human neural signals with a

high degree of accuracy. Chapter 5 maps cortical connectivity during object naming,

leading to observations that support a model in the literature of the cortical mecha-

nism underlying implicit memory. Chapter 6 demonstrates that cortical connectivity
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at clinical ECoG and microECoG scales can improve decoding accuracy of spoken

syllables. Chapter 7 summarizes the overall conclusions from Chapters 3-6, discusses

the impact of the results, and proposes future directions for additional investigation.
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Chapter 2

Cortical Connectivity Models and

Proposed Approach

A number of approaches exist to estimate task-related cortical connectivity. While

the underlying anatomical connectivity may provide a foundation for understanding

the relationships between cortical areas, for the purposes of mapping task-related

connectivity and decoding movement or speech parameters from connectivity infor-

mation, functional or effective connectivity are more relevant measures of cortical

interactions. Functional connectivity measures the correlated activity of different cor-

tical regions [106,107]. It does not establish a causal link between the related cortical

regions, but does find interrelated locations of cortical processing. Functional connec-

tivity is often useful in analyzing fMRI data, because the wide-area spatial coverage

permits the investigation of the relationships between many cortical regions [107].
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Effective connectivity, in contrast, includes an inherent element of directional infor-

mation propagation [108], and is therefore a highly informative, information dense

measure. High temporal resolution at the scale of propagation of neural activity, on

the order of tens of milliseconds, is useful in measuring effective connectivity [109];

however, effective connectivity may also be measured using fMRI [110]. In this chap-

ter, I review common approaches to measuring functional and effective connectivity

in neurophysiological signals such as EEG and ECoG. I then outline the proposed

approach for mapping effective connectivity in motor and speech networks for the

purpose of this work, and conclude with a summary of the main contributions of the

work presented in this dissertation and their relevance to the scientific community.

2.1 Functional Connectivity: Coherence

and Phase Estimation

Coherence is one of the simplest measures of functional connectivity, and has a

straightforward interpretation: it is the linear correlation between two signals as a

function of frequency. It is is normalized to take values from 0 to 1, aiding in in-

terpretability. Under the correct assumptions, it is a simple measure of causality.

However, because neurophysiological signals violate the required assumptions, in a

practical implementation for cortical data, it is best interpreted as functional connec-
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tivity. Its definition at a given frequency f is given by [111]:

Cxy(f) =
|Sxy(f)|

[Sxx(f)Syy(f)]1/2
(2.1)

where Sxy(f) is the cross-spectral density between signals x and y, normalized by the

autospectral densities Sxx(f) and Syy(f). The cross-spectral density is the Fourier

transform of the cross-correlation function, Rxy(τ), which is the expected value of the

input and time-shifted output:

Rxy(τ) = E (x(t)y(t− τ)) (2.2)

The cross-spectra cannot be computed from finite data, but may be estimated by

multiplying the discrete Fourier coefficient of x(t) with the complex conjugate of the

discrete Fourier coefficient of y(t). This approach leads to highly variable results [112],

so smoothing is useful to improve interpretability.

Coherence has been used extensively, and for several decades, to explore the re-

lationships between cortical regions as represented by EEG and ECoG [113–122].

In fact, some groups have proposed that coherence is a fundamental mechanism by

which the brain achieves sensorimotor integration, attention [118], and conscious per-

ception [119]. Coherence has been used to measure functional connectivity related to

movement [114, 115], associative learning [116], executive function [120], and intelli-

gence [121]. It may even be useful as a measure to predict autism [122] or identify

tumors or epileptic cortical tissue [117] where there is a localized increase in coherence.

However, there are several drawbacks to using coherence to measure cortical con-
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nectivity, which make it nonideal for the purposes of mapping functional networks

and decoding intended movement or speech. First, it is inherently not a method ap-

plicable to real-time or even single-trial analysis. Although some modifications could

permit variants of coherence to be used on a single-trial basis [111], the high variabil-

ity of coherence estimates limits its value for decoding. Additionally, as a measure

of functional connectivity, it does not provide information about the directionality

of neural propagation. Finally, because it is a pairwise measure, it is limited in its

ability to detect cortical network activity with a high degree of statistical significance

and power due to corrections for multiple statistical tests when considering a network

with several sites (electrodes) and the need to correct for the detection of indirect

neural propagation. For example, if neural activity propagates from site A through

site B to site C, coherence may incorrectly detect connections between sites A and C.

Phase synchrony is a nonlinear approach to modeling functional connectivity in

neurophysiological signals [123], and may be used by fundamental cortical processes

such as perceptual binding [124] and working memory [125]. Phase locking occurs in

ideal signals when the following condition is met:

ψ(t) = |φx(t)− φy(t)| ≤ b (2.3)

where φx and φy are the phases of the signals x and y, and the magnitude of their

difference should be less than some constant [126]. In neurophysiological signals, a

statistical approach must be used, so that phase locking is inferred when, for a given

time period, the phase difference has a statistical tendency to remain constant over
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time, even when the phases of the signals in question are varying [127]. There are

a number of ways to estimate a signal’s phase, including the Hilbert Transform and

wavelet transform, of which the Hilbert Transform is the most popular [126]. The

Hilbert Transform, xH(t), of signal x(t) is defined as:

xH(t) = f(τ) =
1

π
p.v.

∫ ∞
−∞

x(τ)

t− τ
dτ (2.4)

where p.v. represents the Cauchy principal value. Then the analytic signal is given

by:

ζ(t) = x(t) + ixH(t) (2.5)

and the instantaneous phase is found with the arctangent of the Hilbert Transform

divided by the original signal:

φx(t) = arctan

(
x(t)

xH(t)

)
(2.6)

Phase synchronization has been observed during perception [128, 129], and has been

proposed as a cortical mechanism of sensory binding [130] and segmenting cortical

processing epochs [131]. Investigation into phase synchrony and phase locking in rab-

bits in the theta (4-8 Hz) and gamma (20-80 Hz) bands, and humans in the theta (4-8

Hz) and high gamma (greater than 70 Hz) bands has found that theta synchrony with

gamma and high gamma bands plays an important role in coordinating communica-

tion across brain regions in cortical processing [127, 132]. Phase synchronization has

been demonstrated to change significantly during early development, consistent with

the structural changes ongoing in the brain during that period [133]; changes in a
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predictable way preceding seizures in epilepsy [134–136]; and is decreased in patients

with Alzheimer’s disease [136].

The disadvantages to mapping and decoding cortical state with the phase syn-

chrony approach are similar to those with the coherence approach. Because it is a

bivariate and directionless measure, statistical corrections for multiple comparisons

become unwieldy with a large network, and there is inherently less information about

the propagation of neural activity than in a model that incorporates directionality.

Additionally, it has been shown that in 96% of EEG epochs, patterns of phase co-

herence can be described by purely linear methods, and do not require a nonlinear

approach such as phase synchrony [137].

2.2 Effective Connectivity: Multivariate

Connectivity Models

Two similar methods, the partial directed coherence (PDC [138, 139]) and the

directed transfer function (DTF [140]) have used the concept of Granger causality to

introduce directionality into the modeling of neural activity propagation and overcome

limitations of pairwise approaches to connectivity [141]. There is Granger causality

from signal x(t) to signal y(t) if information from the past and present of x(t) improves

the ability to predict the future of y(t), compared to predictions made only with past

and present information of y(t).
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Multivariate models have improved the ability to model the direct propagation,

instead of indirect propagation, of neural activity through a network. Both PDC and

DTF construct a multivariate autoregressive (MVAR) model of the form:

X(t) =

p∑
j=1

AjX(t− j) + ε(t) (2.7)

where X(t) is a vector of the preprocessed neural activity measured at an arbitrary

number of sites n at time t, Aj is an n by n matrix with information about the

directional propagation of activity, the MVAR model order is p, and ε(t) is indepen-

dent Gaussian white noise. In the frequency domain, with frequency f and sampling

interval ∆t, this model is transformed to:

X(f) = H(f)E(f) (2.8)

where E(f) is the transformed error term and H(f) is the transfer function, given

by:

H(f) =

(
p∑
j=0

Aje
−i2πjf∆t

)−1

(2.9)

The PDC and DTF are derived from these formulae. The PDC is computed from the

Fourier transform of A. If Ā(f) = I−A(f) and H(f) = Ā−1(f), then each coefficient

of the PDC is found with:

πij(f) =
āij(f)√

āHj (f)āj(f)
(2.10)

The superscript H represents the conjugate transpose. Each element of the PDC

is therefore normalized with respect to the outflows from a given site. No matrix
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inversion is required to compute the PDC, making it a relatively computationally

efficient measure; however, it has been shown that due to the normalization approach,

weak flows from a channel with few outflows may be inflated [141]. The DTF, in

contrast, is found using the transfer matrix and is normalized with respect to the

inflows to a site:

δij(f) =
Hij(f)√
hHi (f)hi(f)

(2.11)

Two modifications to the DTF have made it a suitable measure for detecting time-

varying directed neural propagation at a time scale relevant to cortical processing.

When the full frequency DTF (computed by summing the denominator of the DTF

over all relevant frequencies) is multiplied by the partial coherence, only direct flows

between channels are represented. This measure is called the direct DTF, or dDTF

[142]. If multiple trials are available, it is possible to compute the short-time DTF, or

SDTF, with ensemble averaging, so that the window length can be as small as p, the

model order for the MVAR model [143]. These approaches have been combined in

the SdDTF [144], which can be applied to neurophysiological signals obtained during

standard cognitive experiments to model direct flows in windows on the order of

100-200 ms. This development permits the modeling of temporally cascaded neural

propagation involved in all stages of cortical processing.

Granger causality and MVAR models have been used in a variety of neurocognitive

contexts, and have identified novel feedback flows during face discrimination [145],

probed the role of communication between the anterior cingulate cortex and dorso-
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lateral prefrontal cortex [146] and temporal, parietal, and frontal cortex [147] when

responding to familiar vs. unfamiliar stimuli, and tested hypotheses about the di-

rection of interhemispheric information flow during wakefulness and varying sleep

states [148]. The SdDTF measure specifically has been used to discriminate between

auditory processing, response preparation, and verbal response in an auditory word

repetition task [144], and it has been demonstrated to vary predictably with verbal-

ized and signed language [149].

These models have also been used extensively to characterize ictal sources [150–

156] and have been employed in a number of other disease contexts. These include

testing a model of mild cognitive impairment [157], demonstrating a difference in

parieto-to-frontal flows in patients with mild cognitive impairment and Alzheimer’s

disease compared with normal elderly subjects [158], detecting a difference in inter-

hemispheric flows in adolescents with Down syndrome compared with normal ado-

lescents [159], and quantifying differences in cortical connectivity in Parkinson’s dis-

ease [160].

2.3 Proposed Approach

When using connectivity measures to map cortical interactions and decode move-

ment and speech from these interactions, there are three key considerations. First,

the methods used must be information dense, generating a sizable number of fea-
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tures that are highly correlated with the intended movement or speech. For this

reason, effective connectivity measures, which include a directional component, are

more suitable for these applications than functional connectivity measures. Second,

the methods must be time-varying with a temporal scale relevant to the scale at which

activity propagates through the cortex, on the order of hundreds of milliseconds. The

short-time modification to the dDTF (SdDTF, discussed above) is useful in captur-

ing these temporally volatile task-related networks. A statistical testing framework

is needed to apply the SdDTF within a mapping context to discover event-related

changes in these networks. Here event-related causality (ERC) [144] is used as this

statistical framework when mapping speech networks. Third, in a decoding context,

the methods must be computationally tractable, so that features can be generated in

near real time and used to predict intent immediately. The DTF and its variants are

not ideally suited to this context because they are computationally intensive. Here

a simplified conceptualization of the SdDTF, a time-varying dynamic Bayesian net-

work (TV-DBN) [161], is used to generate features for decoding to capture similar

time-varying directional connectivity information to that found with SdDTF, with

less parameter optimization required and increased computational simplicity.

2.3.1 Event-Related Causality

ERC is a statistical testing framework to find network propagation related to a

perceptual or behavioral event. The SdDTF is first calculated in sliding overlap-
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ping windows, yielding smoothed connectivity estimates. The method of penalized

thin-plate splines [162] is used to create a 95% joint confidence interval to compare

connectivity estimates during a trial to connectivity estimates during the baseline pe-

riod preceding the trial. Those connectivity estimates that are significantly different

from baseline connectivity are considered a part of the ERC network.

2.3.2 Time-Varying Dynamic Bayesian Networks

TV-DBN uses a similar framework to that used by MVAR effective connectivity

measures such as the PDC and DTF, However, two constraints on the model decrease

computational complexity, making TV-DBN a highly favorable connectivity measure

for decoding purposes. Essentially, the MVAR model relating signals at time t to

past signals (Eqn. 2.7) is reduced to a model order of 1:

X(t) = AX(t− 1) + ε(t) (2.12)

The asymmetric matrix A contains the TV-DBN connectivity coefficients. To find

A, an additional assumption is made that the adjacency matrix is smooth over time.

Multiple observations in time are therefore weighted with a Gaussian RBF kernel

when estimating A, so that observations close to time t contribute most to the esti-

mation of A. The model is solved using regularized least squares.
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2.4 Main Contributions of This Work

The work described in this dissertation makes four significant novel contributions

to the literature. The first is the finding that time-varying directed neural connectivity

varies consistently with dexterous movement. The second is the demonstration that

information contained in the connectivity improves the ability to decode dexterous

movement from neural signals. These results suggest a future role for time-varying di-

rected neural connectivity in BMI, particularly for the purpose of enhancing decoding

accuracy and permitting a more complex BMI based on large-scale neural signals that

integrates multiple sensorimotor processing streams. The third is the discovery, via

the application of time-varying directed connectivity mapping to a repetitive language

task, of a refined model for implicit memory based upon changes in cortical networks.

The fourth is the demonstration that connectivity features improve the decoding of

elements of speech, and the finding that sub-millimeter scale cortical connectivity

and cross-scale cortical connectivity contain features that are informative for speech

decoding.
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2.5 Relevance of the Results to the Scien-

tific Community

Taken together, these results serve as a series of case studies that validate the

hypothesis that cortical connectivity is a useful feature in both mapping the dynam-

ically changing cortical state during behavior and decoding for BMIs. In addition

to the immediate relevance to design considerations in the BMI field, these findings

also suggest a role for mapping cortical connectivity in scientific contexts, beyond the

clinical motivation for mapping described in Chapter 1.

Directed, time-varying connectivity mapping based on neurophysiological signals

may be extended to other areas of active research about cortical processing that in-

volves a flow of information, such as the perceptual binding problem [163], attentional

modulation [164], the integration of information leading to decision making [165], and

the brain states underlying consciousness [166]. Many studies have highlighted the

importance of low frequency oscillations in memory [167], binding [168], and coordi-

nating processing [169, 170]. It is likely that exploring effective connectivity in these

contexts may yield additional information about the flows of information through

cortical networks, and how it is gated or bound via low frequency oscillations.
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Chapter 3

Directed Causality of the Human

Electrocorticogram During

Dexterous Movement

3.1 Abstract

While significant strides have been made in designing brain-machine interfaces

for use in humans, efforts to decode truly dexterous movements in real time have

been hindered by difficulty extracting detailed movement-related information from

the most practical human neural interface, the electrocorticogram (ECoG). In this

chapter, we explore a potentially valuable, largely untapped source of movement-

related information in the form of cortical connectivity computed with time-varying
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dynamic Bayesian networks (TV-DBN). We find that, on average, TV-DBN connec-

tivity decreases from baseline preceding grasp and then becames negative, indicating

an alteration in the phase relationship between electrode pairs. In some subjects,

this change occurs preceding and during movement, before changes in low or high

frequency power. In dexterous individuated finger movement, we demonstrate that

measures of connectivity derived from the local motor potential varies with dexterous

movement in 65% of movement-related electrode pairs tested, and measures of con-

nectivity derived from spectral features vary with dexterous movement in 76%. Due

to the large number of features generated with connectivity methods, the TV-DBN

is a promising tool for decoding.

3.2 Introduction

ECoG decoding algorithms largely mirror similar algorithms used in EEG-based

BMIs. Frequency-domain features are extracted, often using an autoregressive model

[171], and low-frequency and/or high-frequency band power variations are typically

used in a linear model as predictors for a conditioned task or the kinematics of move-

ment. An additional slow temporal feature, the local motor potential (LMP), has

also been shown to vary with slow reaching and grasping motions and is included as

a feature in recent BMI decoding models [98, 105].

We aim to find movement-related information in the electrocorticogram (ECoG)
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to aid in studying and decoding highly dexterous movements. We have demonstrated

previously that directional connectivity, a description of directed connections between

cortical areas, provides grasp-related information beyond what is present in standard

decoding features [172]. Here, we apply a dynamic directional connectivity technique,

time-varying dynamic Bayesian networks (TV-DBN) [161], to ECoG data collected

during grap individual finger flexion and extension. We hypothesize that cortical con-

nectivity maps contain movement-related variation that may be relevant for dexterous

decoding. We seek evidence that movement-related variation in TV-DBN coefficients

occur on a different time scale compared to movement-related variation in spectral

features.

We choose to investigate rapid changes in connectivity using the recently de-

scribed method of time-varying dynamic Bayesian networks (TV-DBN) [161, 172].

The dynamic nature of the method permits the extraction of data at several time

points throughout a movement trial. The method also takes advantage of graph

theory to achieve efficient computation. TV-DBN is applicable to the estimation

of directed, constantly time-varying networks, and avoids pitfalls such as fixed node

dependencies [173], the use of a priori static networks that may fail to detect rapid

connectivity changes [174], and piece-wise stationary models that do not vary con-

stantly in time [175]. We choose this method over coherency and phase-based meth-

ods [135, 176–181], first because it produces directional results, potentially doubling

the amount of data extracted from a single connectivity map over undirected ap-
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proaches; and second because we seek to create a map of information flow at known

time delays. Dynamic Bayesian networks have also been shown to outperform a

Granger causality-based approach in the case of short data windows [182]. Moreover,

SdDTF, a Granger causality-based approach that is applicable to short time win-

dows, is calculated using a multivariate autoregressive model, an algorithm that is

prohibitively computationally expensive in the context of BMI [144]. We have further

compared TV-DBN and alternative methods in Discussion and Conclusions, below

(page 57).

3.3 Methods

3.3.1 Study Participants and Data Collection

Five patients with epilepsy undergoing monitoring in preparation for surgery par-

ticipated in motor experiments. During the experiments clinical ECoG data were

collected. The experimental protocol was approved by the Johns Hopkins Institu-

tional Review Board and all subjects gave informed consent. The study participants

were three males and two females, aged 12-58 years. Table 3.1 summarizes additional

subject details. Subjects A-D participated in the grasp study, and subjects A, B, and

E participated in the individual finger movements study.

The ECoG signal was recorded using subdurally implanted grids with 88 to 114

platinum electrodes of diameter 4 mm imbedded in a silastic sheet and spaced 10
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mm apart (Adtech Medical Instrument Corp., Racine, WI). The electrode locations

were determined with Curry software (Neuroscan Inc.) by co-registration of pre-

implantation MRI with post implantation CT using anatomical fiducials. In all sub-

jects there was coverage of motor, premotor, and/or supplementary motor cortex,

shown in Fig. 3.1. Clinical electrocortical stimulation mapping data, also depicted in

Fig. 3.1, was used to assist in identifying sensorimotor areas. The ECoG signal was

recorded using a 128-channel amplifier (Stellate Systems Inc., Montreal), digitized at

1000 Hz per channel, and referenced to an inactive intracranial electrode. The ECoG

data were filtered between 0.15-300 Hz, with a second-order Butterworth filter. A

notch filter was used at 60 Hz. The signals were re-referenced with a common average

reference (CAR) filter [183] to remove sources of noise common to all channels.

During the motor experiments, 18 joint angles of the hand contralateral to the

hemisphere of the implanted ECoG grid were recorded and digitized at 25 Hz using

a data glove (CyberGlove, CyberGlove Systems LLC, San Jose, CA). These joint

angles were metacarpal phalangeal, interphalangeal, and distal phalangeal joints and

abduction/adduction of all five fingers. These hand motor data were synchronized

to the ECoG signal by writing simultaneous time stamps and event markers to both

data streams.
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Figure 3.1: Grid of ECoG electrode locations in each of the five studied subjects.
Portions of motor, supplementary motor, and premotor cortex are covered by the
grids in all subjects. Solid black electrodes are those for which electrical stimulation
mapping (ESM) elicited a motor response, electrodes marked with an “X” are those
for which ESM elicited a sensory response, and electrodes marked with a “/” are those
for which ESM elicited both motor and sensory responses. The light brown regions in
the figures for subjects A, B, and E are locations of cortical dysplasia. c©2012 IEEE
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Table 3.1: Experimental Subject Summary

3.3.2 Experimental Protocol

Experimental sessions lasted approximately one to three hours in length, during

which a battery of several hand motor tasks was performed. For this work, only

palmar grasp and individual finger movement trials were analyzed. Each subject

performed 10-25 palmar grasps over the course of 128-378 s, across all trials. Subject

A was tested on two successive days; all other subjects were tested in only a single

session. Individual trials lasted between approximately one and five minutes. Session

and trial length accommodated subject fatigue and interest. A neurologist monitored

all experimental sessions and subjects were permitted to rest between trials.

The experiment was designed to collect data that could be used to build a decod-
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ing model to control a hand prosthesis. During ECoG recording, joint angles were

recorded with the arm in a comfortable position, somatosensory feedback was limited,

and a typical prosthesis movement was repeated a number of times. Each subject sat

in a hospital bed, with the arm of the hand wearing the data glove to record joint

angles resting on a pillow to permit it to rest in a comfortable position between trials.

The elbow joint was usually partially flexed in this position, and the hand partially

prone. To limit unusual somatosensory feedback, the hand did not touch the pillow

or any other surfaces during experimental recording.

In the grasp study, the subjects performed repeated slow-paced palmar grasps,

opening and closing all fingers on the hand contralateral to the implanted ECoG

grid. A slow-paced palmar grasp was chosen to mimic the most typical use of a hand

prosthesis. These grasps were either self-paced or verbally cued depending on patient

compliance with the task.

In the individual finger movement study, subjects flexed and extended each finger

several times before moving to the next, in a random order. They repeated these

multiple flexion and extensions between 10 and 35 times per trial. Subjects were

either self-paced, vocally cued, or visually cued. In some cases, subjects viewed a

virtual representation of a prosthetic hand in the MSMS virtual environment [184]

moving in synchrony with their own hand on a computer screen.
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3.3.3 Local Motor Potential

The LMP, a smoothed amplitude feature of the ECoG in the temporal domain,

was used as an ECoG feature in conjunction with high frequency and low frequency

power information for analysis. The LMP on sensorimotor electrodes has been shown

to vary with slow-paced grasping motions like those used in this study, and is a

commonly-used feature in ECoG BMI algorithms [98]. We have shown that the LMP

alone can be used to decode these slow grasps with high accuracy, even when very

few electrodes are used in the decoding model [105].

We computed the LMP with a moving average window T of 2 s duration:

LMP (t)n =
1

T

t+T/2∫
t−T/2

X(τ)CARn (3.1)

Here X(τ)CARn is the time signal from the nth ECoG electrode after filtering, where τ

is the time. The LMP was used in screening for electrodes whose activity was related

to movement.

3.3.4 ECoG Electrode Activation Index

To restrict initial TV-DBN analysis to sensorimotor electrodes, we first screened

electrodes for motor-related activity using the electrode activation index (AI), de-

scribed below. The AI is a measure of the average extent of change in ECoG features

between baseline and movement. It is calculated using both the power in low fre-

quency bands and power in high frequency bands, ECoG features that are known to
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vary in sensorimotor areas preceding and during hand movement [44,98,185,186].

It has been suggested that changes in broadly-defined low and high frequency

power bands are sufficient to quantify motor activity [104]. In the grasp study, we

therefore calculated log power in low (12-30 Hz) and high (75-150 Hz) frequency

bands. To ensure compatibility of the algorithm with eventual clinical applications

needing computationally efficient implementations, the fast Fourier transform (FFT)

[187], which has been used in many recent online ECoG BMI implementations [99,

188], was used rather than autoregressive modeling [171]. The FFT was implemented

with standard MATLAB (MathWorks, Natick, MA) toolboxes. The window size for

the low frequency band (LFB) was 512 ms, and the window size for the high frequency

band (HFB) was 256 ms.

In the individual finger movement study, in order to maximize potentially useful

features, we considered spectral features in standard frequency bands: delta (0-4

Hz), theta (4-8 Hz), mu (8-13 Hz), beta (14-30 Hz), low gamma (31-50 Hz), and high

gamma (70-110 Hz). Spectral power was calculated in 1 Hz bins with an autoregressive

model using the Burg method of order 20 on windows of 1 s.

We compared each of the three grasp features (LMP, LFB, and HFB) or seven

individual finger features (LMP and six spectral bands), between the baseline state

(rest, r) and active state (hand movement, m). We used a well-accepted statistic, the
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cross-correlation coefficient [189]:

F =

∣∣∣∣∣ (m− r)3

|m− r|σ2
m∪r

NmNr

N2
m∪r

∣∣∣∣∣ (3.2)

Here r denotes the average feature value during rest, m denotes the average feature

value across all hand movements, σ denotes the feature variance across all hand states,

and N denotes the total number of incidences of each state.

The AI was then determined for each electrode by the feature with the largest

normalized change between rest and movement states for all hand movements; e.g.,

in the case of grasp:

AI = max {LMP,LFP,HFP} (3.3)

In the grasp study, the five electrodes with the highest AI values were considered to

represent hand movement-related locations for the purposes of connectivity analy-

sis. Five electrodes were chosen because for all subjects except Subject C, previous

work has shown that within five electrodes, decoding accuracy (r, correlation between

actual and predicted hand movements) reached approximately 95% of maximum de-

coding accuracy [105]. Furthermore, preliminary networks of five electrodes contained

sufficient connections to probe with maps of cortical connectivity. In the individual

finger movement study, the ten electrodes with the highest AI values were included

in connectivity analysis, in order to more fully probe the connectivity feature space.
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3.3.5 Time-Varying Dynamic Bayesian Networks

The TV-DBN framework was used to model connectivity and directionality be-

tween pairs of ECoG electrodes. Under this framework we considered the connectivity

coefficient from electrode i to electrode j to be high at time t if information about

activity at electrode i at time t − 1 could be used to predict activity at electrode j

at time t. The N ECoG channels recorded from each patient were represented as a

vector at time t:

X t =
(
xt1, x

t
2, ..., x

t
N

)
∈ R (3.4)

The time steps t = 1, ..., T were used to express a time series of ECoG data with

length T . A first order Markov model was used, meaning that the state of each

ECoG signal, X, at time t depended only on the previous state of all ECoG channel

signals at time t − 1, 200 ms before time t. In this case the conditional probability

of observing a given set of ECoG amplitudes at time t given amplitudes at previous

time t− 1 was P
(
X t|X(t− 1)

)
.

The distribution of temporal ECoG transitions was modeled with linear regression:

X t = AtX t−1 + ε (3.5)

The term At ∈ RN×N was then a connectivity coefficient matrix, in which Atij was

the connectivity weight from the ith to the jth channel from time t − 1 to time t.

The At term was estimated at time t by minimizing the criterion:

Âti = argmaxAt
i∈R1×N

1

T

T∑
t∗=1

wt(t∗)xt
∗

i − AtiX t∗−1 + λ||Ati|| (3.6)
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The parameter λ was a regularization term that shrank the connectivity terms of the

connectivity matrix A. Previous work led us to use a value of 100 for this parameter

[161]. The weight of an observation at time t∗ was given by wt(t∗), defined using a

Gaussian RBF kernel:

wt(t∗) =
Kh(t

∗ − t)
T∑

t∗=1

Kh(t∗ − t)
(3.7)

Kh(·) = e−t
2/h (3.8)

The kernel bandwidth was given by the parameter h, which controls the scattering

of the kernel. We used a value of 5 for h [161]. The Gaussian RBF kernel was used

in estimating At to reduce noise and provide a more stable estimate. It was summed

only over points up to t, maintaining causality. The low variance ensured that only

data near time t was used in estimating At.

The connectivity coefficient matrix A was estimated by decomposing the matrix

into two orthogonal axes. The first axis was defined at each time point by the weight

term, which weights the signal heavily near time t. The second axis was defined by

each channel, as in Eqn. 3.6. Through this decomposition simplification, the network

can be solved as a weighted regression problem by least squares.

3.4 Results: Connectivity during Grasp

This section presents results obtained from subjects A-D participating in the grasp

study.
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3.4.1 Selection of Movement-Related Electrodes

Motor-related electrodes were selected using the metric AI representing the aver-

age change in ECoG features between baseline and movement. Maps of normalized

absolute AI are shown for each subject in Fig. 3.2. A subset of the five electrodes

from each subject with highest absolute AI values was chosen for subsequent analysis

of movement-related changes in connectivity. Details on the electrodes selected for

analysis, including approximate electrode location and clinical electrocortical stimu-

lation mapping (ESM) results are given in Table 3.2. Electrodes with high absolute

AI were largely located over peri-Rolandic sensorimotor areas (75%). In three of

four subjects (A, B, and D) the activity on a few electrodes was well correlated with

movement. Subject C had generally very low correlation between motor activity and

ECoG features.

3.4.2 Peri-Movement TV-DBN Connectivity Co-

efficients

TV-DBN connectivity coefficients were computed between all possible pairs from

the five most movement-related electrodes for each subject. A representative plot of

the evolution of TV-DBN connectivity coefficients for subject A is shown in Fig. 3.3.

On average, movement-related TV-DBN connectivity coefficients decreased preceding

movement, entering a period during which the average influence was negative, and
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Table 3.2: AI-Based Electrode Selection
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Figure 3.2: Normalized absolute AI on all electrodes for each subject. High AI
indicates that the LMP or spectral features recorded on an electrode were more
correlated with hand movements than those with low AI. For each subject the five
electrodes with highest absolute AI values were used for subsequent analysis (see
Table 3.2). c©2012 IEEE
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recovered gradually over the time course of movement. Negative values in TV-DBN

connectivity coefficients may indicate a change in the phase difference between signals,

or more simply that an increase in activity at one electrode precedes a decrease in

the activity at another.

In three subjects the TV-DBN connectivity coefficients between at least two pairs

of movement-related electrodes showed a statistically significant change from baseline

during movement (p <0.05, Kruskal-Wallis test). For subject A, 6 electrode pairs

exhibited statistically significant changes in TV-DBN connectivity coefficients; for

subject B, 13 electrode pairs; and for subject D, two electrode pairs. For subject C

no electrode pairs exhibited a statistically significant change in TV-DBN connectivity

coefficients. Fig. 3.4 depicts TV-DBN connectivity coefficients between all movement-

related electrodes for all subjects averaged over hand movement trials. Movement

onset is indicated with a vertical line.

3.4.3 TV-DBN Connectivity Coefficient Evolution

in Time

In order to better visualize the evolution of the cortical connectivity network pre-

ceding and during movement, TV-DBN connectivity coefficients between movement-

related electrodes with a statistically significant change from baseline (p <0.05, Kruskal-

Wallis test) were overlaid on cortical reconstructions. An example set of cortical con-
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Figure 3.3: TV-DBN connectivity coefficients between ECoG electrodes during hand
movement for subject A. Movement onset is marked with a vertical black line. (a)
Time course of normalized joint angle averaged across trials. Movement onset occurs
at 0.8 s from the beginning of the trial. (b) TV-DBN connectivity coefficients between
all pairs of movement-related electrodes before and during movement. Values were
averaged across all trials. In most channel pairs connectivity varied with movement.
(c) TV-DBN connectivity coefficients averaged across movement-related electrode
pairs. A change in connectivity coefficients begins prior to movement and recovers
gradually over the time course of the movement. c©2012 IEEE
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nectivity networks is shown in Fig. 3.5 for subject A for pre-movement (-0.6 to -0.2

s), movement onset (0 to 0.2 s), and during movement (0.4 to 1.4 s) conditions. In

subject A the pre-movement connectivity network was widespread with strong pro-

jections between motor-related electrodes. Connectivity at movement onset was more

limited. As the movement continued, the connectivity network incorporated several

electrodes and may have represented sensorimotor integration.

We observed what appeared to be an early onset of TV-DBN connectivity coeffi-

cient changes, relative to the onset of movement and the onset of movement-related

changes in other ECoG features. As an example, the average time courses of spectral

features and TV-DBN connectivity coefficients for subjects A and B are shown in

Fig. 3.6.

We used principal component analysis to explore whether the changes in con-

nectivity coefficients preceding and following movement onset could be grouped in a

meaningful way. Principal components (PCs) of TV-DBN connectivity coefficients

for all four subjects did tend to separate into those that were most activated pre-

movement, near movement onset, and during movement (see Fig. 3.7). A represen-

tation of the connectivity coefficients that most contributed to the first four PCs for

Subject A is shown in Fig. 3.8. The PC whose largest change occurred pre-movement

is the only one to include significant connections to and from a frontal electrode, while

the PC with large post-movement change includes primarily connections to and from

peri-Rolandic areas.
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Figure 3.4: TV-DBN connectivity coefficients between movement-related electrodes
changing in time, averaged across all hand movements. Standard error is shown above
and below the mean, and plots with statistically significant changes in movement co-
efficients compared to baseline are marked with an asterisk. A) Six electrode pairs
show statistically significant changes in connectivity coefficients. B) Thirteen elec-
trode pairs show statistically significant changes in connectivity coefficients. C) No
electrode pairs show statistically significant changes in connectivity coefficients. D)
Two electrode pairs shows a statistically significant change in connectivity coefficient.
c©2012 IEEE
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Figure 3.5: Depiction of statistically significant absolute TV-DBN connectivity coeffi-
cients between movement-related electrodes on reconstructed brain surfaces. Positive
TV-DBN values, indicating direct relationships between the source and sink elec-
trodes, are shown in green (pre-movement), blue (movement onset), and purple (dur-
ing movement). Negative TV-DBN values, indicating inverse relationships between
the source and sink electrodes, are shown in red. Arrow width indicates the magnitude
of the TV-DBN coefficient. (a) Large pre-movement (0.6 to 0.2 s before movement
onset) TV-DBN connectivity coefficients projected within peri-Rolandic regions and
between electrode 2 (starred) and peri-Rolandic regions. (b) At movement onset,
a limited connectivity network was observed between motor electrodes and from a
motor electrode that was highly correlated with movement to electrode 2. (c) During
movement (0.4 to 1.2 s after movement onset) sustained and distributed connectivity
was observed, potentially integrating sensory and motor processing. c©2012 IEEE
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Figure 3.6: The average time course of spectral features and TV-DBN connectivity
coefficients preceding movement onset (time 0 s) and during movement for subject A
(upper) and subject B (lower). The early onset of movement-related change in TV-
DBN connectivity coefficients may be a useful feature for movement decoders, for
which change in kinematic predictions usually lags actual kinematic change. c©2012
IEEE
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Figure 3.7: Trial-averaged PCs of TV-DBN connectivity coefficients varying in time.
PCs shown account for 95% of TV-DBN connectivity coefficient variance for each
subject (four PCs for subject A, three for subject B, and two for subjects C and
D). The first PC is blue, second is green, third is red, and fourth is cyan. The
vertical black line marks movement onset. Components emerge for most subjects
that reach extrema both pre-movement onset and post-movement onset, possibly
representing ensembles of cortical processing areas engaged in pre-movement and
movement activities, respectively.
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Figure 3.8: Depiction of largest contributors (top 20% of electrode pairs) to each
of the four PCs for Subject A. (a) The first PC (blue) changed largely during the
movement, and includes projections to and from the peri-Rolandic area. (b) The
second PC (green) changed preceding movement but very little during movement,
and is the only grouping to contain connections to and from the frontal electrode. (c)
The third PC (red). (d) The fourth PC (cyan). c©2012 IEEE
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3.5 Results: Connectivity during Individ-

ual Finger Movements

This section presents results obtained from subjects A, B, and E participating in

the individual finger movement study.

3.5.1 Local Motor Potential and Connectivity

Following the demonstration of a relationship between LMP-based connectivity

and grasp during the slow hand open and close task, we probed connectivity during

individual finger movements. Fig. 3.9 demonstrates that LMP-based connectivity also

changes with more rapid individual finger flexions and extensions. In two subjects

the TV-DBN connectivity fluctuated in an oscillatory pattern. Across the three

subjects, the LMP distribution changed statistically significantly between movement

and baseline (Wilcoxon rank sum test with Bonferroni correction, p <0.05) in 126

electrodes, or 54% of all electrodes, whereas the LMP-based TV-DBN connectivity

changed statistically significantly from baseline in 176 channel-channel connectivity

pairs, or 65% of the 270 channel pairs tested. This large number of movement-related

features may help to inform a decoder for dexterous movement. This is a small

fraction of the 53,130 total channel pairs that could have been explored with TV-

DBN across all three subjects; we limited our selection to ensure we obtained results

that are relevant to real-time decoding, which will require rapid computation that is
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only possible when analyzing a few channels with TV-DBN.

Figure 3.9: Trial-averaged LMP (upper row) and trial-averaged TV-DBN calculated
from LMP (lower row) for one trial each for subjects A, B, and E. Plots are chan-
nels vs. time. Movement onset occurs at 0 s and is indicated with a dashed line.
Movement-related LMP changes are difficult to distinguish, with the exception of
subject E. Movement-related changes in TV-DBN coefficients, however, are evident
in all subjects. c©2012 IEEE

3.5.2 Spectral Features and Connectivity

One group has previously studied the response of TV-DBN connectivity coeffi-

cients constructed from activity in the alpha band of EEG activity during move-

ment imagery [161]. TV-DBN connectivity has not been explored in other frequency

bands. Fig. 3.10 shows the average spectrograms for subjects A and B, who had

robust movement-related changes in spectral connectivity, as well as plots of average
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connectivity changes in the delta bands (A and B) and gamma band (A). Eighty-two

percent of all spectral features on all channels included in the analysis changed from

baseline to movement (Wilcoxon rank sum test with Bonferroni correction, p <0.05).

The number of channel-channel connectivity pairs whose connectivity changed sta-

tistically significantly relative to baseline ranged from 69-82% for individual features.

Beta, low gamma, and high gamma-based connectivity features changed relative to

baseline more often than lower frequency features. While the ratio of TV-DBN fea-

tures changing was not higher than that of spectral features, with only ten electrodes

we found between 357 and 494 modulating TV-DBN features per subject.

3.6 Discussion and Conclusions

We have described the application of a new method for determining directional

connectivity of brain functional regions using the ECoG signal. The benefits of the

TV-DBN method are the abilities to detect early changes in connectivity, handle

short data windows, and vary constantly in time. This method was applied to human

ECoG data to identify cortical connectivity preceding and during hand movement.

We have also described changes in cortical connectivity related to dexterous in-

dividual finger movement. In connectivity computed from the LMP, oscillatory

movement-related activity was observed. Connectivity computed from spectral fea-

tures varied, and included both peri-movement increases in delta and high gamma
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Figure 3.10: Selected average spectral (upper row) and spectral connectivity (lower
row) features. Spectrograms are frequency vs. time for channel with the highest
AI. Connectivity plots are channels vs. time. Movement onset occurs at 0 s and is
indicated with a dashed line. (A) For Subject A, spectral-based connectivity in both
the delta band (bottom left) and high gamma band (bottom right) changed visibly
in many channel pairs before and during movement. (B) For Subject B, spectral-
based connectivity in the delta band (bottom) dropped following movement onset, a
phenomenon observed in the results for the grasp task. c©2012 IEEE
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connectivity in one subject, and decreases in delta connectivity following movement

in a separate subject.

We explored only ten electrodes per subject during individual finger movement in

order to draw conclusions relevant for online motor decoding, which is feasible with

TV-DBN calculations for ten electrode pairs but not for an entire ECoG grid. However

with only these ten electrode pairs per subject we discovered hundreds of movement-

related connectivity features. Future work will probe the correlation of information

contained in these features, with an aim to identify large feature sets with highly

independent information content. Such information-rich feature sets may permit

dexterous decoding to advance beyond simple grasps to individual finger movements.

3.6.1 Interpretation of Connectivity Coefficients

From literature, it is expected that immediately preceding hand movement there

may be activity from supplementary motor [69,190,191] and premotor areas [192,193].

This activity informs the primary motor cortex, which is directly responsible for move-

ment control [194]. It is possible that this early activity created the change in TV-

DBN connectivity coefficients that we observed preceding movement. During move-

ment, somatosensory information provides feedback to motor areas [195], updating

the projected motor model. Statistically significant changes in TV-DBN connectivity

coefficients from baseline support this model, with connectivity between a variety of

motor areas preceding hand movement. At grasp onset, a limited directed connec-
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tivity network develops involving the motor electrode most highly correlated with

hand movement. As grasp continues, there are once again more spatially widespread

statistically significant connectivity coefficients. This connectivity network present

during grasp may be a reflection of the fact that the motor areas are receiving sen-

sory feedback to update the projected motor model.

3.6.2 Comparison to Alternative Techniques

A handful of approaches exist to map influences or similarities between time-

varying signals, including coherency and phase-based methods [177, 178, 181] and

Granger causality-based methods [140–142, 144, 196–198]. These approaches can be

applied to the problem of discovering connectedness between areas of cortex covered

by ECoG electrodes.

Coherency is a baseline measure of interactivity between cortical areas [177,178].

The imaginary part of coherency has been used in EEG to find directionality of infor-

mation flow [181]. Similar phase-based methods [135,176,179,180] can indicate EEG

and ECoG signal flow and in some cases directionality. However, due to the nature

of the phase, it is not possible to create a precise temporal map of information flow

at known time delays. Moreover, there is a problem of high correlation in multichan-

nel data, causing pair-wise interactivity algorithms to incorrectly estimate overriding

common influences across multiple channels [141,197].

The directed transfer function (DTF), an extension of the Granger causality con-
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cept to multivariate signals [140], addresses the problem of pair-wise connectivity algo-

rithms. The DTF has been further refined in the direct DTF (dDTF), which exhibits

improved ability to differentiate direct causality from cascaded causality [142], and

the short-time DTF (SDTF), which is applicable to short signal windows [196, 198].

The dDTF and SDTF have been combined in the SdDTF [144], which is well suited

to exploring rapid changes in direct connectivity. However, the SdDTF requires mul-

tiple trials and is calculated using a multivariate autoregressive model, an algorithm

that is computationally expensive.

Because the TV-DBN results demonstrated here are independent of ECoG fre-

quency band, unlike techniques such as the imaginary part of coherency [181] or

SDTF [198] and SdDTF [144], we are able to investigate causality outside the con-

straints of frequency. The TV-DBN, like Granger causality-based methods, has a

basis in causality. Connections discovered with the TV-DBN therefore reflect rela-

tionships more clearly than, for example, the imaginary part of coherency, which can

only indicate that one element of an interacting pair preceded another. Compared to

the SdDTF, a measure of causality that can be applied to short time windows [144],

the TV-DBN has decreased computational complexity but is applicable to similarly

short time windows (200 ms in this study compared to 360 ms in the 2008 SdDTF

study).
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3.6.3 Limitations of the Method

The TV-DBN model used in this analysis was based on a first order Markov model,

in which the state of an ECoG signal depended only on the previous state of all ECoG

channels at a time 200 ms earlier. It is unlikely that this offset effectively probes all

causal relationships between cortical regions, and a more comprehensive model would

consider the effects of channel states at multiple time lags. We chose to study the

model at a single time lag to preserve computational efficiency of the TV-DBN and

to enable implementation in a real-time BMI.

The method did not incorporate explicit models of physiological mechanisms of

connectivity. For example, we did not probe phase synchronization or specific fre-

quency bands, such as theta oscillations, that have been shown to synchronize dur-

ing a variety of tasks, potentially guiding the synchronization of cortical process-

ing [132, 169, 170, 199, 200]. However, physiological mechanisms for connectivity may

be incorporated into the model in a “black box” way, without being explicitly defined,

because the TV-DBN finds signal connectivity.
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Chapter 4

Connectivity Analysis as a Novel

Approach to Motor Decoding for

Prosthesis Control

4.1 Abstract

The use of neural signals for prosthesis control is an emerging frontier of research

to restore lost function to amputees and the paralyzed. Electrocorticography (ECoG)

brain-machine interfaces (BMI) are an alternative to EEG, neural spiking, and local

field potential BMI approaches. Conventional ECoG BMIs rely on spectral analysis

at specific electrode sites to extract signals for controlling prostheses. We compare

traditional features with information about the connectivity of an ECoG electrode
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network. We use time-varying dynamic Bayesian networks (TV-DBN) to determine

connectivity between ECoG channels in humans during a motor task. We test TV-

DBN output in a hand kinematic decoder in four subjects and obtain an average

correlation coefficient (r2) between actual and predicted joint angle of 0.40, and as

high as 0.66 in one subject. This result compares favorably with spectral feature

decoders, for which the average correlation coefficient in our study is 0.13. This

work introduces a new BMI feature set based on connectivity and demonstrates its

potential to improve ECoG BMI accuracy.

4.2 Introduction

While high decoding accuracy for classification of movement has been reported in

the literature [96,97,102], trajectory prediction accuracy and online decoding latency

has not improved significantly since ECoG’s introduction as a BMI control signal [44],

with an average of 90% of targets hit in a 1D control task using imagined movement

and speech. It is unlikely that the target population for ECoG-based BMI use will

accept accuracy significantly below that provided by a natural or cable-controlled

arm in clinical use [201]; therefore, fundamental shifts in BMI features and decoding

algorithms will be necessary to create a truly clinically relevant BMI.

Human ECoG-based decoding has progressed since its first demonstration in

2004 [44], with some forays into dexterous decoding, including grasps [105, 202, 203].
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Classification of contralateral and ispsilateral individual finger movement [102] and

decoding the time course of individual finger tapping [101] have been demonstrated.

However these offline dexterous decoding achievements have not been replicated in a

real-time ECoG BMI, in which the challenges of asynchronous decoding will require

much more information-rich signals than are currently available.

A clinically relevant BMI would need to operate in real-time and derive sufficient

information from the neural signal to achieve nearly 100% accurate control. In order

to create a BMI with an operating speed approaching natural execution time and a

level of accuracy that is acceptable to a patient population, new models of cortical

communication and new techniques are required with rapid calculation speed and high

information rate. Current BMIs use signals from individual electrodes and features

based on changes in frequency band power, indicators only of localized processing.

It is very likely, however, that most processing involves extended cortical circuits in

parietal, temporal, frontal, and sensorimotor areas, which are better observed through

the signals recorded over a wider span of the ECoG array. A better understanding

of the flow of information through these circuits may improve BMI accuracy. One

new and promising approach is connectivity mapping, the reconstruction of functional

connections between cortical areas based on the signals present in those areas. Here

we implement a high-throughput, dynamic, and computationally cheap method to

map connectivity. We hypothesize that the connectivity coefficients of these directed

connectivity maps will be informative in decoding joint angle during palmar grasp
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from the ECoG signal.

Here we apply TV-DBN estimation of directed connectivity to multichannel ECoG

data recorded during a simple motor grasping task. Then we use these connectivity

coefficients to create an ECoG kinematic decoder and compare it to a standard spec-

tral feature-based decoder. We expect the accuracy of the connectivity-based decoder

to improve upon the accuracy of the standard decoder.

4.3 Methods

4.3.1 Experimental Protocol

The experimental protocol was that used for the grasp study described in Chap-

ter 3. Four human subjects performed palmar grasps while kinematic and ECoG

data were simultaneously recorded. Data preprocessing, standard feature extraction,

connectivity feature extraction with TV-DBN, and channel selection using the acti-

vation index (AI) were performed according to the methods described in the previous

chapter.

4.3.2 General Regression Neural Networks

We hypothesized that connectivity coefficients found with TV-DBN would improve

decoding of kinematic information from neural data over using traditional features
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alone. To test this hypothesis, we constructed two general regression neural networks

(GRNN) per subject, which decoded continuous joint angle for one angle that was

chosen to be representative of the trajectory of hand opening and closing [204]. The

GRNN was chosen to maintain rapid computational speed. It is a fast learning,

non-iterative algorithm. The first GRNN decoded joint angle from standard BMI

features (the “spectral feature GRNN”), and the second used TV-DBN connectivity

coefficients (the “TV-DBN GRNN”).

The spectral feature GRNN used as inputs the LMP and the log power of low

(12 to 30 Hz) and high (75 to 150 Hz) frequency bands for all electrodes (3 types

of features, between 264 and 342 total features). The TV-DBN GRNN used the

connectivity coefficient matrix A. To maximize decoding accuracy, we computed TV-

DBN connectivity coefficients for all electrodes, and chose as decoding features the

5% of connectivity coefficients most highly correlated with the time course of the

hand joint angle (between 387 and 650 total features).

For both GRNN decoders, the states of hand movement were defined as yt(t −

1, ..., T ), in T time steps. The spectral feature matrix S and the connectivity coeffi-

cient matrix A at time t were reshaped as a vector. For the TV-DBN decoder, this

vector was C(At1,1, ..., A
t
1,N , ..., A

t
N,1, ..., A

t
N,N). Then y was a function of C and y, and

was estimated by its expected value:

E[y|A] =

∫∞
−∞ yf(C, y)dy∫∞
−∞ f(C, y)dy

(4.1)
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The probability distribution function f(C, y) was estimated with:

f̂(C, y) =
1

(2π)(p+1)/2φp+1

1

n

n∑
i=1

e−D
2
i /2φ

2

e−(y−yi)/2φ2 (4.2)

Here n was the number of sample observations, p was the dimension of the connectivity

coefficient matrix A, φ was a smoothing parameter, and D2
i was the distance between

C and the ith observation Ci. Substituting Eqn. 4.2 into Eqn. 4.1, we estimated the

movement state with:

ŷ(C) =

n∑
i=1

yie
−D2

i /2φ
2

n∑
i=1

e−D
2
i /2φ

2

(4.3)

The GRNNs used were four-layer networks with input vector C. Each unit of the

pattern layer output the distance D2
i to the summation layer, which performed the

numerator and denominator operations in Eqn. 4.3. The output layer computed

the ratio between the numerator and denominator. Initial models were trained on

30% of the data and tested on 70%. Five-fold cross-validation was used to construct

comparison spectral feature and TV-DBN models.

4.4 Results: Motor Decoding with TV-

DBN Connectivity Coefficients

To investigate whether TV-DBN connectivity coefficients could improve upon neu-

ral decoding based on spectral and LMP ECoG features, we constructed two GRNNs

with five-fold cross-validation for each subject to decode joint angle from neural data.
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The first set of GRNNs used spectral features in a low frequency bin (12 to 30 Hz)

and a high frequency bin (75 to 150 Hz) and the LMP for all electrodes, a total of

264-342 features. The second set of GRNNs used the top 5% of TV-DBN connectivity

coefficients most correlated with joint angle, a total of 387-650 features. Decoding

accuracy is shown for each subject in Table 4.1, and TV-DBN decoding results for

one trial for each subject are shown in Fig. 4.1. For subject A, the optimal decoding

accuracy (correlation coefficient, r2, between actual and predicted joint angle) with

the spectral feature set of GRNNs was 0.31, and with the connectivity feature set of

GRNNs was 0.66, more than double. For subject B, the spectral feature accuracy was

0.18, and the connectivity feature accuracy was 0.40, also more than double. Decoding

accuracy was near zero with both feature sets for subject C. For subject D, decoding

accuracy was very poor with the spectral feature set at 0.02, but much higher with

the connectivity feature set at 0.52. Although the spectral feature GRNN’s decoding

accuracy is below the average reported in a recent study of decoding individual fin-

ger movement from ECoG (0.27 [101]), the TV-DBN decoding results are on average

higher.

It is likely that at least some of the improved accuracy in the TV-DBN GRNN may

be attributed to the increased number of features included in the decoder. For LMP,

LFP, and HFP, the maximum number of features that can be used in decoding is 3N,

where N is the number of ECoG channels, whereas the maximum number of directed

connectivity-based features is N2 − N . The large feature set available through this
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Figure 4.1: TV-DBN GRNN joint angle decoding results for all subjects. Thick
gray trace represents actual normalized joint angle, and thin red trace represents
normalized predicted joint angle. One joint angle from a data glove was chosen to be
representative of the opening and closing of the hand. GRNN decoders were trained
on 30% of data and tested on 70%, and cross-validation was not used. Correlation
coefficient (r2) between actual and predicted joint angle was 0.66 for subject A, 0.40
for subject B, 0.01 for subject C, and 0.52 for subject D. c©2012 IEEE

67



CHAPTER 4. MOVEMENT DECODING WITH CONNECTIVITY

Table 4.1: Average Maximum Decoding Accuracy by Subject (Correlation Coefficient,
r2)

method may lead to improved decoding capabilities.

Using MATLAB 2011b on an Intel(R) Core(TM)2 Duo 2.53 GHz processor, the

approximate computation time for extracting TV-DBN features for five electrodes

was 4 ms for each 200 ms time step. With five fold cross-validation, GRNN training

time was 110 ms, and the computation time of each GRNN output for testing was

negligible. Using only 5 electrodes, this system would be applicable to real-time BMI.

However, as implemented, calculating TV-DBN coefficients for all electrodes required

approximately 580 ms per time step, meaning that pre-selecting a subset of electrodes

is necessary for real-time neuroprosthetic control.

4.5 Discussion and Conclusions

We have used TV-DBN connectivity coefficients to decode joint angle during grasp,

which improved upon a decoder constructed with standard spectral and LMP ECoG

features. This approach has potential applications in ECoG-based BMI, not only as
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a method for extracting additional information, but also for probing pre-movement

and movement cortical circuits. Results suggest that further investigation into signa-

tures of pre-movement activity may yield early movement prediction and improved

decoding.

4.5.1 Limitations of the Method

Clinical ECoG currently offers coverage dictated by clinical need, and electrodes

spaced millimeters to centimeters apart. It is likely that for a practical ECoG-based

BMI, more localized and spatially dense coverage will be most practically feasible and

provide the best signals for BMI control [188]. However, because N2 − N features

are extracted with directed connectivity methods, compared to the number extracted

with spectral analysis (proportional to N), this may be a more information rich

method of signal analysis for ECoG-based BMI.

In this experiment subjects received somatosensory, proprioceptive, and visual

feedback as they moved the hand and observed their own movements. In the operation

of a prosthesis, somatosensory and proprioceptive feedback would be absent, and

visual feedback may be different from what the subject expects. Directed connectivity

mapping provides a unique tool to model the interactions between proprioceptive,

somatosensory, visual, and motor areas. The models may then be adapted to account

for the absence of normal activity in these areas.
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4.5.2 Future Directions

In order to verify the utility of connectivity features for BMI, a connectivity-based

decoder should be implemented in a real-time decoding paradigm in which subjects

control a prosthetic limb using overt or covert (imagined) movement. Connectivity

features could be used in conjunction with power spectral features to optimize de-

coding accuracy. This paradigm would also be an ideal method to test the early

prediction of movement with connectivity features. Connectivity features could be

used, as in this chapter, directly as features for a kinematic decoder, together with

power spectral features. Alternatively, connectivity features could be used to control

a gating classifier, which would initiate kinematic decoding only when relevant corti-

cal flows, such as flows from parietal or premotor areas to primary motor ares, were

detected.

Additionally, connectivity decoding should be tested with more complex motor

tasks that require bimanual coordination or explicitly integrate sensory information.

Bimanual tasks may lead to neural propagation through supplementary motor area

or both hemispheres [69, 75], and sensory processing may lead to neural propagation

through somatosensory, visual, or auditory areas, depending on the sensory stimuli

used during the task.
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Chapter 5

Top-Down Neural Propagation

Regulates Neural Activity during

Behavioral Priming

5.1 Abstract

We have demonstrated that effective connectivity features, generated from models

of neural propagation, contain information about movement. Moreover, this informa-

tion can be used to inform motor decoding from neural signals. While mapping the

propagation of neural activity during speech could have similar applications to speech

prosthetics, such connectivity models would also be of significant use in testing models

of the cortical activity underlying speech production. Here we provide one example
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of the utility of effective connectivity, computed from neurophysiological signals, for

testing and refining models of cortical activity. Repeated exposure to a perceptual

stimulus is known to result in decreased neuronal activation (repetition suppression)

and more rapid behavioral responses (behavioral priming), but the cortical mecha-

nisms underlying these observations remain unresolved. To clarify these mechanisms

at the level of neural populations, we used subdural electrocorticography in six sub-

jects performing a picture naming task and studied the effects of stimulus repetition

on activation at individual sites and on effective connectivity between sites with repe-

tition effects. We verified behavioral priming in all subjects, with a mean reduction of

149 ms in verbal latencies for repeated vs. novel stimuli. We observed repetition sup-

pression most consistently at sites in ventral occipital-temporal cortex (VOTC) and

inferior prefrontal cortex. In addition, we observed repetition enhancement (increased

neural responses) at sites in frontal, parietal, and temporal regions. At early latencies

(90-270 ms) repeated stimuli were associated with an increase in top-down propaga-

tion of neural activity (relative to novel stimuli) from perisylvian frontal, parietal,

and temporal cortices into VOTC. Subsequently (350-620 ms), bottom-up propaga-

tion from VOTC sites with repetition suppression was decreased (repeated vs. novel).

Repeated stimuli were also associated with an increase in top-down propagation from

sites with repetition enhancement to sites in lateral frontal-temporal cortex with rep-

etition suppression, and a decrease in bottom-up flows in the reverse direction. These

results suggest that during repeated stimulus exposure, early top-down network con-
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nectivity is strengthened, resulting in less activation (repetition suppression) and less

bottom-up network propagation. Connectivity mapping therefore supports a role

for top-down regulation of neural activity in repetition suppression and behavioral

priming, consistent with predictive coding in large-scale cortical network dynamics.

5.2 Introduction

Repetition suppression, a decrease in cortical activation upon repeated stim-

ulus exposure, has been widely observed under a variety of experimental condi-

tions [205–207] and has been extensively exploited as an experimental tool in fMRI

studies [208]. Repeated stimulus exposure is also associated with faster behavioral

responses, i.e. behavioral priming, believed to result from more efficient large-scale

network dynamics [209–211]. However, the neural mechanisms by which faster re-

sponses occur in spite of less neural activity remain a mystery [212]. These mecha-

nisms have great practical significance for functional neuroimaging research, but are

also of fundamental importance for understanding cortical mechanisms of learning

and implicit memory [213].

Several models of the neurophysiological mechanisms relating repetition suppres-

sion to behavioral priming have been proposed; for a review, see [210]. These models

can be distinguished in large part by their predictions for the temporal dynamics of

task-related neural population activity. However, the low temporal resolution of the
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BOLD response does not allow for explicit testing of these predictions. The electro-

corticogram (ECoG), which records local field potentials from the surface of the brain

with excellent temporal resolution, is an ideal modality for testing key predictions of

these models. Compared to EEG, ECoG has far higher spatial resolution and su-

perior signal quality, especially for high gamma (HG) responses that reflect overall

firing rates in neural populations [29, 30]. Because models of repetition suppression

also make predictions about relative changes in top-down and bottom-up propagation

of neural activity, we used a recently developed technique, based on Granger causal-

ity, to measure the timing, magnitude and directionality of task-related changes in

neural propagation across activated cortical networks [144,149].

5.3 Methods

5.3.1 Subjects

Six human subjects gave informed consent to participate in experimental test-

ing while electrocorticogram (ECoG) signals were recorded under a Johns Hopkins

University School of Medicine Institutional Review Board approved protocol. Sub-

dural implantation of ECoG electrodes was done solely according to clinical needs.

Localization of these electrodes was performed using the BioImage Suite [214] with

pre-implant MRI and post-implant CT. For details on the MNI electrode registration,

see [215].
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5.3.2 Experimental Paradigm

E-Prime (Psychology Software Tools, Sharpsburg, PA, USA) was used to present

stimuli, which consisted of color images of objects on a white background displayed

on a computer monitor 1 meter from the subject. Each stimulus was displayed for

1 second and then replaced by a fixation cross. The inter-trial interval was jittered

randomly in four 250-ms increments around 4 seconds. Two hundred and fifty images

were displayed in pseudo-randomized order, including 50 stimuli that were repeated

identically, either consecutively (no intervening stimulus) or with one different stim-

ulus intervening between them. The remaining 150 trials were not analyzed for this

study. The object names were matched for word frequency. Pairs of novel/repeated

trials with artifacts in the ECoG signals and trials in which the subject did not

promptly and correctly name the picture were excluded from analysis, leaving 26-45

trials in our subjects.

5.3.3 Signal Acquisition and Preprocessing

ECoG signals were recorded subdurally with 2.3 mm diameter platinum-iridium

electrodes (Ad-Tech Medical Instrument Corporation, Racine, WI, USA) spaced 10

mm apart center-to-center. A Stellate (Stellate Systems Inc., Montreal, Canada),

Nihon Kohden (Nihon Kohden Corporation, Tokyo, Japan), or NeuroPort (Blackrock

Microsystems, Salt Lake City, UT, USA) amplifier was used to record neural data,
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which was referenced to an inactive intracranial electrode. Signals were digitized at

1000 Hz.

ECoG channels with artifacts or excessive noise were manually excluded from

analysis. The remaining ECoG channels were re-referenced using a common average

reference (CAR) and digitally band-pass filtered using a 490 order FIR filter in a HG

frequency band (70-118 Hz).

5.3.4 Identification of Event-Related Activation and

Repetition Effects

Spectral power was extracted from the ECoG signals in the 16 to 200 Hz range

using 128 ms long overlapping windows of the band-pass filtered data with a 16

ms shifting overlap using a multi-taper algorithm from the Chronux toolbox [216].

Signal power was extracted from each window using 5 orthogonal tapers with a time-

bandwidth product of 3. The power in each window after cue onset were normalized

to the baseline power in the corresponding channel and frequency bin from the 1

second prior to cue onset from all trials for each subject. An estimate of the high

gamma (HG) power at each time point in each trial was obtained by averaging the

power in each bin between 70 and 120 Hz.

Event-related activation was tested with a nonparametric sign test for each subject

at every channel and time point, for both novel and repeated trials, with cue-aligned
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data and response-aligned data. A channel exhibited event-related activation if the

normalized power was significantly greater than one, representing an increase over

baseline (p <0.05, one-sided test with FDR correction [217]).

Event-related repetition effects were tested with a paired sign test for each subject

at every channel and time point between windows from novel and repeated trials. The

effect of priming was marked as significant if activation of either novel or repeated

trials in windows with a fixed relationship to the cue or response was both: 1) signif-

icantly greater than one, representing an increase over baseline (p <0.05, one-sided

test with FDR correction), and 2) significantly greater than that in either repeated

or novel trials, respectively (p <0.05, two-sided test with FDR correction).

5.3.5 Event-Related Causality and Repetition Ef-

fects

Event-related causality (ERC, implemented in custom analysis interface (ANIN)

software [218]) finds statistically significant, event-related, effective connectivity be-

tween cortical areas using multivariate autoregressive models of ECoG activity in a

selection of recorded signals. We chose to use this method rather than TV-DBN due

to the thorough statistical testing that has been developed for it. The method is

discussed in sections 2.2 and 2.3.1, and in [144]. Briefly, between 15 and 21 electrodes

were selected for inclusion in the ERC analysis to ensure there was sufficient data to fit
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model parameters. For most subjects, all electrodes exhibiting repetition effects were

included (details on subject B, the exception, below). Then in order of the magnitude

of task-related activation, up to a total of 20 electrodes were selected for inclusion.

Electrodes were then excluded if more than three electrodes were adjacent. Finally, if

stimulation mapping identified sites for naming in VOTC (ventral occipital-temporal

cortex, responsible for object identification), these sites were included. Because sub-

ject B had 25 electrodes exhibiting repetition effects, we limited the number of sites

for this subject to 19 (of which 15 exhibited repetition effects) to ensure the MVAR

model for this subject was comparable to that of other subjects.

The selected ECoG signals were CAR referenced to subtract non-specific activity

such as volume conduction and digitally band-pass filtered backward and forward to

avoid phase shifts in the 70-120 Hz frequency band. A multivariate autoregressive

(MVAR) model was fitted to the ECoG signals in the selected electrodes:

x(t) = −
p∑
j=1

Ajx(t− j) + e(t) (5.1)

Here x(t) represents a vector of ECoG signals of zero mean and variance equal to 1

from the selected channels at time t and consecutive time shifts j = 1, 2, ..., p, and e(t)

is zero mean uncorrelated residual noise. The model order p was determined using the

Akaike Information Criterion (AIC [219]). The coefficients in each Aj were calculated

by solving the Yule-Walker equations [220, 221]. To follow the temporal course of

brief changes in signal propagation between different brain regions, an algorithm

introduced by Ding et al. [143], using the property that multiple repetitions of the
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same task can be treated as multiple realizations of a stochastic process with locally

stationary segments, was applied for MVAR coefficient estimation. We used data from

100 trials for each subject (50 each for the novel and repeated conditions), excluding

trials with artifacts or trials that the subject did not perform correctly.

In the frequency domain, the MVAR model is given by:

X(f) = H(f)E(f) (5.2)

H(f) =

(
p∑
j=0

Aje
−i2πjf∆t

)−1

(5.3)

Here f is frequency, ∆t is the sampling interval, X(f) is the transformed ECoG

signals, and E(f) is the transformed residual noise. To map only direct connections,

we multiplied the elements of the transfer matrix H with elements of the partial

coherence matrix:

χkl(f) =
ckl(f)√

ckk(f)cll(f)
(5.4)

where c is an element of the inverse of the spectral matrix S, found with:

S(f) = H(f)V H∗(f) (5.5)

The asterisk indicates transposition and complex conjugation, and V is the residual

noise covariance matrix, which can be estimated by summing the products of the

estimated MVAR coefficients and the estimate of the covariance matrix.

The short-time direct directed function (SdDTF) is given by:

ζkl(f) =
|hkl(f)| |χkl(f)|√∑

f

∑
kl

|hkl(f)|2 |χkl(f)|2
(5.6)
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This equation describes the SdDTF from the kth channel to the lth channel, where

hkl(f) is an element of the transfer function H and χkl(f) is partial coherence.

We calculated the SdDTF with a 140 ms overlapping window to investigate the

dynamics of priming processes. Consecutive windows had a 96% overlap to smooth

the connectivity estimates. ERC values were then obtained using statistical testing

(penalized thin-plate spline [162]) to compare the estimates of connectivity during

post-stimulus intervals to baseline connectivity estimates. The one second preceding

the stimulus presentation in each trial was used as a baseline. A 95% joint confidence

interval was constructed for the difference between the estimates of connectivity dur-

ing trials and the baseline estimate of connectivity. Only positive values of ERC

were considered for this analysis because decreases in connectivity, as compared to

baseline, are less likely to be related to task performance.

The effect of priming on connectivity strength was tested with a one-sided sign test

for each subject at every channel-channel pair and time-frequency point in anatomical

regions of interest between sliding 50% overlapping cue-aligned windows from novel

and repeated trials. Window lengths were varied from the length of the SdDTF sliding

window (140 ms) to twice this length (280 ms) in 40 ms increments, to decrease the

effect of multiple statistical tests. The early (0-310 ms following cue, or half the fastest

response time) effect of priming was marked as significant if average connectivity in

a region of interest for repeated trials was significantly greater than connectivity

in the region of interest for novel trials (p <0.05, one-sided t-test with Bonferroni
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correction). The late (310-620 ms following cue, or half the fastest average response

time to the fastest average response time) effect of priming was marked as significant

if average connectivity in a region of interest for repeated trials was significantly less

than connectivity in the region of interest for unpaired trials (p <0.05, one-sided t-

test with Bonferroni correction). The windows showing significant change were then

combined into a single window, which was again tested for significance.

5.4 Results

5.4.1 Behavioral Priming

For all subjects, we observed a statistically significant decrease in response time

for repeated trials (average decrease in median response time of 0.15 s, p <0.05, one-

sided paired Wilcoxon signed rank test). Median response time and median absolute

deviation for each subject for successful novel and repeated trials are shown in Table

5.1.

5.4.2 Repetition Suppression and Repetition En-

hancement

At least three recording sites in each subject (maximum of 15) demonstrated

statistically significant repetition suppression (Fig. 5.1a left), i.e. less activation (HG
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Table 5.1: Reaction Time (RT) by Subject

augmentation) for repeated vs. novel stimuli (p <0.05, sign test with FDR correction).

At least two sites for each subject (maximum of 7) also demonstrated repetition

enhancement (Fig. 5.1a center), i.e. greater activation with repeated stimuli. On

average, activation was greater at sites with repetition suppression than at sites with

repetition enhancement (compare left and center plots in Fig. 5.1a). Studies in the

fMRI literature report repetition suppression much more commonly than repetition

enhancement [222]. Our findings raise the possibility that this is due to the occurrence

of repetition enhancement at fewer sites and at sites with less robust activation. A

small number of cortical sites (8 in three subjects) had no difference in the magnitude

of activation for repeated vs. novel stimuli, but did demonstrate a temporal shift (Fig.

5.1a) in the peak of activation relative to stimulus onset. However, this shift was no

longer apparent when the cortical signals were aligned to response onset (Fig. 5.2),
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indicating that activation at these sites was linked to response processing and that

the temporal shift was due to shorter latencies to respond to repeated stimuli.

Figure 5.1: (a) Mean power in the 70-120 Hz band, aligned to stimulus onset, rel-
ative to baseline power, for novel trials (darkened lines) and repeated trials (light
lines) across all sites for all subjects displaying statistically significant (left) repeti-
tion suppression, (middle) repetition enhancement, or (right) a temporal shift in peak
activation. (b) All sites recorded and analyzed in 6 subjects, projected onto an MNI
brain atlas. (c) Sites for all subjects with repetition suppression (blue, RS), repetition
enhancement (red, RE), or a temporal shift in peak activation (green, TS).

The anatomical distribution of repetition effects was sampled with a total of 444

sites recorded across all 6 subjects (Fig. 5.1b). We observed repetition suppression

at 40 of these sites (Fig. 5.1c, blue sites). The majority of these sites were in VOTC
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Figure 5.2: Mean power in the 70-120 Hz band, aligned to response time and scaled
to mean baseline power. Compared with stimulus-aligned responses (Fig. 5.1), repe-
tition suppression was still observed in nearly as many sites as it was with stimulus-
aligned data, and repetition enhancement was observed at approximately half as
many sites. A temporal shift, observed at 8 sites in stimulus-aligned responses (Fig.
5.1a), however, was seen at only two sites with neural responses aligned to behavioral
responses. The shape of these latter responses was nearly identical for novel vs. re-
peated stimuli, but the onset of neural responses preceding speech onset was later for
repeated stimuli, suggesting less activation in preparation for articulation.

(observed in all subjects) and in inferior prefrontal cortex (5 subjects). In two sub-

jects, we also observed repetition suppression at a site in lateral temporal cortex.

Repetition enhancement was observed in 23 sites (Fig. 5.1, red) in frontal, parietal,

and temporal cortex. Electrode locations with repetition suppression, enhancement,

and temporal shift are shown in Fig. 5.1c, projected onto an MNI brain atlas. Ex-

amples of repetition suppression, enhancement, and temporal shift at individual sites

are shown in Fig. 5.3.

The timing of cortical activation and repetition effects depended on anatomy. The

average peak in activation in VOTC sites with repetition suppression occurred 217 ms

after stimulus onset in both novel and repeated trials (Fig. 5.4). This was consistent

with previous reports of the timing of activation in this region during visual object
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Figure 5.3: Examples of repetition suppression (blue), repetition enhancement (red),
and a temporal shift in peak activation (green), aligned to stimulus onset, are shown
for sites in the indicated cortical regions. Median power for each site was normalized
to maximum power. Bars indicate windows in which power in novel (darkened lines)
or repeated (light lines) trials is statistically significantly larger (p <0.05, sign test
with FDR correction).
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perception [223]. When we observed repetition suppression at sites other than VOTC,

the average peak in activation occurred later for novel trials than for repeated trials

(521 ms after stimulus onset in novel trials, 377 ms in repeated trials, Fig. 5.4). The

average peak in activation at sites with repetition enhancement (489 ms after stimulus

onset in repeated trials, Fig. 5.5) occurred after the average peak in activation at

VOTC sites with repetition suppression, but before the average peak in activation at

sites outside VOTC with repetition suppression.

Figure 5.4: Mean power in the 70-120 Hz band, aligned to the time of stimulus
presentation and scaled to mean baseline power. Average task-related activation and
repetition suppression are larger and peak earlier in VOTC sites than in sites outside
of VOTC with repetition suppression.
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Figure 5.5: Mean difference in HG power for novel vs. repeated trials in sites with rep-
etition suppression in VOTC (blue), repetition suppression outside of VOTC (cyan),
repetition enhancement (red), and a temporal shift in activation (green).

5.4.3 Repetition-related Changes in Effective Con-

nectivity

In five out of six subjects, sites in VOTC received stronger neural propagation

(ERC inflows) from sources in frontal, parietal, and temporal lobe sites with repeated

vs. novel stimuli. We observed this effect of stimulus repetition 90-270 ms after

stimulus onset (p <0.05, one-sided t-test with Bonferroni correction). The sites used

for ERC analyses in all subjects, projected onto an MNI brain atlas, are shown in

Fig. 5.7a (left). The mean magnitude of propagation (ERC inflows) into all VOTC

sites are compared in Fig. 5.7a (right) for novel vs. repeated stimuli. An example of

increased top-down propagation is shown for one subject in Fig. 5.6.

In five out of six subjects we observed a repetition-related decrease in propaga-

tion from VOTC sites with repetition suppression (ERC outflows) to sites outside of
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Figure 5.6: Neural propagation during novel (left) vs. repeated (right) task conditions
in one representative subject (subject D) 90-270 ms after stimulus onset. Arrow width
and color both correspond to the strength of estimated ERC flows. Only sites used
for estimating ERC flows are shown. Top-down propagation into VOTC is stronger
during repeated than during novel task conditions.
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VOTC (p <0.05, one-sided t-test with Bonferroni correction). This effect of stim-

ulus repetition occurred 350-620 ms after stimulus onset. The locations of VOTC

sites with repetition suppression, and with weaker bottom-up propagation, during

repeated trials are shown in Fig. 5.7b (left). The mean magnitude of propagation

from VOTC sites with repetition suppression (ERC outflows) are compared in Fig.

5.7b (right) for novel vs. repeated stimuli. An example of the overall decrease in

bottom-up propagation in one subject is shown in 5.8.

In Subject C, no sites outside of VOTC exhibited repetition suppression. In the

remaining five subjects, we observed a repetition-related increase in propagation into

prefrontal sites with repetition suppression from sites with repetition enhancement

(excluding all sites in pre- and post-central gyri) (Fig. 5.9, top left). This effect

was statistically significant in four subjects (p <0.05, one-sided t-test with Bonfer-

roni correction, Fig. 5.9, top right) in a time period between stimulus onset and the

earliest average response onset (620 ms). In the time period between 310 and 620

ms following stimulus onset, all subjects had a repetition-related decrease in propa-

gation (ERC flows) from the prefrontal sites with repetition suppression to the sites

with repetition enhancement (Fig. 5.9, bottom row, p <0.05, one-sided t-test with

Bonferroni correction). In four subjects, these propagations disappeared completely

with stimulus repetition.
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Figure 5.7: (a) Top-down propagation into VOTC sites (ERC inflows) from down-
stream areas is increased with stimulus repetition in the 90-270 ms window following
stimulus onset. The MNI brain atlas shows sites used for ERC estimates in all sub-
jects. Mean ERC inflows to the VOTC sites are shown for novel (black) vs. repeated
(gray) conditions in the 90-270 ms window following stimulus onset. For five out of six
subjects (marked with stars), top-down ERC inflows into VOTC were increased in the
repeated condition compared to the novel condition (p <0.05, one-sided t-test with
Bonferroni correction). (b) Bottom-up propagation from VOTC sites with repetition
suppression (ERC outflows) to downstream cortical areas increased in the 350-620
ms window following stimulus onset. The MNI brain atlas shows sites considered
for this comparison, i.e., VOTC sites with repetition suppression and all downstream
non-VOTC sites. Mean ERC outflows from the VOTC sites with repetition suppres-
sion are shown for novel vs. repeated conditions in the 350-620 ms window following
the stimulus presentation. For five out of six subjects (marked with stars) bottom-
up ERC outflows were decreased in the repeated condition compared to the novel
condition (p <0.05, one-sided t-test with Bonferroni correction).
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Figure 5.8: Neural propagation during novel (left) vs. repeated (right) task conditions
in a representative subject (subject A) 350-620 ms after stimulus onset. Arrow width
and color both correspond to the strength of estimated ERC flows. Only sites used
for estimating ERC flows are shown. During the repeated task condition, bottom-up
connectivity from VOTC is weaker than during the novel task condition.
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Figure 5.9: (a) Propagation (ERC inflows) into sites with repetition suppression
in prefrontal cortex from sites with repetition enhancement increased with stimulus
repetition. The MNI brain atlas shows sites used for ERC estimates in all subjects
(sites in pre- and post-central gyri excluded). Mean ERC inflows into sites with
repetition suppression are shown for novel (red) vs. repeated (pink) conditions in
the 620 ms window following stimulus onset. (b) Propagation from prefrontal sites
with repetition suppression to sites with repetition enhancement were increased with
stimulus repetition in the 310-620 ms window following stimulus onset. This effect
was statistically significant in all 5 subjects (significance marked with a star, p <0.05,
one-sided t-test with Bonferroni correction).
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5.5 Discussion and Conclusions

Behavioral priming is of great interest in cognitive neuroscience as a form of im-

plicit learning that may involve activity-dependent learning in neocortex, rather than

hippocampal learning [205]. Additionally, because repetition suppression has been

widely used in fMRI paradigms to identify the behavioral selectivity of cortical acti-

vation [208], a model of the mechanisms underlying its occurrence and its relationship

with behavioral priming are of great relevance to functional neuroimaging research.

Current competing models for these mechanisms yield different predictions for the

timing of population responses in large-scale cortical networks (Figs. 5.10 and 5.11).

For example, a “facilitation model” emphasizes more efficient neural processing and

predicts briefer, and at downstream sites, earlier neural activation with stimulus rep-

etition [222]. In a “sharpening model”, in contrast, neurons that are not essential to

task completion drop out of the activated population with stimulus repetition, leading

to an overall reduction in the magnitude of activation, without changing its temporal

envelope [224]. To explain how a reduction in the activated population could nev-

ertheless result in faster behavioral responses, a recent “synchrony model” suggests

that the remaining pool of neurons fires more synchronously on repeated trials, re-

sulting in a greater (and earlier) impact on downstream neurons [209]. Meanwhile, a

“predictive coding model” posits that an interaction between bottom-up perceptual

processing and top-down influences on perceptual processing [225] results in faster be-

havioral responses. This model also implies different temporal profiles of activation
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at different stages of processing.

The fMRI BOLD signal indirectly measures firing rates in cortical neuronal popu-

lations, but is delayed and integrates these firing rates over long time scales (seconds).

Because the ECoG signal has high temporal resolution, and ECoG high gamma re-

sponses are highly correlated with population firing rates [29, 30], it is well-suited to

test features of the aforementioned models of repetition suppression that cannot be

explicitly tested using fMRI. Not only can ECoG be used to measure the precise tim-

ing of cortical activation at each recording site, but measures of time-varying effective

connectivity derived from the ECoG signal provide information about the propagation

of neural activity to and from cortical areas undergoing repetition suppression. Such

measures reveal another dimension in the dynamics of large-scale cortical networks

that can be leveraged to discriminate among the predictions of different models.

To investigate the effects of stimulus repetition on any cognitive task, one needs a

model of the large-scale cortical networks that will be engaged during the task. Pic-

ture naming is a task that is widely used to probe cortical activation and interaction

in language networks [226]. Additionally, picture naming is particularly susceptible

to neurological injury [227, 228] and is most commonly used for mapping language

cortex prior to epilepsy surgery [229,230]. Finally, this task employs a brief stimulus

with well-defined timing and requires an overt response, which can be used to verify

behavioral priming.

The temporal-spatial dynamics of cortical activation are not specified in most
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models of picture naming, due to the lack of methods that can explicitly measure

them. However, Indefrey and Levelt [16] have proposed a model of naming and other

word production tasks that specify both the anatomy and timing of cortical regions

responsible for the different cognitive operations necessary for task performance. This

model incorporates information from a meta-analysis of psychophysics experiments

on word production [16, 231]. A summary of the proposed propagation and timing

of neural activity in this model is shown in Fig. 5.10. In our study, we used VOTC

as a region of interest for processing the visual features of the picture stimulus and

access to pre-lexical object representations [88]. This process is referred to as con-

ceptual preparation by Indefrey and Levelt [16] and lasts 200 ms or more after visual

stimulus onset. Middle temporal gyrus, most active in Indefrey and Levelt’s model

approximately 200-275 ms after stimulus onset, receives information from VOTC and

retrieves a lexical representation of the object. Access to the corresponding phono-

logical code likely occurs in posterior superior temporal gyrus (STG) and to some

extent in adjacent portions of supramarginal and angular gyri, collectively known as

Wernicke’s area. This area is believed to be most active at approximately 275-355

ms. Broca’s area, in the dominant posterior inferior frontal gyrus, is most active dur-

ing syllabification, phonetic encoding, and articulatory planning, typically at 355-600

ms, with a variable duration depending on the number of phonemes and syllables

to encode. Finally, articulation is processed by sensorimotor areas on either side of

the ventral central sulcus, and has an onset around 600 ms following stimulus onset.
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At all stages, feedback occurs from downstream areas, presumably to monitor and

regulate temporally overlapped processing in upstream areas.

Figure 5.10: Proposed activation and propagation of neural activity during picture
naming, from object recognition to articulation.

Our results for the timing of HG activation were approximately consistent with this

model. In novel trials, VOTC activity in sites with repetition suppression peaked at

217 ms following stimulus onset, and activity in other sites with repetition suppression

(primarily inferior frontal gyrus) peaked 512 ms following stimulus onset. The earliest

median onset of articulation across subjects was 690 ms following stimulus onset, but

occurred as late as 1170 ms following stimulus onset in one subject. Longer response

latencies in some subjects may have been due to medications and other factors in the

post-operative period. The general correspondence between these temporal dynamics

and those observed in previous studies of picture naming, and word production in

general, provided a framework for interpreting the effects of stimulus repetition on
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both the timing of cortical activation in broadly defined regions of interest, and the

propagation of activation between these regions. Furthermore, this allowed us to test

key predictions of competing neurophysiological models of stimulus repetition and

behavioral priming at the level of large-scale cortical networks.

Figure 5.11: (Left) Predictions of population dynamics from models of repetition
suppression for late-stage visual processing. In the facilitation model of repetition
suppression (red) neural population activity occurs more efficiently, resulting in an
overall shift of the population activity curve to the left. In the sharpening model
(green) neurons that are less necessary decrease in activity, leading to a decrease in
the peak and width of the population activity curve. In the predictive coding model
(blue) following an initial flow of information through the visual system, top-down
predictions lead to a decrease in error, resulting in an earlier, lower peak in population
activity. (Right) Observed HG power augmentation in all sites with statistically
significant repetition suppression. The waveform in sites with repetition suppression
most closely matches that of the predictive coding model.

5.5.1 Facilitation

The facilitation model suggests that cortical processing of the stimulus and re-

sponse preparation occur more efficiently in repeated trials. As a result, the temporal
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Figure 5.12: Model-based predictions of effective connectivity changes for three mod-
els of repetition suppression: facilitation (red), sharpening (green), and predictive
coding (blue). In the facilitation model, flows in repeated trials should be briefer,
and in downstream sites, occur earlier. In the sharpening model, there is a decrease
in the strength of aggregated flows. In the predictive coding model, top-down pre-
dictive flows are stronger, leading to weaker late bottom-up flows. (Gray) Summary
of observed changes in flows during repetition. Flows to VOTC from downstream
cortical areas increased, and then reciprocal flows decreased. Additionally, flows from
sites with repetition enhancement to sites with repetition suppression in lateral frontal
areas increased, and reciprocal flows decreased.
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envelope of population activity in activated sites should be briefer, peaking faster and

ending sooner. In downstream sites, this change is expected to result in a shift to

the left (earlier) in the peak of activation (Fig. 5.11 left, red). Because the temporal

window of integration in fMRI is long, faster activation would result in a decrease

in activity measured by fMRI. The high temporal resolution of ECoG HG activation

permitted us to directly observe a shift in peak population activity. In our data only

8 sites from three subjects (out of a total of 444 sites across six subjects) displayed

a temporal shift in peak activation in repeated trials, and these sites were largely

located in sensorimotor areas. When the ECoG signal was aligned to the response

onset instead of the stimulus presentation, these effects disappeared, indicating that

the shift could be almost completely attributed to earlier response latencies with no

change in the duration of processing. Repetition suppression was observed in 40 sites

in VOTC (including BA 20, 37), anterior lateral temporal cortex (including BA 21,

22), and inferior frontal gyrus (including BA 44, 45), cortical areas known to be in-

volved in object naming [16,232]. The peak activation in VOTC sites with repetition

suppression occurred at the same time in novel and repeated trials, and the peak ac-

tivation in sites with repetition suppression was lower in repeated compared to novel

trials. These findings do not fulfill predictions of the facilitation model.
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5.5.2 Sharpening

The sharpening model proposes that neurons that are not critical to the task

are less activated in repeated trials than novel trials. This decrease in task-related

activation would lead to weaker increases in population firing rates, as measured with

ECoG HG power, and a decrease in the height and width of the population activity

curve (Fig. 5.11 left, green). Because there would be interactions between fewer

neurons on a large scale, we predicted that propagation of population activity between

task-related ECoG sites should also decrease at all stages of processing (Fig. 5.12,

green). Although we did observe a decrease in activation at many recording sites, we

did not observe a global reduction in ERC flows. Instead, these flows increased from

downstream cortical areas to VOTC sites and from sites with repetition enhancement

to sites in left lateral frontal and temporal cortices with repetition suppression. These

complex changes in large-scale network interactions are not present in the sharpening

model.

5.5.3 Predictive Coding

According to the predictive coding model, cortical regions mediating behavioral

responses receive input from early upstream sensory processing of the stimulus and

generate a top-down prediction of subsequent sensory processing (Fig. 5.12, blue).

With repeated stimulus exposure, to the degree that top-down predictions match
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bottom-up perceptual inputs, additional sensory processing is extinguished, resulting

in early completion of perceptual processing with decreased prediction error. At the

level of population responses, this model would result in a lower peak and a shorter

duration of overall activation (Fig. 5.11 left, blue). It is noteworthy that to date, this

model has not been directly applied to picture naming.

The average HG activation we observed was consistent with the predictive cod-

ing model. In sites with repetition suppression, the ascending limb of activation was

indistinguishable between novel and repeated trials (Fig. 5.11, right), but activa-

tion during repeated trials had a smaller peak and faster return to baseline. We

observed sites in articulatory and auditory processing areas with repetition enhance-

ment. These sites may have resulted from predictive processing of downstream lexical

and phonological representations based on early and incomplete input from upstream

processing. We also observed patterns of ERC flows that were consistent with the

predictive coding model. In particular, top-down flows into VOTC were larger for

repeated than for novel trials, in a window 90-270 ms after stimulus onset. This differ-

ence was observed before and during times that repetition suppression was observed

in VOTC sites. This enhancement of flow would be consistent with greater input

from enhanced predictive processing in downstream regions. Following these larger

top-down “predictive” flows, we observed a repetition-related decrease in bottom-up

flows from VOTC sites where we also observed repetition suppression (Fig. 5.12,

top gray). Similarly, in downstream cortical areas, we observed a repetition-related

101



CHAPTER 5. CONNECTIVITY DYNAMICS DURING SPEECH

increase in flows from sites with repetition enhancement (possibly from enhanced

predictions) to sites with repetition suppression (decreased prediction errors), which

were primarily located in inferior frontal gyrus. This increase in top-down flows was

followed by decreased reciprocal, bottom-up flows from sites with repetition suppres-

sion (Fig. 5.12, bottom gray). In both cases (VOTC and inferior frontal gyrus), we

observed a repetition-related increase in propagation consistent with improved predic-

tions of the object to be named (VOTC flows) and the phonetic code to be articulated

(Wernicke’s and Broca’s). This increase in predictive propagation was followed by

a repetition-related decrease in propagation from sites with repetition suppression,

consistent with a reduction in prediction error.

5.5.4 Synchronization

The enhanced synchronization model proposed by Gotts, et al. [210], explicitly

attempts to resolve the apparent inconsistency between reduced neural firing rates

and faster behavioral responses. This model predicts that reductions in firing rates

are accompanied by realignment of exact spike timing that enhances the synchrony of

post-synaptic potentials in downstream neural populations, increasing the likelihood

of action potential generation, ultimately resulting in faster propagation through the

network to neural populations controlling behavioral effectors, for example articu-

lation during naming. One potential experimental prediction of this model is that

increased synchronization of post-synaptic potentials elicits LFPs that are phase-
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locked with the stimulus or that are phase-locked across cortical sites activated by

the task. Results supporting this prediction have to date consisted of enhanced event-

related potentials at relatively low frequencies [209]. Although the methods we used

in this study did not explicitly test this model, we do not believe that our results are

necessarily inconsistent with it. Subthreshold oscillations in membrane potential can

influence exact spike timing, thereby enhancing synchronization of firing in a neural

population. Indeed, this mechanism may be responsible for the modulation of HG

activity by low-frequency (theta) oscillations [132]. Furthermore, increased phase-

amplitude modulation of HG activity could potentially enhance neural propagation,

including propagation in bottom-up and top-down directions. Additional studies will

be needed to determine the extent to which changes in neural propagation are depen-

dent on phase-amplitude coupling between low and high frequency neural activity.

5.5.5 Limitations and Extensions

All study subjects were epilepsy patients undergoing ECoG monitoring for clinical

purposes. Some task-relevant cortical areas may not have been recorded in some

subjects due to clinical considerations. For example, only 5 of 6 subjects exhibited

repetition suppression in the frontal lobe; more electrode coverage may have permitted

the observation of repetition suppression in the frontal lobe in the sixth subject.

Electrode placement may also have contributed to the subtlety of some of the observed

repetition suppression or enhancement effects. In some electrodes very few samples
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from the repeated spectral power time series met our statistical criteria for repetition

effects. Although ERC finds effective connectivity in a Granger causal sense, there

may have been flows of information that were not captured by our models.

The complexity of the repetition suppression and priming phenomena we and oth-

ers have observed suggests that they may arise due to a combination of mechanisms.

For example, it has been shown that the prefrontal cortex learns stimulus-response as-

sociations, whereas repetition suppression in posterior perceptual regions is indepen-

dent of such associations [233]. In lateral prefrontal cortex, evidence has been found

for changes in both cortical tuning and stimulus-response associations in conjunction

with decreased processing demands [234]. Here we observed repetition-related effects

on neural activation and propagation that were most consistent with the predictive

coding model, though requiring some modification. As a result, we suggest a revised

model in which back-propagation of neural activity leads to repetition suppression

in two cortical areas (VOTC and inferior frontal gyrus). More specifically, repetition

suppression in VOTC results from enhanced neural feedback from downstream corti-

cal areas. Subsequent repetition suppression in inferior frontal gyrus may result from

enhanced predictive encoding of phonological and syllable representations (seen as

enhanced activation) in posterior STG and frontal areas, but it may also result from

decreased bottom-up flows from VOTC. Additional studies with more patients may

be needed to verify our findings and test this modified model in greater detail.
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Chapter 6

Multi-Scale Decoding of Elements

of Speech using Connectivity

Features

6.1 Abstract

The neurophysiological representation of speech production is broadly distributed

over temporal, parietal, frontal, and peri-Rolandic regions of cortex, but highly or-

ganized, dense maps of articulators have been found in speech sensorimotor cortex.

We therefore used multi-scale electrocorticography recordings to explore the utility of

measures of macro- and micro-scale cortical connectivity for a brain-machine inter-

face to decode speech. We constructed classifiers for articulatory features to compare
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classification accuracy when using power spectral features and connectivity features

across both scales. We found that connectivity at the macro and micro scale con-

tributed to a statistically significant increase in decoding accuracy, with an average

increase from 67% accuracy using power spectral features to 72% accuracy using

connectivity features. Cross-scale connectivity was also informative for decoding, im-

proving three-class decoding an average of 12% (23% in one subject) and two-class

decoding an average of 4% (12% for vowel height in one subject). The decoding value

of connectivity across macro- and micro-scales is a novel finding that points to the in-

teractions of global cortical circuits with local processing. These results suggest that

multi-scale neural recordings and cortical connectivity information should be used in

creating a high-performance speech BMI.

6.2 Introduction

Brain-machine interfaces (BMI) aim to reduce disability and promote functional

recovery in patients suffering from stroke, traumatic brain injury, paralysis, ALS, and

other disorders by directly decoding movement [42,52] or speech [8,9,58,59,235–237]

from neural signals. It is possible to decode information about overt (fully articulated)

or covert (imagined) speech from neural signals [237], but in part due to the broad

distribution of cortical networks required for speech [16] and the high density of

the articulatory map in speech sensorimotor cortex [60], these efforts have achieved

106



CHAPTER 6. SPEECH DECODING WITH CONNECTIVITY

modest accuracy. We propose to integrate information from both distributed cortical

networks and dense local processing areas to decode fundamental elements of speech.

The electrocorticographic (ECoG) signal, recorded from electrodes on the surface

of the brain, has high resolution on a temporal scale (on the order of milliseconds)

and spatial scale (traditionally on the order of centimeters, and more recently on

the order of millimeters). The power in low and high frequency bands of the ECoG

signal has been shown to contain information that can be used to control a BMI [44],

and power in the high gamma frequency band (>70 Hz) has been shown to reflect

population firing rates [29,30,238]. These features make ECoG a promising modality

for high-fidelity, multi-dimensional BMIs.

Vowels have been decoded from the human ECoG in a two-class classification

either distinguishing between two overt or covert vowels or between an overt or covert

vowel and rest (at least 69% accuracy by end of testing, with 50% chance accuracy)

[8]. Broadly distributed activation was observed in this study during the task, but

interactions between cortical areas involved in production were not explicitly used

for decoding. Another study classified both vowels and consonants during overt and

covert speech, with 41% accuracy in a four-class classification [235]. Others have

classified a subset of words using the ECoG signal [58] and have distinguished between

spoken sentences [236]. Significant progress must be made in decoding accuracy before

these building-blocks of speech can be combined to create a clinically relevant tool

for the disabled.
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The speech network is highly distributed and involves cascades of cortical pro-

cessing that lead to a flow of information through frontal, temporal, and parietal

lobes [16]. Information about higher-level motivation and intent must be propagated

to lexical, sensorimotor, and auditory sites to accomplish articulation. Methods of

mapping cortical connectivity [55] that estimate this flow of information may provide

features that a BMI can use to more accurately decode speech. Time-varying dy-

namic Bayesian networks [161] are a computationally efficient approach to estimating

single-trial, directional, weighted connectivity with high temporal resolution, making

this approach ideal for extracting connectivity information for a real-time BMI.

High-density ECoG (approximately 4 mm inter-electrode spacing) has been used

to map 18-19 consonants paired with 3 vowels to speech sensorimotor areas [60]. A

highly structured sensorimotor map organized according to speech-articulator repre-

sentations has been found, in part due to the novel application of high-density ECoG

to functional mapping. Building upon this finding of a highly specific, dense map of

phonetic features, we have made use of high-density microECoG grids (approximately

1 mm inter-electrode spacing) located in sensorimotor, frontal, and temporal cortices,

to decode articulatory features (place of articulation, vowel height, and voicing). We

hypothesize that integrating this micro-scale information with the large-scale network

flows during speech recorded with 1-cm spaced ECoG grids will lead to improved de-

coding accuracy. This result would indicate that both connectivity information and

multi-scale neural data are valuable components of a clinically viable speech BMI.
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6.3 Methods

6.3.1 Subjects and Experimental Paradigm

Two human subjects (one female, ages 25 and 32) underwent craniotomies and re-

ceived ECoG grids (Ad-Tech, Racine, Wisconsin) over the left hemisphere (Fig. 6.1)

in preparation for resection surgery for the treatment of epilepsy. Registration of the

post-operative CT to pre-operative MRI for reconstruction of electrode placement on

the cortical service was done using Bioimage [239]. Between 64 ECoG electrodes and

16 or 48 microECoG electrodes (one or three grommets of 16 microECoG electrodes

each) were recorded for each patient. Placement of the electrodes was determined

solely based on clinical considerations, and patients gave consent to participate in

language tasks. The protocol was approved by the Johns Hopkins University Institu-

tional Review Board.

Stimuli were consonant-vowel pairs (Table 6.1) presented 10-15 times in pseudo-

random order using a computer monitor. Subjects were instructed to read each

syllable as it appeared on the screen. During the intertrial interval, a fixation cross

was displayed. Six consonants and two vowels were included in the stimuli set. The

consonants varied by place of articulation, or the location in the vocal tract at which

air was obstructed, and voicing, or whether the vocal cords vibrated during consonant

production. The vowels varied by height, or the position of the tongue.

All syllables were presented to subject A. Due to reduced time for experimental
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participation, only syllables with voiced consonants were presented to subject B.

Figure 6.1: Placement of ECoG and microECoG electrodes for both subjects par-
ticipating in the study. Subject A had coverage of frontal lobe and some coverage
of parietal and temporal lobe, with one microECoG grommet in sensorimotor cor-
tex. Subject B had similar ECoG coverage of frontal, parietal, and temporal lobes,
with three microECoG grommets in sensorimotor cortex, inferior frontal gyrus, and
temporal lobe.

Table 6.1: Syllable Stimuli

6.3.2 Data Collection and Pre-Processing

The ECoG and microECoG signals were recorded with a NeuroPort amplifier

(Blackrock Microsystems, Salt Lake City, Utah) at 10 kHz with an analog anti-
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aliasing filter. ECoG signals were referenced to an electrode on the ECoG grid,

and microECoG signals were referenced to a reference electrode provided on the mi-

croECoG grommet. A photodiode analog input to the amplifier was used to record the

onset of each stimulus presentation. A Zoom H2 microphone (Samson Technologies,

Hauppauge, New York) was used to record the subjects’ speech at 10 kHz through

an analog input to the amplifier.

Electrodes with noise or artifacts, identified by visual inspection of unfiltered

ECoG and spectrograms, were excluded from analysis. The remaining electrodes

were spatially filtered with a common average reference; bandpass filtered at 1-8 Hz,

8-25 Hz, and 70-120 Hz; and downsampled to 500 Hz. Trials in which the subject

failed to correctly read the stimulus were excluded from analysis.

6.3.3 Feature Extraction and Selection

Power spectral features were computed using Welch’s power spectral density esti-

mate on 256 ms sliding windows, implemented in MATLAB (Mathworks). The power

was log transformed and averaged in each frequency band of interest (1-8 Hz, 8-25

Hz, and 70-120 Hz). Next a z-score was computed for each power sample compared to

the baseline power in the trial. Finally the power spectral feature was downsampled

to five samples per channel and frequency band per trial.

Connectivity features were computing using time-varying dynamic Bayesian net-

works. For details on the method, see [161, 240]. Briefly, the model uses the concept
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of a first-order Markov model:

XT = AtX t−1 + ε (6.1)

where X t is a vector of filtered ECoG samples across all channels used in the model

at time t, At is the matrix of directed, weighted connectivity estimates at time t from

the ith to the jth channel, and ε is a noise term. To enable estimation of At and

encourage smoothness of the connectivity in time, a Gaussian RBF kernel was used

to integrate data from the past in X t−1. The At term was then estimated with:

Âti = argminAt
i∈R1×N

1

T

t−1∑
τ=1

wt(τ)xt
∗

i − AtiXτ−1 + λ
∥∥Ati∥∥ (6.2)

where N is the number of ECoG channels used in the network model; λ is the ridge

regression parameter, for which we used 100 [240]; and the Gaussian RBF kernel used

for wt(τ) is:

wt(τ) =
Kh(τ − t)

t−1∑
τ=1

Kh(τ − t)
(6.3)

Kh(·) = e−t
2/h (6.4)

We used 500 for the kernel width, h, to create a smoothing similar to that used in

estimating power spectral features. Then the connectivity features were z-scored and

downsampled in the same way as the power spectral features.
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6.3.4 Classification

Linear discriminant analysis (LDA) as implemented in MATLAB was used to

classify syllable type by place of articulation (both subjects), vowel height (both sub-

jects), and voicing (subject A). To directly compare power features with connectivity

features, pairs of task-activated electrodes were added to the decoder sequentially

until peak decoding accuracy was reached. A single feature in the power-based de-

coder was the power in each of the electrodes in the pair, and a single feature in the

connectivity-based decoder was the reciprocal connections between the two electrodes

in the pair. In this way, the total number of features remained the same for both the

power- and connectivity-based decoders.

Separate LDA classifiers were built for each of the three frequency bands (1-8 Hz,

8-25 Hz, or 70-120 Hz) and each of the electrode types (ECoG, microECoG, or both).

Five-fold cross-validation was used, and the total analysis was repeated 100 times to

generate sufficient data for statistical testing.
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6.4 Results

6.4.1 Contributions of Connectivity to Classifica-

tion

The use of connectivity features improved the classification of place of articulation

in both subjects, and improved classification of consonant voicing and vowel height

in subject A (Table 6.2). The improvement in decoding accuracy with connectivity

features was much more prominent for subject A than for subject B. As an exam-

ple, the classification accuracy for vowel height using power features and connectivity

features in different frequency bands is shown in Fig. 6.2. In most frequency bands,

connectivity features improved classification accuracy. However, for subject B, con-

nectivity features decreased classification accuracy in the 70-120 Hz (high gamma)

band.

Table 6.2: Change in classification accuracy (%) with 95% confidence interval when
using connectivity features as opposed to power features. Positive numbers represent
an increase in classification accuracy as a result of using connectivity features.
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Figure 6.2: Classification accuracy for high vs. low vowels, compared by frequency
band. Error bars are 95% confidence intervals. Decoding accuracy was maximized
across electrode type. Chance classification accuracy is 0.5. In two frequency bands
per subject, connectivity features statistically significantly improved decoding accu-
racy over power features. In one frequency band for subject B, however, there was a
statistically significant decrease in decoding accuracy using connectivity features in
the 70-120 Hz band.
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6.4.2 Contributions of High-Density Neural Infor-

mation to Classification

The connectivity information contained in high-density microECoG arrays, and in

the connections between ECoG and microECoG arrays, was informative for decoding

articulatory features (Table 6.3). For subject A, decoding accuracy was similar for

both ECoG and microECoG when classifying place of articulation (chance accuracy

33%) and vowel height (chance accuracy 50%). However, incorporating cross-scale

connectivity features (both ECoG and microECoG in the same connectivity network)

dramatically improved classification accuracy. Information about consonant voicing

(chance accuracy 50%) was almost entirely contained within the microECoG network.

For subject B, the microECoG network also contained much more information about

vowel height than the ECoG network.

An example of the comparison between power features and connectivity features

is shown for decoding high vs. low vowels in Fig. 6.3. In subject A, ECoG and

microECoG features individually had relatively little utility for decoding vowel height.

However, using cross-scale features improved decoding accuracy, and notably, led to

an increase in the value of connectivity features over power features for decoding. In

subject B, decoding vowel height is much more effective with microECoG and with

cross-scale features than with ECoG.

The five most informative electrode connections in the multi-scale networks for
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Table 6.3: Peak connectivity-based classification accuracy across frequency bands (%
correctly classified trials) with 95% confidence interval for all manners of articulation
tested.

Figure 6.3: Classification accuracy for high vs. low vowels, compared by electrode
type. Error bars are 95% confidence intervals. Decoding accuracy was maximized
across frequency bands. In subject A, including both ECoG and microECoG connec-
tivity features improved decoding accuracy. Cross-scale connectivity, in particular,
was more accurate than power features. In subject B, microECoG connectivity fea-
tures were notably more valuable than ECoG connectivity features.
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Figure 6.4: The five most informative connectivity features for each articulatory
feature in subject A during preliminary feature screening. Intra-ECoG, intra-
microECoG, and cross-scale connectivity features are all informative for decoding
all manners of articulation.

each of the manners of articulation decoded, according to a preliminary screening

analysis without cross-validation in subject A, are shown in Fig. 6.4. ECoG, mi-

croECoG, and cross-scale connections are all represented, confirming that multiple

network scales contain information about articulatory features.

6.5 Discussion and Conclusions

6.5.1 Summary and Recommendations

We have found evidence that dynamic connectivity models of human ECoG data

capture information about articulatory features during speech. This information im-

proves the accuracy of classifiers for location of articulation, consonant voicing, and

vowel height over classifiers that use power spectral features. We also computed con-
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nectivity models that incorporated microECoG networks in cortical areas involved

in speech processing, including temporal lobe, inferior frontal gyrus, and speech mo-

tor cortex. These models contained additional information about articulatory fea-

tures over connectivity models without microECoG. Multi-scale connectivity between

ECoG and microECoG sites was particularly informative in one subject for decod-

ing place of articulation and vowel height. These results suggest that multi-scale

connectivity features should be incorporated in BMIs for decoding speach.

We considered power spectral features and connectivity features in three frequency

bands (1-8 Hz, 8-25 Hz, and 70-120 Hz). In most frequency bands, a connectivity-

based classifier outperformed a power-based classifier for vowel height. However,

for one subject the power-based classifier was significantly better in the 70-120 Hz

frequency band. It has been demonstrated that lower frequencies modulate population

firing in the neocortex [132].

6.5.2 Limitations and Extensions

The subjects who participated in this research were patients undergoing treatment

for epilepsy, and the locations of the ECoG and microECoG grids were dependent

upon clinical and surgical considerations. To some extent, this uncontrolled variability

may have accounted for differences in classification accuracy observed in subjects A

and B.

Because the purpose of this study was to determine the value of connectivity and
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multi-scale connectivity features for decoding, the classifiers for articulatory features

were not optimized for maximal classification accuracy. An optimal decoder would

include both power and connectivity features, in addition to relevant features from

all frequency bands, improvements that we did not explore.

In order to be useful for a patient population, a speech decoder will need to

be functional during covert, or imagined, speech in addition to the overt, or fully

articulated, speech investigated here. It has been demonstrated previously that neural

activity during covert speech is similar to that during overt speech [235], so this

extension, while nontrivial, is feasible.
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General Discussion

7.1 Summary and Significance of Results

The work presented here has demonstrated that effective connectivity models of

the ECoG signal contain information about neural processing that can inform move-

ment and speech mapping and decoding. We first showed that effective connectivity

features were a promising feature for decoding dexterous movement, and then verified

their utility in a decoder for joint angle during grasp. Next we demonstrated that

effective connectivity maps capture information about speech processing that can be

used to test models of the neural mechanisms underlying behavioral priming. Finally,

we tested multi-scale effective connectivity features in ECoG and microECoG data,

and found that in some cases they improved accuracy for classifiers of articulatory

features during speech. These results suggest that brain-machine interface (BMI)
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design should incorporate task-related cortical connectivity.

7.1.1 Variation in Connectivity during Movement

7.1.1.1 Change in connectivity coefficients preceding and dur-

ing movement

Connectivity features of the local motor potential (LMP), a low frequency band

(12-30 Hz), and a high frequency band (75-150 Hz) varied consistently across trials

preceding and during grasp in three of four subjects. In the fourth subject, neither

connectivity nor power spectral features mapped well to movement, possibly indicat-

ing that ECoG sites were not localized to task-relevant areas.

Connectivity features in canonical, smaller frequency bands (delta, theta, mu,

beta, gamma, and high gamma) and connectivity of the LMP also varied consistently

before and during individual finger movement. Because the number of possible con-

nectivity features far exceeds the number of possible power spectral and temporal

features (N2 − N compared to N for any given channel), connectivity features may

contain additional information useful for decoding movement kinematics from neural

signals.

122



CHAPTER 7. GENERAL DISCUSSION

7.1.1.2 Principal components of connectivity reflect task-related

processing

Principal component analysis was used to extract subsets of connections that

covaried during grasp for one subject. Consistent with predictions of current models

[69, 190–195], widespread cortical areas related to movement developed connections

preceding movement. A limited network involving a site in or near primary motor

cortex was active during movement onset. A more widespread network potentially

related to feedback continued to interact throughout the movement.

7.1.2 Connectivity-Based Movement Decoding

We decoded continuous joint angles during palmar grasps for four subjects using

general regression neural networks constructed with both power spectral features

and connectivity features computed with the LMP, the low frequency band, and the

high frequency band. In all cases, the correlation coefficient between the actual and

predicted joint angles was higher for the connectivity-based decoders compared to

the power-based decoders. In part, this improvement in accuracy may have been due

to the increased number of connectivity features available compared to power and

temporal features. In subsequent sections, when testing speech classification with

connectivity features, we specifically limited the number of connectivity features to

be equal to the power spectral features, in order to confirm that additional information
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was present without an increased feature set.

7.1.3 Mapping of Dynamic Connectivity during

Speech

Following these demonstrations that connectivity mapping was useful in motor

applications, we applied these methods to two speech applications in mapping and

decoding. In addition to relevance for BMI applications, the measures of dynamic

effective connectivity that are made possible by the high temporal resolution of the

ECoG signal may be useful for testing hypotheses about neural processing mecha-

nisms. As an example, we mapped connectivity changes during behavioral priming

of speech to test models of neural repetition suppression, the decrease in neural acti-

vation that accompanies decreased reaction time.

When subjects were asked to name novel and repeated pictures, we found evidence

of cortical flows that was consistent with a “predictive coding” model of the changes

in neural activity underlying behavioral priming and repetition suppression during

the repeated picture naming. Briefly, top-down inflows from cortical areas related to

speech production (including sensorimotor areas, inferior frontal gyrus, and posterior

superior temporal gyrus) increased to cortical areas related to stimulus processing

and pre-lexical object representation. After these top-down inflows, outflows from

the sites with repetition suppression were decreased. These findings suggest that
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following early initial propagation of stimulus processing, top-down predictive models

from speech processing areas extinguish the need for additional stimulus processing.

This result demonstrates the utility of mapping dynamic effective connectivity for

testing models of the neurophysiology underlying behavior.

7.1.4 Connectivity-Based Speech Decoding

After mapping connectivity during speech to test hypotheses about the neural

mechanisms underlying priming and repetition suppression, we explored the utility of

connectivity features for a speech BMI. Specifically, we compared several classifiers for

articulatory features using power features and connectivity features in three frequency

bands (1-8 Hz, 8-25 Hz, and 70-120 Hz) from two different recording scales (clinical

ECoG and high-density microECoG). We found that in many bands the connectivity-

based classifiers were more accurate than the power-based classifiers. We also showed

that connectivity features from the microECoG signals were often more informative

than connectivity features from the standard clinical ECoG signals. In some cases,

however, the most effective classifiers used connectivity features from networks that

included both ECoG and microECoG sites. These results suggest that the effective

connectivity metrics used here captured both global synchronization and local net-

works responsible for fine processing of articulatory features. Multi-scale connectivity

features therefore improve decoding accuracy for a speech BMI.

125



CHAPTER 7. GENERAL DISCUSSION

7.2 Future Directions

7.2.1 Dynamic Connectivity Mapping for Identifi-

cation of Critical Processing Nodes

While we have demonstrated that connectivity mapping captures important ele-

ments of motor and speech networks, and that as a result connectivity features can

improve the ability to decode movement and speech, there are additional applications

for models of cortical connectivity that should be explored. One clinically relevant

application is the use of connectivity to identify “eloquent cortex,” or cortical areas

critical for movement and speech processing, preceding surgical brain resections for

the treatment of epilepsy and tumors. Most mapping of the eloquent cortex relies

on electrocortical stimulation mapping (ESM, [22–24], and recent research has made

use of fMRI [27] or ECoG signals [28]. Because connectivity mapping is informative

about the neural activity underlying movement and speech, a natural extension is

its use in this context. It is possible that connectivity mapping may identify im-

portant “hub” nodes that critically coordinate interactions between local processing

sites, which could provide valuable information about the likely effect of removing

such sites.
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7.2.2 Integrated Decoders using Power Spectral

and Connectivity Features

Because our aim was to characterize the value of connectivity features for BMI,

we did not optimize the movement and speech decoders in all possible ways. In par-

ticular, the combination of standard power and temporal features with connectivity

features would create the opportunity for a variety of approaches to BMI design. An

important next step is the assessment of decoding accuracy when connectivity fea-

tures are integrated with traditional features. If some complementary information is

present in connectivity and power features, for example, feature selection should be

optimized.

It is possible that some of the increased decoding accuracy we observed when

using connectivity features arose from the ability to implicitly detect sequences of

activation related to movement or speech. For example, in a speech task, effective

connectivity could model the activation of posterior superior temporal gyrus (pSTG)

during phonological coding, followed by the activation of inferior frontal gyrus (IFG)

during syllabification. When a connection from pSTG to IFG increases, a classifier

could anticipate the onset of speech. There are a variety of approaches to detecting

such sequential activation, such as template matching or a series of gated decoders,

but effective connectivity provides an elegant solution by modeling the sequential

activation as a single Granger causal feature. This sequence detection should be
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considered in BMI design.

7.2.3 State-Based Decoding with Connectivity Fea-

tures

We observed consistent changes in connectivity preceding and during movement

and speech, which suggests connectivity features may be useful for a classifier of cog-

nitive state or progression through a task. Because connectivity often changes before

movement and speech onset, its utility for decoding stimulus processing, movement

and speech planning, movement and speech onset, and movement and speech duration

should be assessed. As BMI design begins to incorporate more practical clinical con-

siderations, synchronous decoding, or decoding of a task with reference to a specific

cue, is less desirable than asynchronous decoding, or decoding that does not require

a cue-based task. Using connectivity features to decode cognitive state could enable

an asynchronous BMI.

In the context of movement, interactions between visual or auditory areas and

motor areas could indicate stimulus processing as a step in movement preparation.

Interactions between premotor and primary motor areas, or anterior parietal cortex

and primary motor areas, could indicate imminent speech and signal a kinematic

decoder to initiate movement. Such pre-movement detection could decrease the lag

inherent in a BMI system, which must process neural data and fit it to a model

128



CHAPTER 7. GENERAL DISCUSSION

before actuating a limb. A decrease in lag time from the neural activity expressing

intent to move and the limb actuation could yield substantial benefits in visual and

proprioceptive feedback that matches forward models in the brain, and increased

sense of embodiment of the BMI limb [241].

In the context of speech, interactions between auditory cortex and pSTG may be

used to detect speech processing, a potential early indicator of an upcoming intent

to speak. Interactions between pSTG and IFG, followed by interactions between

these areas and primary speech motor areas, could be a cue for the initiation of

speech in a BMI. Such an early detection system would have similar benefits as

those for the motor system. Because connectivity features provide new information

about the neural activity underlying movement and speech, they create a variety of

opportunities for improving BMI design and accuracy.
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[98] G. Schalk, J. Kubánek, K. J. Miller, N. R. Anderson, E. C. Leuthardt, J. G.

Ojemann, D. Limbrick, D. W. Moran, L. A. Gerhardt, and J. R. Wolpaw,

“Decoding two-dimensional movement trajectories using electrocorticographic

signals in humans.” Journal of Neural Engineering, vol. 4, no. 3, pp. 264–75,

Sep. 2007. [Online]. Available: http://stacks.iop.org/1741-2552/4/i=3/a=012

[99] T. Blakely, K. J. Miller, S. P. Zanos, R. P. N. Rao, and J. G. Ojemann,

“Robust, long-term control of an electrocorticographic brain-computer interface

with fixed parameters.” Neurosurgical Focus, vol. 27, no. 1, p. E13, Jul. 2009.

[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19569888

[100] E. A. Felton, R. G. Radwin, J. A. Wilson, and J. C. Williams,

151



BIBLIOGRAPHY

“Evaluation of a modified Fitts law brain-computer interface target

acquisition task in able and motor disabled individuals.” Journal of Neural

Engineering, vol. 6, no. 5, p. 056002, Oct. 2009. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/19700814
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