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Abstract

Neural networks have been widely deployed to solve classification and regression

problems, and, in recent years, there has been much interest in using neural networks

for solving complicated problems. In this paper, a hybrid manipulator kinematics is

studied, and an artificial deep neural network is used to solve the inverse kinematics

problem. The noise resistance benefit of neural networks approach is explored.
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Chapter 1

Introduction

Problem background

Robot kinematics is the study of motion in Robotics. Forward Kinematics (FK)

and Inverse Kinematics (IK) are two fundamental problems in Robotics. The FK of a

robot calculates the position and orientation of its end effector (the tool or point of

interest on the end of the robot) in the workspace configuration, given the relative

configurations (angle of rotary joints or length of prismatic joints) of adjacent links

of the robot. Given a known and desired position and orientation in the workspace

configuration, the task of IK is to find the sets of joint angles that produce it [1, 2].

Determining FK and IK of a robot is the first step for understanding its mechanism

and studying its application. For majority of the industrial and medical robots, there

are well established and well researched FK and IK. For example, extensive research

have been done for IK of a 6R industrial robot arm [3], 7R serial robot arm [4], and 6

degree-of-freedom (DoF) parallel manipulators [5]. When a novel robotic mechanism

is proposed for an application, understanding the kinematics is a crucial step. For

example, in-depth research has been done for the new 4 DoF parallel medical robot

proposed [6].

Kinematics, including both FK and IK, is not just studied in robotics. It is also

applicable in biology and material science. In [7], IK of 6 DoF biopolymer segment is

1



studied.

While for serial robot manipulators, closed-form FK is relatively simple to obtain,

IK is known to be difficult to solve, and at times, impossible to find closed-form ana-

lytical solution, due to its non-linearity. Besides a closed-formed analytical approach,

numerical methods with interactive processes is another approach. Numerical methods

include Jacobian solutions, Newton method, Sequential Monte Carlo Method (SMCM)

and so on [8]. Some of these approaches suffer from high complexity, difficulty to

implement and high computational cost.

An artificial neural network (ANN), sometimes referred to as Neural Network(NN),

is a computing modeling system that mimics the biology of animal brain and its

neurons in it. ANN is widely used in classification problems. It has been deployed in

cases from bank loan risk assessment to shopping preference prediction [9].

ANN can also be deployed to function approximation tasks as regression problems.

ANN has been shown to be effective in nonlinear smooth function approximation [10].

In [11], ANN is successfully implemented to approximate IK of a two link planar

robot arm. Compared to traditional numerical method, ANN is faster in real time

performance, and resistance to noise in data.

In this thesis, a planer robot case with a complex FK is studied. The robot

mechanism is consist of a link and a quadrilateral with two equal sides. This is a serial

and parallel hybrid manipulator. The variation of such mechanism is used in flight

simulators, surface treatment robots, and other robot manipulators. Figure 1-1 shows

the basic structure of the robot manipulator.

The first link rotates around the origin, and the end of the first link is connected

to the mid point of the bottom side of the quadrilateral. The point of interest, the

end-effector, is located at the mid-point of the top side of the quadrilateral. The

quadrilateral can rotate around the end of first link, the connection point between

first link and quadrilateral.
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Figure 1-1. Robotic Mechanism Studied in This Thesis

For the thesis, we are interested in the end-effector location, position x, position y,

and the facing angle α of the end-effector. Note that the facing angle α is also the

normal angle of the top side of the quadrilateral.

Problem Formulation

Denote the length of the first link as L1, the angle between the fist link and

horizontal ground as θ1. The bottom length of the quadrilateral is Down, or D for

short, and the length of the two sides is Side, or S. The length of the top is Top, or

T . The angle between first link and bottom of quadrilateral is denoted as θ2, and the

angle between the side and bottom of the quadrilateral is denoted as θ3. See Figure

1-2 for graphic illustration.

For the FK, with given θ1, θ2, θ3, we need to find the end-effector position x,

position y, and angle α. For IK, the goal is to find of a combination of θ1, θ2, θ3, so

that the end-effector is at the given position with a given facing angle. The inputs for
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the FK function are θ1, θ2, θ3, and the outputs are x, y and α. The inputs for the IK

function are x, y and α, and the outputs are θ1, θ2, θ3.

Figure 1-2. Problem Parameters and Variables

Figure 1-3 shows the relation between FK and IK, and calculation method for this

robot manipulator.
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Figure 1-3. Relation between FK and IK
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Chapter 2

Forward Kinematics

Method

To calculate the position and angle of the end effector, a construction line, or a

virtual link is added by connection the end of first link and end effector (see Figure

2-1). Denote the length of the virtual link as L2, and the angle between the virtual

link and bottom of the quadrilateral as θ4.

With L2 and θ4, position x and y can be calculated as

x = L1 cos (θ1) − L2 cos (θ1 + θ2 + θ4) (2.1)

y = L1 sin (θ1) − L2 sin (θ1 + θ2 + θ4) . (2.2)

Denote the angle between top and bottom of the quadrilateral as θ5. The angle α

of the end effector can be calculated as

α = θ1 + θ2 + θ5 − π

2 . (2.3)

Once L2, θ4 and θ5 are calculated, we will have complete FK.

6



Figure 2-1. Construct the Virtual Link

Calculation of L2, θ4 and θ5 in the quadrilateral

Finding L2 and θ4

To calculate L2 and θ4 within the quadrilateral, we make two construction lines l1

and l2, and denote angles a, b, c, d as shown in Figure 2-2.

Within the the triangle with three sides Side, l1, and 1
2 ∗ Down, we use Law of

Cosine with angle θ3 to have the following expression.

l1 =
√︄

D2

4 − DS cos (θ3) + S2. (2.4)

Within the same triangle, Law of Sines is used to find angle a as

a = l1
S

θ3. (2.5)

Within the the triangle with three sides Side, l2, Down, we use Law of Cosine

with angle θ3 as

l2 =
√︂

D2 − 2DS cos (θ3) + S2. (2.6)
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Figure 2-2. Internal Parameters and Variables of the Quadrilateral for Finding L2, and θ4

Within the the triangle with three sides Up, Side, l2, Law of Cosine is applied to

find angle c as

c = cos−1
(︄

l2
2 − S2 + U2

2l2U

)︄
. (2.7)

Similarly, we apply Law of Cosine within triangle with l1, l2, and 1
2 ∗ Down to find

angle b as

b = cos−1

⎛⎝−D2

4 + l2
1 + l2

2

2l1l2

⎞⎠ . (2.8)

Now L2 can be found by applying Law of Cosine to the triangle with l1, L2, and
1
2 ∗ Up by using l1, 1

2 ∗ Up and angle (b + c), as

L2 =
√︄

−l1U cos(b + c) + l2
1 + U2

4 . (2.9)
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Within the same triangle, Law of Cosine is used to find angle d as

d = U
2L2

(b + c). (2.10)

In addition, one can find that

θ4 = π − a − d. (2.11)

Now substitute l1, angle b and angle c into equation (2.9),

L2 =

⌜⃓⃓⃓
⎷−l1U cos

⎛⎝cos−1

⎛⎝−D2

4 + l2
1 + l2

2

2l1l2

⎞⎠+ cos−1

(︄
l2
2 − S2 + U2

2l2U

)︄⎞⎠+ l2
1 + U2

4

θ4 = −
U

⎛⎝cos−1

⎛⎝−D2

4 +l21+l22
2l1l2

⎞⎠+ cos−1
(︂

l22−S2+U2

2l2U

)︂⎞⎠
2L2

− θ3S

l1
+ π (2.12)

where,

l1 =
√︄

D2

4 − DS cos (θ3) + S2

l2 =
√︂

D2 − 2DS cos (θ3) + S2

Finding θ5

To calculate θ5 within the quadrilateral, make two construction lines l2 and p, and

denote angles e as shown in Figure 2-3. Line l2 is the diagonal line of the quadrilateral,

and line p is parallel to the Down side.

Since line p is parallel to Down side, the two opposite angles of e are equal. l2 is

already calculated in the previous subsection. Angle e is calculated by applying Law

of Cosine to the triangle with Down, Side, l2 as

e = cos−1
(︄

D2 + l2
2 − S2

2Dl2

)︄
. (2.13)

Angle of e + θ5 can be found by applying Law of Cosine the triangle with Up, Side,

l2, then θ5 can be found by subtracting angle e from the sum as

e + θ5 = cos−1
(︄

l2
2 − S2 + U2

2l2U

)︄
(2.14)
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Figure 2-3. Internal Parameters and Variables of the Quadrilateral for Finding α

and

θ5 = (e + θ5) − e

= cos−1
(︄

l2
2 − S2 + U2

2l2U

)︄
− cos−1

(︄
D2 + l2

2 − S2

2Dl2

)︄

= cos−1

⎛⎝ D2 − 2DS cos (θ3) + U2

2U
√︂

D2 − 2DS cos (θ3) + S2

⎞⎠− cos−1

⎛⎝ D − S cos (θ3)√︂
D2 − 2DS cos (θ3) + S2

⎞⎠ .

(2.15)

Complete Forward Kinematics

Substitute equations (2.12) and (2.15) into equations (2.1) - (2.3) to obtain the

complete FK,

x = L1 cos (θ1) − L2 cos (θ1 + θ2 + θ4)

y = L1 sin (θ1) − L2 sin (θ1 + θ2 + θ4)

α = − cos−1
(︄

D2 + l2
2 − S2

2Dl2

)︄
+ θ1 + θ2 + cos−1

(︄
l2
2 − S2 + U2

2l2U

)︄
− π

2
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where,

L2 =

⌜⃓⃓⃓
⎷−l1U cos

⎛⎝cos−1

⎛⎝−D2

4 + l2
1 + l2

2

2l1l2

⎞⎠+ cos−1

(︄
l2
2 − S2 + U2

2l2U

)︄⎞⎠+ l2
1 + U2

4

θ4 = −
U

⎛⎝cos−1

⎛⎝−D2

4 +l21+l22
2l1l2

⎞⎠+ cos−1
(︂

l22−S2+U2

2l2U

)︂⎞⎠
2L2

− θ3S

l1
+ π

l1 =
√︄

D2

4 − DS cos (θ3) + S2

l2 =
√︂

D2 − 2DS cos (θ3) + S2

FK Validation

The FK is validated by a computer aided design program (CAD), SolidWorks.

Multiple combination of parameters and variables are substituted into the obtained

FK equations. The CAD results agree very well with the output of FK equations

consistently.

Synthetic Data Generation

Data Generation

After obtaining the FK of the robot, we can generate synthetic training data for

IK using ANN.

For the purpose of this thesis, we will use the follow parameter for the robot

mechanism.

L1 = 50in

Up (U) = 15in

Side (S) = 25in

Down (D) = 30in

11



For the training data, we will sample linearly in configuration space, and the range

of motion for θ1, θ2 and θ3 are,

0 ≤ θ1 ≤ π

2
0 ≤ θ2 ≤ 3π

4
π

4 ≤ θ3 ≤ π

2

The model is loosely based on a surface treatment robot arm, the range of θ1 and

θ2 is determined by the joint limits. The range of θ3 is determined by the geometry of

the quadrilateral. When θ3 < 0.674 or θ3 > 1.621, it will result in invalid quadrilateral

geometry.

Two sets of data are generated. The first set is generated without noise, and the

second set is generated by adding random Gaussian noise with a mean of 0, and

variance of 5 to position x, y, and angle α in degree. Noise with a mean of 0, and

variance of 3 is added to θ1, θ2 and θ3 in degree. 21,600 data points are generated for

both data set without noise and data set with noise.

Figure 2-4 shows the generated data with no noise in Cartesian workspace (position

and orientation of end effector). Figure 2-5 shows the data generated with Gaussian

noise in workspace.
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Figure 2-4. Synthetic Data Generated without Noise in Workspace

Figure 2-5. Synthetic Data Generated with Gaussian Noise in Workspace
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Training, Validation and Test Split

The data set without noise is split into 80% training data and 20% testing data. With

the 80% training data, cross validation and gridsearch are conducted to find the fitted

hyerparameters for the ANN model. Test data will only be used for evaluation of

model after the ANN model is finalized.
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Chapter 3

Artificial Neural Network Based
Approach for Inverse Kinematics

Introduction

Traditionally, there are two different approaches for IK problems: closed-form

analytical approaches and numerical approaches. Closed-form solutions are fast and

efficient at calculating the joint angles that produce a desired end-effector configuration.

Numerical solutions depend on an interactive procedure, which often requires high

computational power, to solve sets of equations [1]. Finding a closed-form solution

for IK is known to be a challenging task. Often, it is difficult, if not impossible, to

find a closed-form solution. Numerical methods can be time consuming in real time

applications. Numerical methods also potentially have the issue of multiple local

minima. Therefore, ANN is proposed to solve the IK. Despite the fact that the training

process is time consuming and computationally costly, once trained, the ANN can

quickly find a set of solution in real time. In this thesis, the ANN approach is also

shown to be robust with noise present in data.

An ANN consists of input layer, output layer, and hidden layers. Each layer

consists of neurons, and each layer is connected with the two adjacent layers via

weights and activation functions. Activation functions mimic the behavior of a neuron

transmitting signals in brain. The value of a neuron in the layer passes, together with

15



Figure 3-1. A Schematic of an Artificial Neural Network, Modified from [12]

weights, through the activation function, and becomes the input of the next layer.

Figure 3-1 shows a basic structure of an ANN.

For the purpose of approximating the IK function, Mean Square Error (MSE) is

used as a loss function. The goal of this ANN is minimize MSE of the three output,

θ1, θ2 and θ3 combined.

Data Pre-processing

Scaling

Because the scale of inputs determines the effective scaling of the weights in the first

hidden layer, it impacts the loss convergence and the quality of training results [13].

Without scaling, the large input value may result in small weights for the first hidden

layer, resulting in ineffectiveness for the training process. It has been shown that

scaling can speed up the training of neural network, while improving the stability of

the convergence. In practice, it is almost always preferred to normalize or standardize

both inputs and outputs [14].

There are two general scaling approaches, Normalization and Standardization.

Since the training data are generated by uniformly and linearly sampling in configu-
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ration space, we will use Normalization to process the data. The input and output

data will be scaled to between 0 and 1 separately, because inputs and output have

different unit of measure and numerical value range.

To normalize the data, we use MinMaxScaler function in sklearn library. With

MinMaxScaler function, output data from an ANN can be scaled back to verify the

results.

Training and Testing Split

For the training and validation purpose, the data set without noise is split into

80% training and 20% testing with random selection. In the experiment for data set

with noise, the test data without noise is used to evaluate the model.

While searching for hyperparameters for the ANN, 10-fold repeated cross validation

is implemented in grid search. Training data is split into 10-fold for cross validation,

while test data is left for evaluation after the ANN model is finalized.

ANN Structure

Number of Hidden Layers

It is preferred to have too many layers to begin with than to few layers. The

inflexibility caused by too few layers may not able to capture the non-linearity in

complex systems [13]. Overfitting caused by too many hidden layers can be corrected

by regularization. With fewer input and output neurons, fewer hidden layers are

required. It has also been shown that even a shallow net ANN is fairly effective in

approximating a nonlinear function. After comparing 2, 3, and 4 hidden layers, we

conclude that 3 hidden layers is the most effective and efficient.

17



Choice of Activation Function

The choice of activation functions is crucial in the effectiveness of the function

approximation of an ANN. There is a variety of activation functions available. Figure

3-2 shows some common activation functions. Since our task is a multi-outputs

regression problem, the output layer uses linear function as the activation function.

For the hidden layers, a grid search over 5 different activation function are conducted.

For evaluation, we use negative mean squared score. A higher score is an indication of

better results.

Figure 3-2. Some Common Activation Functions for ANN [15]

relu softmax tanh sigmoid linear choice
layer 1 -0.07954 -0.04626 -0.07765 -0.08316 -0.07856 softmax

SD 0.0319 0.0034 0.0209 0.0331 0.0238
layer 2 -0.08147 -0.05504 -0.05844 -0.04911 -0.07348 sigmoid

SD 0.0368 0.0196 0.0207 0.0193 0.0310
layer 3 -0.06075 -0.05314 -0.06693 -0.05685 -0.06869 softmax

SD 0.0207 0.0139 0.0282 0.0212 0.0468

Table 3-I. Negative Mean Squared Score and Standard Deviation (SD) of Gridsearch for
Activation Function

Table 3-I shows the average negative mean squared score and its standard deviation

in the gridsearch with 10-fold cross validation for different activation function for each

layer. A higher average negative mean squared score and a lower standard deviation

indicate a better result. Softmax function for first hidden layer, sigmoid function

for second hidden layer and softmax function for the third hidden layer achieve the
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highest score with low standard deviation.

Choice of Optimizer

There are a wide variety of optimizers available in Keras library to optimize the

ANN. to name a few: Stochastic Gradient Descent (SGD), adaptive moment estimation

(Adam), Nesterov-accelerated Adaptive Moment Estimation (Nadam), and so on. A

grid search is conducted over 5 different optimizers. Negative mean squared score is

used for evaluation. A higher score is an indication of better results.

Optimizer SGD RMSprop Adagrad Adam Nadam choice
Score -0.12343 -0.08635 -0.12323 -0.05283 -0.05332 Adam
SD 0.0421 0.0485 0.0420 0.0261 0.0233

Table 3-II. Negative Mean Squared Score and Standard Deviation (SD) of Gridsearch for
Optimizer

Table 3-II shows the average negative mean squared score and its standard deviation

in the gridsearch with 10-fold cross validation for different ANN optimizer. A higher

average negative mean squared score and a lower standard deviation indicate a better

result. Adam optimizer achieves the highest score with low standard deviation.

Regularization

Due to the high non-linearity nature of this IK problem, hidden layers have up

to 300 neurons. To prevent over-fitting, we will use dropout regularization. Dropout

regularization is proposed in [16] in 2014. It addresses the over-fitting issue by tempo-

rally ignoring randomly selected neurons and removing their contribution downstream.

Since the first hidden layer has the most neurons, 300. Dropout regularization is

added to it. A gridsearch is conducted for dropout rate from 0 to 0.4. Negative mean

squared score is used for evaluation. A higher score is an indication of better results.

Table 3-III shows the average negative mean squared score and its standard

deviation in the gridsearch with 10-fold cross validation for different dropout rate
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dropout rate 0.0 0.1 0.2 0.3 0.4 choice
score -0.0689 -0.0516 -0.0601 -0.0545 -0.0587 0.1 dropout rate
SD 0.0419 0.0219 0.0286 0.0267 0.0214

Table 3-III. Negative Mean Squared Score and Standard Deviation (SD) of Gridsearch
for Dropout Rate

for the first hidden layer. A higher average negative mean squared score and a lower

standard deviation indicate a better result. A dropout rate of 0.1 achieves the highest

score with low standard deviation.

Running Iterations

In theory, the more epochs or iterations in the model, the better for convergence of

the model. However, after a certain number of epochs, the increment in convergence

becomes marginal, and time cost becomes high. To find a balance between good

convergence and cost in time, different maximum epochs number are compared in

Figure 3-3. From the comparison, the decrease in MSE is marginal after 750 epochs;

therefore, 750 will be the training maximum epochs for the ANN.

Final Structure for ANN Implemented

After the grid search and comparing different configurations, we decided to use a

three-hidden-layer structure. The first hidden layer consists of 300 neurons and uses

softmax function for activation. The second hidden layer consists of 150 neurons with

sigmoid function for activation. The third hidden layer consists of 70 neurons and uses

softmax function for activation. A dropout rate of 0.1 is applied between first and

second hidden layer. The optimizer is selected as ‘Adam’, and the maximum number

of epochs is 750.

20



Figure 3-3. Comparing Different Max Epochs Number
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Chapter 4

Result and Evaluation

Evaluation Methods

Two different methods are used in this thesis to evaluate the performance of the

ANN on the task of Inverse Kinematics. The first method is to evaluate the MSE of

the training and testing data. The second method is to generate a set a synthetic data

where we first define a desired trajectory curve for the end effector in the workspace,

then use this desired curve as the input of trained ANN to generate a set of solutions.

Finally we map this set of solutions back to workspace with forward kinematics, to

compare with the desired trajectory curve.

Training and Testing MSE

As we can see from Figure 4-1, the training loss MSE quickly converged to a value

below 0.020, and remains steady after 300 epochs in the case where there is no noise

in training. Importantly, the average test MSE loss of last 50 epochs is 0.01133, and

the standard deviation is 0.00012.

For the case with noise present in the training data, the training loss still successfully

converges to below, while the test loss is in a larger range from 0.014 to 0.010. The

average test MSE loss of last 50 epochs is 0.01181, and the standard deviation is

0.00048. The noise in training data increases the average test MSE in last 50 epochs
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by 4.2%, but the standard deviation increases from 0.00012 to 0.00048. How much

does this impact the result in practice is studied in the next evaluation method, in

which the ANN output joint angles are mapped back to the end effector position and

orientation in the workspace.

Figure 4-1. MSE Loss vs. Epoch Number, Data with No Noise

Figure 4-2. MSE Loss vs. Epoch Number, Data with Noise
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Curve Matching for the End Effector

Training without Noise

In this evaluation, a set of data is generated by linearly sampling in the configuration

space for three joint angles θ1, θ2, θ3 as shown in Figure 4-3.

The sampled joint angles θ1, θ2, θ3 are fed into the closed-form FK to generate a

Figure 4-3. θ1, θ2, θ3 Sampling for Generated Curve Matching

curve in the workspace, denoted as the target curve, and a set of position x, y and

facing angle α as inputs for the trained ANN. The trained ANN produces a set of

predicted joint angles θ1̂, θ2̂, θ3̂. Then, a curve generated by the set of predicted angles

is compared with the target curve.

Figure 4-4 shows the comparison between the target curve and the ANN generated

curve, and Table 4-I shows the mean squared error (MSE) and mean absolute error

(MAE) of the ANN (trained without noise) generated workspace result compared to

target workspace points. The joint angles generated by ANN is shown in Figure 4-5.
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Figure 4-4. Curve Matching with Training Data without Noise)

position x [in] position y [in] facing angle α [◦]
MSE 0.8408 1.2939 1.4111
MAE 0.8408 0.9263 0.9819

target value range 10 - 75 5 - 75 60 - 120

Table 4-I. MSE and MAE of ANN Approximated Curve (No Noise in Training)

Figure 4-5. ANN Generated Joint Angels (No Noise in Training)
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Training with Noise

Figure 4-6 shows the performance of the ANN model when there is noise present

in the training data. Table 4-II shows the mean squared error (MSE) and mean

absolute error (MAE) of the ANN (trained with noisy data) generated workspace

result compared to target workspace points. The average MAE of facing angle increases

from 0.819 to 3.14, but position x and y error are unimpaired.

Even though MAE of facing angle is increased by 2 folds from training with no

noise to training with noise, the MAE is still only 2.5% to 5% to the facing angle

value.

Figure 4-6. Curve Matching with Noisy Training Data

position x [in] position y [in] facing angle α [◦]
MSE 0.8453 0.6346 12.6941
MAE 0.5264 0.5435 3.1400

target value range 10 - 75 5 - 75 60 - 120

Table 4-II. MSE and MAE of ANN Approximated Curve (with Noise in Training)
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Figure 4-7. ANN Generated Joint Angels (with Noise in Training)

Conclusion

As shown in both MSE results and curve matching results, the ANN is effective in

approximating the IK of the robot of interest. For desired curve matching, the average

positional errors, in both training with or without noise, are under 1 for a value range

from 5 to 75 inches, and angle error is within 1.5◦ in training with no noise, and under

3.5 in training with noise. With increased training data size, network complexity and

training iterations, the accuracy will further improve. This ANN approach is suitable

for real-world practical applications.
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Chapter 5

Conclusion

Summary

In this thesis, we analyzed the kinematics of a serial and parallel hybrid robot

manipulator. Closed-form solution for forward kinematics (FK) is derived analytically,

and was validated with a computer aided design (CAD) program. With closed-form

FK, two sets of 21600 data points in the workspace were generated, one set with noise

and the other set without noise. After conducting cross validation and grid search, we

concluded that a three-hidden-layer ANN with a mix of softmax and sigmoid activation

functions is effective and efficient to approximate the inverse kinematics (IK) of the

manipulator. The ANN model is evaluated with testing data. After evaluation, we

concluded that the ANN approach is effective in performing the IK tasks. During the

evaluation, the ANN approach has also demonstrated robustness with noise present in

training data.

Limitation and Future Work

There are two main disadvantages in using ANN to approximate Inverse Kinematics

solutions.

The first and biggest disadvantage is lack of comprehensive sets of solution. In

more complex cases with high dimension, except singularity or out of workspace,
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there are more than one solution of joint configuration to a position and orientation

of end effector. For example, there are 14 solutions to a 6-degree-of-freedom 6R

robot arm [3]. The ANN method proposed in this thesis only finds one solution, and

we cannot compare the solution with other possible solutions. However, there is a

related work [17] which proposed an adaptive niching genetic algorithm approach that

generates multiple solutions in certain robots.

The second potential disadvantage is failure to inform when the desired end-effector

position and orientation is outside of the workspace, because ANN will produce an

output with any given input, even if the input will result in invalid geometry. However,

this issue can be resolved by setting the workspace boundaries beforehand. With

known FK, it is relatively simple to find the workspace boundaries, both analytically

or numerically.
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