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Let G be a connected split reductive group over Zp, and letK be a p-adic field. We show continuous

homomorphisms r̄ : GK → G(F̄p) admit crystalline lifts when they are G-completely reducible.

We also show when p > 3 and G is the exceptional group G2, r̄ admits crystalline lifts.
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Chapter 1

Introduction

In this thesis, we present various techniques for lifting local Galois representations valued in

reductive groups, culminating in a complete resolution of the problem for the exceptional group

G2 in characteristic p > 3.

Let Qp be the field of p-adic integers. One of the most notable achievements of number theory in

the new millennium is the classification of irreducible admissible smooth modular representations of

the p-adic group GL2(Qp) in terms of 2-dimensional modular representations of the absolute Galois

group GQp . Since then, people have been working on generalizing this connection between modular

smooth representations (representation-theoretic side) and modular Galois representations (Galois

side) to other p-adic reductive groups. The representation-theoretic side of the picture is still very

unclear. In recent years, people have sought to understand the geometry of the moduli space of

Galois representations with the hope to gain new insights of this speculated connection.

An important tool for studying mod p Galois representations is to first lift them to characteristic
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0. For example, in order to get a uniform ramification bound of mod p Galois representations,

[CL11] first lift them to characteristic 0 where powerful tools of p-adic Hodge theory are available.

When studying a local Galois representation, a very successful technique is to first realize it as

the local component of a global Galois representation, and then apply powerful global methods

such as the Taylor-Wiles patching. When the local Galois representation is in characteristic p, the

preliminary step of globalization is to construct characteristic 0 lifts (see [EG14]).

Recently, in [EG19], the problem of lifting mod p local Galois representations valued in GLn

is fully settled. In their work, the existence of lifts is used to understand the geometry of the

moduli stack of mod p Galois representations. Roughly speaking, we single out a special class

of characteristic 0 Galois representations, the so-called crystalline representations, whose moduli

stack is equidimensional; by showing any mod p Galois representation admits a crystalline lift, we

find that the map between the moduli of crystalline representations and the moduli of mod p Galois

representations is surjective. As a consequence, the moduli stack of mod p Galois representations

is Noetherian, and has an equidimensional reduced substack.

In this thesis, we consider more general reductive groups. We will follow the strategy of [EG19]

and do it in two steps. The first step is to construct lifts for semi-simple Galois representations,

and the second step is to lift extension classes. Many things that are straightforward for GLn can

be subtle for general reductive groups. For this strategy to made sense, we will have to answer the

following questions:

Q1. How to classify semi-simple mod p Galois representations?

Q2. How to lift semi-simple mod p Galois representations using the classification theorem?

Q3. Is an extension of crystalline lifts still crystalline?
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For GLn, the answers are simple. To answer Q1, we just need to realize semi-simple mod p Galois

representations are always direct sums of inductions of characters; for Q2, note that inductions of

crystalline characters lift semi-simple mod p Galois representations; Q3 is slightly more involved

and by computing Galois cohomology involving Fontaine’s period rings, we get an affirmative

answer under an ordinarity assumption. Now let us turn to general reductive groups. To classify

semi-simple mod p Galois representations, we have to make sense of what “induction of characters”

means. It turns out the correct analogue of “character” is a Galois representation valued in a

maximal torus, and “induction” should be interpreted as a choice of a Weyl group element. For

GLn, the Weyl group is the permutation group Sn and thus there is a unique way (up to conjugacy)

of inducing an irreducible representation, namely, choosing the longest permulation (123 · · ·n). For

general reductive groups, there are multiple ways of inducing irreducible representations from a

“character”. To prove this gives a complete classification, we will have to prove a Steinberg-Winter

style theorem for maximal tori. We explain in section 3.1 how dynamic methods can be used to

attack Steinberg-Winter type questions. Q2 now becomes a linear algebra question: we want to

construct a solution of a system of linear equations lifting a fixed solution of the linear system

modulo some ideal (the coefficient ring being the group ring of the Weyl group). Q3 now reduces to

a non-abelian Galois cohomology question. We will carry out these non-abelian Galois cohomology

computations in chapter 2 and answer Q3 affirmatively. We prove the following theorem:

Theorem 1 (3.5, 4.2.3, 3.8). Let F be a finite field of characteristic p. Let K/Qp be a finite

extension, and let G be a split reductive group over W (F). Write Kur for the maximal unramified

extension of K inside a fixed algebraic closure.

Let ρ̄ : GK → G(F) be a group homomorphism whose image is a G-completely reducible sub-

group.
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� There exists a characteristic 0 lift ρ : GK → G(W (F)) of ρ̄;

� There exists a Hodge-Tate regular crystalline lift ρ : GK → G(Kur) of ρ̄.

Now we can proceed to the second step of this strategy. The major challenge is, since the

maximal parabolics of general reductive groups dont’t have an abelian unipotent radical, the

extension class is valued in non-abelian Galois cohomology. The arguments of [EG19] are geometric,

and make use of the sheaf of the second Galois cohomology module over the moduli stack of mod

p Galois representations. Non-abelian cohomology certainly does not nicely live in families, and

even if one can make sense of a non-abelian “sheaf” of obstructions, we need brand new ideas to

make the strategy work in a non-abelian setup.

To explain our approach, we take a step back and look at the first non-trivial example GL3. We

observe that, as a consequence of local Tate duality, the obstruction of lifting an extension class

valued in the Heisenberg group vanishes if the obstruction of lifting the extension class modulo

the center of the Heisenberg group vanishes. A linear algebraic group is Heisenberg if it is abelian

modulo its center and its center is the affine line Ga. It turns out that this observation is useful for

reductive groups of type B, C, D, and G2. For example, unipotent radicals of maximal parabolics

of GSp4 are either abelian or Heisenberg. For higher rank groups, the unipotent radicals might

not be Heisenberg but one can replace them by their Heisenberg quotient.

Now we know for many reductive groups we can replace non-abelian Galois cohomology by a

certain form of abelian Galois cohomology, and it makes it possible to adapt the arguments of

[EG19]. Let us briefly review the geometric arguments of [EG19]. By choosing a suitable cochain

complex computing Galois cohomology, one can reduce the problem of constructing crystalline lifts

to the following linear algebra problem:
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Principle 1. Let A0x = 0 be a system of linear equations with a solution α. Let A(t), t ∈ T be

deformations of the coefficient matrix A0, parameterized by a space T . Assume A(t) is “generically

of maximal rank” over T . Then there exists t ∈ T such that A(t)x = 0 admits a solution which is

a deformation of α.

When we say A(t) is “generically of maximal rank” over T , we mean the locus in T where

corankA(t) ≥ t has codimension greater than t (in particular, the maximal rank locus is dense).

[EG19] used geometric arguments to reduce the “generically of maximal rank” check to a combi-

natorial problem. So to adapt the proof in [EG19], we need to do the following things:

T1. Show that the Heisenberg trick works for higher rank groups (not just GL3);

T2. Solve the combinatorial problem.

I used the theory of Demuškin groups, and explicit generators and relators to work out T1 for p not

too small. (To be more precise, p is assumed to be coprime to the cardinality of the Weyl groups

of proper Levi subgroups of G. This assumption is a byproduct of a prime-to-p descent argument,

and can be removed if we know more about the integral structure of cup products on Galois

cohomology.) It is the most technical and non-conceptual part of the proof. The combinatorial

problem is also much more complicated for general groups, and we will only work out the G2-case

in this thesis.

In the next section, we will elaborate on how the non-abelian issue is addressed.

1. Obstruction theory

Let K be a p-adic field, and let G be a connected reductive group over Zp.
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If ρ̄(GK) is an irreducible subgroup of G(F̄p) (that is, it is not contained in any proper parabolic

subgroup of G(F̄p)), then by Theorem 1, ρ̄ admits a crystalline lift. So we assume ρ̄ factors through

a proper maximal parabolic P . Let P = L⋊ UP be the Levi decomposition. Let r̄ : GK → L(F̄p)

be the Levi factor of ρ̄. Then ρ̄ defines a 1-cocycle [c̄] ∈ H1(GK , UP (F̄p)). What we will actually

do is to construct a lift [c] ∈ H1(GK , UP (Z̄p)) of [c̄].

In the GLN -case, all maximal parabolics have abelian unipotent radical, so it suffices to consider

abelian cohomology. When G is not GLN , parabolic subgroups with abelian unipotent radical are

rare. For example, when G is the exceptional group G2, all parabolics have non-abelian unipotent

radical.

In this thesis, we consider the case where UP admits a quotient U such that

� The adjoint group Uad := U/Z(U) is abelian;

� The center Z(U) is isomorphic to Ga; and

� The Galois action descends to U and there is a bijection of obstructions “H2(GK , UP (F̄p))”

∼= “H2(GK , U(F̄p))”.

We call U a Heisenberg quotient of UP . When G is of type B, C, D or G2, it is always possible to

choose a parabolic P whose unipotent radical admits a Heisenberg quotient (see subsection 1.2).

Let SpecR be an irreducible component of a crystalline lifting ring SpecRcrys,λ
r̄ (Definition

4.0.1) of r̄. Let runiv : GK → L(R) be the universal family. The Levi factor group acts on U via

conjugation ϕ : L → Aut(U). Write ϕad : L → GL(Uad) and ϕz : L → GL(Z(U)) for the graded

pieces of ϕ.

The theorem we prove is:

Theorem 2 (4.2.1). Let [c̄] ∈ H1(GK , U(F)) be a characteristic p cocycle.
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Assume

[1] H2(GK , ϕ
ad(runiv)) is sufficiently generically regular (Definition 4.1.1);

[2] p ̸= 2;

[3] There exists a finite Galois extensionK ′/K of prime-to-p degree such that ϕ(r̄)|GK′ is Lyndon-

Demuškin (Definition 1.0.2); and

[4] There exists a Z̄p-point of SpecR which is mildly regular (Definition 2.0.1) when restricted

to GK′.

Then there exists a Z̄p-point of SpecR which gives rise to a Galois representation r◦ : GK → L(Z̄p)

such that if we endow U(Z̄p) with the GK-action GK
r◦−→ L(Z̄p)

ϕ−→ Aut(U(Z̄p)), the cocycle [c̄] has

a characteristic 0 lift [c] ∈ H1(GK , U(Z̄p)).

Remark [3] is automatically satisfied if p is sufficiently large; and [4] should be regarded as an

induction hypothesis.

1.0.1. Example: G = GL3

Let ρ̄ : GK → GL3(F̄p) be a Galois representation. There are two ways of encoding the data of

ρ̄ as a 1-cocycle in Galois cohomology.

(I) Use the fact ρ̄ factors through a maximal parabolic

P =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗

∗ ∗ ∗

0 0 ∗

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∗ ∗ 0

∗ ∗ 0

0 0 ∗

⎤⎥⎥⎥⎥⎦⋉

⎡⎢⎢⎢⎢⎣
1 0 ∗

0 1 ∗

0 0 1

⎤⎥⎥⎥⎥⎦ = L⋉ A
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where A ∼= G⊕2
a is a rank-2 abelian group. Let r̄ : GK

ρ̄−→ P (F̄p) → L(F̄p) be the Levi factor of

ρ̄. The information of ρ̄ is encoded in a 1-cocycle [c̄] ∈ H1(GK , ϕ(r̄)) =: H1(GK , A(F̄p)). We first

construct a lift r◦ : GK → (GL2×GL1)(Z̄p) of r̄. Then we construct a lift [c] ∈ H1(GK , A(Z̄p)) of

[c̄].

(II) Use the fact ρ̄ factors through a Borel (minimal parabolic)

B =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗

0 ∗ ∗

0 0 ∗

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∗ 0 0

0 ∗ 0

0 0 ∗

⎤⎥⎥⎥⎥⎦⋉

⎡⎢⎢⎢⎢⎣
1 ∗ ∗

0 1 ∗

0 0 1

⎤⎥⎥⎥⎥⎦ = T ⋉H

where the Levi group T is a maximal torus, and the unipotent radical H is the Heisenberg group.

Let r̄ : GK → T (F̄p) be the Levi factor of ρ̄. To reconstruct ρ̄ from r̄, we only need the information

of a 1-cocycle [c̄] ∈ H1(GK , H(F̄p)). We first construct a lift of r̄, and then construct a lift of c̄.

Now H1(GK , H(F̄p)) is non-abelian Galois cohomology.

We make use of the graded structure of LieH when we construct a lift of [c̄]. We have a short

exact sequence

1→

⎡⎢⎢⎢⎢⎣
1 0 ∗

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦→ H →

⎡⎢⎢⎢⎢⎣
1 ∗

0 1 ∗

0 0 1

⎤⎥⎥⎥⎥⎦→ 1.

We will first construct a lift modulo Z(H), and then extend the lift modulo Z(H) to a cocycle on

the whole unipotent radical H.

Theorem 2 applies in this situation, so we have a new proof for the group GL3. For higher

ranks groups, the inductive step requires the full strength of the Emerton-Gee stacks, so we don’t

get a new proof for GLN , N > 3.
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1.0.2. We have a short exact sequence of groups 0 → Z(U) → U → Uad → 0. Since Z(U) is a

central, normal subgroup, we have a long exact sequence of pointed sets

H1(GK , Z(U))→ H1(GK , U)→ H1(GK , U
ad)

δ−→ H2(GK , Z(U)).

Note that δ is a quadratic form, and there is an associated bilinear form

∪ : H1(GK , U
ad)×H1(GK , U

ad)→ H2(GK , Z(U))

defined by x ∪ y = (δ(x+ y)− δ(x)− δ(y))/2.

The technical heart of our method is an analysis of ∪ on the cochain/cocycle level. So we need a

finite cochain complex computing Galois cohomology which interacts nicely with the bilinear form

∪. Thanks to the theory of Demuškin groups, there is an explicitly defined cochain complex (the

so-called Lyndon-Demuškin complex) which computes H•(GK′ , Uad) and H•(GK′ , Z(U)) after a

finite Galois extension K ′/K. When [K ′ : K] is prime to p, we can fully understand cup products

on the cochain/cocycle level via Lyndon-Demuškin complexes endowed with GK/GK′-action.

We have the following nice obstruction theory:

Theorem 3 (3.3.4). Assume p ̸= 2. Let L be a reductive group over OE and fix an algebraic group

homomorphism L→ Aut(U). Let r : GK → L(OE) be a Galois representation.

If there exists a finite Galois extension K ′/K of prime-to-p degree such that r|GK′ is Lyndon-

Demuškin and mildly regular, then there is a short exact sequence of pointed sets

H1(GK , U(Z̄p))→ H1(GK , U(F̄p))
δ−→ H2(GK , U

ad(Z̄p))

9



where δ has a factorization H1(GK , U(F̄p))→ H1(GK , U
ad(F̄p))→ H2(GK , U

ad(Z̄p)).

1.1. The existence of crystalline lifts for G2

The exceptional group G2 has (up to conjugacy) two maximal parabolics: the short root

parabolic, and the long root parabolic. When ρ̄ : GK → G2(F̄p) factors through the short root

parabolic, we can directly apply Theorem 2 to construct a crystalline lift of ρ̄. When ρ̄ : GK →

G2(F̄p) factors through the long root parabolic, we can apply Theorem 2 to construct a lift modulo

the center of the unipotent radical UP . If we assume furthermore that ρ̄ does not factor through the

short root parabolic, then by Tate local duality, H2(GK , Z(UP )(F)) = 0, and it is unobstructed to

extend the lift to the whole unipotent radical. Putting everything together, we have the following

theorem:

Theorem 4 (6.2). Assume p > 3. Every mod ϖ Galois representation valued in the exceptional

group G2

ρ̄ : GK → G2(F̄p)

admits a crystalline lift ρ◦ : GK → G2(Z̄p).

Moreover, if ρ̄ factors through a maximal parabolic P = L⋉UP and the Levi factor r̄ρ̄ : GK →

L(F̄p) of ρ̄ admits a Hodge-Tate regular and crystalline lift r1 : GK → L(Z̄p) such that the adjoint

representation GK
r1−→ L(Z̄p)→ GL(Lie(UP (Z̄p))) has Hodge-Tate weights slightly less than 0, then

ρ◦ can be chosen such that it factors through the maximal parabolic P and its Levi factor rρ◦ lies

on the same irreducible component of the spectrum of the crystalline lifting ring that r1 does.
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1.2. Crystalline lifting for classical groups

A maximal parabolic P of a (split) classical group G = G(V, ⟨, ⟩) of type Bl, Cl or Dl is the

stablizer of an isotropic subspace F ⊂ V .

Let UP be the unipotent radical of P . The Levi factor L of P acts on UP by conjugation. Let

λ be the similitude character of G. Fix an isomorphism ι : F ∼= V/F⊥ such that ⟨x, ι(x)⟩ = 1 for

all x. Then ι⊗ λ−1 is L-equivariant.

It is easy to see Uad
P := UP/Z(UP ) ∼= HomVector space scheme(F

⊥/F, F ) is an abelian group. More-

over, there exists an L-equivariant isomorphism

Z(UP ) = HomVector space scheme(V/F
⊥, F )⊗ λ−1.

Note that ι induces an abelian group scheme morphism trι : Z(UP ) → Ga ⊗ λ−1 which is L-

equivariant. The quotient group U := UP/ ker trι is a Heisenberg quotient, and thus our obstruction

theory applies to it.

Let ρ̄ : GK → P (F) be a mod ϖ Galois representation with Levi factor r̄ : GK → L(F). We

only need to consider the case where ρ̄ is irreducible when restricted to the isotropic subspace F

(otherwise replace F by a smaller isotropic subspace). In this case, trι induces an isomorphism

H2(GK , Z(UP )(F)) ∼= H2(GK , λ
−1 ⊗ F)

by Schur’s lemma and local Tate duality. By the long exact sequence of Galois cohomology, we have

a bijection of obstructions H2(GK , UP (F̄p)) ∼= H2(GK , U(F̄p)) and thus the existence of crystalline

lifts of ρ̄ is equivalent to the existence of crystalline lifts of ρ̄ modulo ker trι.
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So Theorem (2) and Theorem (3) suffice for classical groups. To establish the existence of

crystalline lifts of mod ϖ representations valued in classical groups, we only need to establish

a codimension estimate on the moduli stack of (ϕ,Γ)-modules valued in classical groups in the

manner of section 4.5. Our method requires p to be coprime to the cardinality of the Weyl groups

of proper Levi subgroups of G (due to Lemma 2.2.2.1, although the assumption on p can possibly

be relaxed by Jannsen-Wingberg theory).
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Chapter 2

Extension of crystalline representations

1. Preliminaries

1.1. p-adic Hodge theory Let E/Qp be a p-adic field with ring of integers O. Let G be a smooth

connected group over O. Let ρ : GK → G(O) be a group homomorphism. We say ρ is crystalline

if for all algebraic representations G→ GLN , the composition GK → GLN(O) is crystalline in the

usual sense.

1.1.1. Theorem The representation ρ is crystalline if and only if for some faithful embedding

G→ GLN and some finite extension L/E, the map IK → GK
ρ−→ G(O)→ G(OL)→ GLN(OL) is

crystalline.

Proof. By [Le13, 5.3.2], we only need to check a single faithful embedding G ↪→ GLN . By [BC08,

9.3.1], we only have to look at the inertia.
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1.1.2. Lemma Let T be a smooth connected subgroup of G. Assume ρ : GK → G(O) factors

through T (O). Then ρ is crystalline as a G-valued representation if and only if it is crystalline as

a T -valued representation.

Proof. Choose an embedding G ↪→ GLN . The lemma follows by applying the theorem above

twice.

1.2. Exact ⊗-filtrations We review notions that are necessary for our general construction.

Let C be an ind-tannakian category ([SN72, III 1.1.1]) over a ring A. Let VectA be the category

of projective A-modules. Let ω : C → VectA be an exact tensor functor. ForX ∈ VectA, a filtration

of X indexed by Z is an tuple (Filn X)n∈Z where FilnX ∈ VectA, Fil
nX ⊃ Filn+1 X, ∩Filn X = 0,

and ∪Filn X = X. Let Fil VectA be the category of filtered (indexed by Z) projective A-modules.

An exact ⊗-filtration F on ω is a factorization

C ω →→

ω̃

↘↘

VectA

Fil VectA

forget
↗↗

such that the following are satisfied:

(FE 1) For X ∈ C , Filn ω̃(X) is a direct summand of ω(X);

(FE 2) The associated graded functor grF (ω̃) is exact.

(FE 3) For all n ∈ Z, X, Y ∈ C ,

Filn ω̃(X ⊗ Y ) =
∑︂
i+j=n

Fili ω̃(X)⊗ Filj ω̃(Y ).
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Let ω, ω′ be exact tensor functors with exact ⊗-filtrations F , F ′, respectively. Denote by

Isom-fil⊗((ω, F ), (ω′, F ′))

the functor of tensor isomorphisms inducing an isomorphism of filtrations. Set

Aut⊗(F ) := Isom-fil⊗((ω, F ), (ω, F ))

for simplicity of notation. Denote by Aut⊗!(F ) the subfunctor of Aut⊗(F ) which induces the

identity of the associated grading.

1.3. Splitting of exact ⊗-filtrations Let grVectA be the category of graded vector spaces. An

exact tensor functor ω : C → grVectA induces a canonical exact ⊗-filtration Fcan, which is defined

as Filn(ω(X)) :=
∑︁

n′≥n grn′ ω(X) for all X ∈ C .

An exact ⊗-filtration is said to be splittable if it is isomorphic to the canonical exact ⊗-filtration

associated to a graded exact tensor functor.

2. Extension of weakly admissible filtered ϕ-G-torsors

2.1. Filtered ϕ-G-torsors and crystalline representations

2.1.1. Definition Let K/Qp be a finite extension. Let K0 = W (k)[1/p] where k is the residue

field of K. Let E be a sufficiently large coefficient field (admitting an embedding of the normal
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closure of K). A filtered ϕ-module with coefficients in E is a triple (D,ϕD, θD) where

- D is a finite free module over K0 ⊗Qp E;

- ϕD : (ϕ⊗ 1)∗D → D is an isomorphism of K0 ⊗Qp E-modules;

- θD is a filtration on DK := D ⊗K0 K such that θjDDK = 0 if j ≫ 0, and θjDDK = DK if

j ≪ 0.

Here ϕ⊗ 1 : K0 ⊗ E → K0 ⊗ E sends x⊗ y to ϕ(x)⊗ y.

2.1.2. Definition A filtered ϕ-G-torsor with coefficients in E is a triple (T, ϕT , θT ) such that

- T is a G-torsor over SpecK0 ⊗ E;

- ϕT : (ϕ⊗ 1)∗T → T is a G-equivariant isomorphism over SpecK0 ⊗Qp E;

- θT is an exact ⊗-filtration on TK := T ×
SpecK0⊗QpE

SpecK ⊗Qp E.

More precisely, θT is an exact ⊗-filtration on the functor Rep(G) → VectK⊗E defined by V ↦→

TK ×G V . By Tannakian theory, a G-torsor always comes from a rigid exact ⊗-functor Rep(G)→

VectK⊗E, so we don’t distinguish them.

2.1.3. Remark (1) We can define the notion of filtered ϕ-G-torsor with coefficient in E for any

smooth E-group scheme G.

(2) By Tannakian theory and the functoriality of the twisted product − ×G −, a filtered ϕ-

G-torsor (T, ϕT , θT ) is nothing but a rigid exact tensor functor from RepG(E) to the category of

filtered ϕ-modules with coefficients in E.
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For ease of notation, we write −⊗− for −⊗Qp −.

2.1.4. Pushforward Let f : G→ H be a group scheme morphism.

Let (T, ϕT , θT ) be a filtered ϕ-G-torsor. Define T ′ := T ×G H := T ×H/{(t, h) ∼ (g−1 · t, f(g) ·

h), g ∈ G, t ∈ T, h ∈ H}. Then T ′ is an H-torsor with H-action defined by h · (t, h′) = (t, hh′).

Since (ϕ⊗ 1)∗T ×GH ∼= (ϕ⊗ 1)∗(T ×GH) canonically, we can define ϕT ′ := ϕ×GH : (ϕ⊗ 1)∗T ′ →

T ′. Recall that θT is a functor Rep(G) → VectK⊗E. Define θT ′ := f∗(θT ) to be the composite

Rep(H)
f∗
−→ Rep(G) → VectK⊗E. The triple (T ′, ϕT ′ , θT ′) is a filtered ϕ-H-torsor. We write

f∗(T, ϕT , θT ) for (T
′, ϕT ′ , θT ′).

2.1.5. Framing Let (T, ϕT , θT ) be a filtered ϕ-G-torsor. Suppose the underlying G-torsor T is a

trivial G-torsor, there exists a canonical embedding

ι : T (K0⊗E) ↪→ T (K0⊗E)×{pt},ϕ⊗1 {pt} = (ϕ⊗ 1)∗T (K0⊗E), {pt} = (SpecK0⊗E)(K0⊗E)

A framing of T is an element ξ ∈ T (K0⊗E). Since T is a G-torsor, there exists a unique element

Xξ ∈ G(K0 ⊗ E) such that ϕT (ι(ξ)) = Xξ · ξ.

Let g ∈ G(K0 ⊗ E). Now we change the framing from ξ to g · ξ. We have ϕT (ι(g · ξ)) =

ϕ(g)ϕT (ι(ξ)) = ϕ(g)Xξ · ξ = ϕ(g)Xξg
−1g · ξ. Therefore

Xg·ξ = ϕ(g)Xξg
−1.

Let f : G → H be a group scheme homomorphism. Let ξ ∈ T (K0 ⊗ E) be a framing. Then
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f∗(ξ) ∈ (T ×G H)(K0 ⊗ E) is a framing of f∗(T, ϕT , θT ). It is easy to see that

Xf∗ξ = f(Xξ).

2.1.6. Weak admissibility For simplicity, we define the weak admisibility of a filtered ϕ-G-

torsor via Tannakian theory. A filtered ϕ-G-torsor T is weakly admissible if for any algebraic

representation G→ GL(V ), the twisted product T ×G V is a weakly admissible filtered ϕ-module.

2.1.7. Crystalline representations Since the covariant Fontaine’s functors Vcris and Dcris are

rigid exact tensor functors (see the paragraph before [C11, 9.1.9]), the category of weakly admissible

filtered ϕ-G-torsors is equivalent to the category of crystalline representations valued in G. We

also denote by Vcris and Dcris the equivalences of categories in the G-valued case.

2.2. Parabolic liftings

Let P be a parabolic subgroup of G with unipotent radical U and Levi factor L. Let πL : P → L

be the quotient map. Let (T̄ , ϕT̄ , θT̄ ) be a fixed filtered ϕ-L-torsor with coefficients in E.

Define

Lift(T̄ ) = Lift(T̄ , ϕT̄ , θT̄ )

= {(T, ϕT , θT ) : filtered ϕ-P -torsors valued in E such that (πL)∗T = T̄}/ ∼

where the equivalence relation ∼ is defined to be isomorphisms of filtered ϕ-P -torsors respecting

(πL)∗.
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2.2.1. Throughout this section, we assume T̄ admits a framing ξ̄ ∈ T̄ (K0 ⊗ E). By fixing ξ̄, we

also fixed a framing of ι∗T̄ for various sections ι : L ↪→ P .

In particular, for two different sections ι1, ι2 : L→ P , the two P -torsors T̄ ×L,ι1P and T̄ ×L,ι2P

are identified without further mention.

Moreover, since the base scheme is a disjoint union of spectra of perfect fields, any element of

Lift(T̄ ) admits a framing ([Se02, Proposition 6, III.2.1]).

2.2.2. Lemma Let T ∈ Lift(T̄ ). Then there exists a section ι : LK⊗E ↪→ PK⊗E such that

θT = ι∗(θT̄ )

(ι is a group scheme morphism and πL ◦ ι = id.)

Proof. Since G is smooth and the coefficient ring is of characteristic 0, the exact ⊗-filtration

θT is Zariski-locally splitable on SpecK ⊗ E ([SN72, IV.2.4]). Since K ⊗ E is a direct sum of

fields, θT is splittable. So θT is the canonical filtration associated to a graded tensor functor,

or equivalently a cocharacter ω : (Gm)K⊗E → PK⊗E ([SN72, IV.1.3]). We choose an arbitrary

embedding LK⊗E ⊂ PK⊗E. The image of ω is contained in a maximal torus, and hence contained

in a conjugate of LK⊗E (say LK⊗E =
∐︁

i:K↪→E LEi
, the image of ω⊗Ei is contained in a conjugate

of LEi
).

Choose a section ι : LK⊗E → PK⊗E such that ω(Gm) ⊂ ι(LK⊗E). We have ι∗(πL)∗(ω) = ω. Now

it is clear that θT̄ is the canonical exact ⊗-filtration associated to (πL)∗(ω), and θT = ι∗(θT̄ ) .
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2.2.3. The adjoint filtered ϕ-module Recall that the upper central series of U defines a filtra-

tion

{1} = Us ⊂ Us−1 ⊂ · · · ⊂ U0 = U

such that each of gri U := Ui/Ui+1 is abelian. We have

LieU =
s⨁︂

i=1

gri U = gr• U

Since P = L⋉U , a section L→ P induces an (adjoint) action L ↷ U . Let ad : L→ Aut(U) be

the induced group scheme homomorphism. Note that the abelianization gr•(ad) : L→ Aut(LieU)

does not depend on the choice of L→ P .

Define

gr•(ad)T̄ := gr•(ad)∗(T̄ , ϕT̄ , θT̄ )

2.2.4. Lemma If T̄ is weakly admissible, then so is gr•(ad)T̄ .

Proof. By Tannakian theory (more precisely by the fact that the Tannakian category is generated

by ρ ⊗ ρ∗ where ρ is any faithful representation of the Tannakian group), a Galois representa-

tion GK → Aut(LieU)(E) is crystalline if and only if for some faithful algebraic representation

Aut(LieU) → GL(V ) the representation GK → GL(V (E)) is crystalline. Since the composi-

tion L → AutLie(U) → GL(V ) is an algebraic representation, GK → GL(V (E)) is crystalline

if GK → L(E) is crystalline. The first claim is proved by passing to the category of crystalline

representations via Vcris.
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2.3. G-ordinarity

2.3.1. Newton polygon of isocrystals Let K̆ be the p-adic completion of the maximal unram-

ified extension of K0. By the Diedonné-Manin classification, the category of isocrystals over K̆ is

a semisimple category. The simple objects can be classified by rational numbers s/r, where r is a

positive integer and s is an integer coprime to r. Denote by Dr,s the simple object labeled by the

rational number s/r. Dr,s has dimension r, and we call s/r the slope of Dr,s.

Let (D,ϕ) be an isocrystal over K0. Then D̆ = K̆⊗K0D is a direct sum of simple objects Dri,si .

We call the numbers si/ri that appear in the direct sum decomposition the slopes of D. Say D has

slopes {α0 < · · · < αn} with multiplicities {µ0, · · · , µn}. The Newton polygon of D is the convex

polygon with leftmost endpoint (0, 0), and having µi consecutive segments of horizontal distance

1 and slope αi.

2.3.1.1 Lemma If all slopes of D are positive numbers, then for any lattice L ⊂ D, we have

lim
n→∞

ϕnL = {0}

(in the sense that the diameter of the bounded sets ϕnL converges to 0.) Note that L is not

assumed to be ϕ-stable.

Proof. Let N be the product of the denominator of the slopes of D. By the Diedonné-Manin

classification, there is a basis {x1, .., xt} of K̆ ⊗K0 D such that ϕNxi = pSixi for positive integers

Si, 1 ≤ i ≤ t. The p-adic topology on D can be defined by

|λ1x1 + · · ·+ λtxt| = max
1≤i≤t

(|λi|)
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where λi ∈ K̆, 1 ≤ i ≤ t. For any x ∈ D, |ϕNx| < 1
p
|x|. Therefore for any lattice L, we have

limn→∞ ϕnNL = {0}. Replacing L by ϕkL, 1 ≤ k < N , we have limn→∞ ϕk+nNL = {0}. Combining

these, we have limn→∞ ϕnL = {0}.

2.3.1.2 Corollary If the slopes of D are either all positive numbers or all negative numbers,

the map 1− ϕ : D → D is invertible.

Proof. If the slopes of D are all positive numbers, then 1+ϕ+ϕ2+ · · · converges and is an inverse

of 1− ϕ.

If the slopes of D are all negative numbers, then the slopes of the dual isocrystal D∨ are all

positive numbers. By choosing a basis of D, the matrix of ϕ∨ is the transpose inverse of that of ϕ,

and (1− ϕ−t) = −ϕ−t(1− ϕt)−1 = −ϕ−t(1 + ϕt + ϕ2t + · · · ) is invertible.

2.3.2. Definition Let (T, ϕT , θT ) be a filtered ϕ-P -torsor. T̄ = (πL)∗T is a filtered ϕ-L-torsor.

Note that since Aut(LieU) is a general linear group, gr•(ad)(T̄ ) is an filtered isocrystal with

coefficients.

We say θT , T , or T̄ is G-ordinary if the filtration θgr•(ad)(T̄ ) on the vector space gr•(ad)(T̄ )

satisfies θ0
gr•(ad)T̄

(gr•(ad)T̄ ) = 0. In other words, the Hodge polygon of θgr•(ad)T̄ lies below the

x-axis except for the left endpoint.

2.3.2.1 Lemma A weakly admissible filtered ϕ-G torsor T is G-ordinary if and only if all

Hodge-Tate weights of the crystalline representation Vcris(gr
•(ad)T̄ ) are negative integers, where

Vcris is the covariant Fontaine functor.

Proof. It is a standard p-adic Hodge theory calculation. See for example [C11, section 8.3].
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2.3.3. Dynamic methods We need some results from [Crd11, Section 4.1]. Let X be a scheme

over a base scheme S, and fix a Gm-action m : Gm ×X → X on X. For each x ∈ S(S), we say

lim
t→0

m(t, x) exists,

if the morphism Gm → X, t ↦→ m(t, x) extends a a morphism A1 → X.

Let λ be a cocharacter of a reductive group G. Define the following functor on the category

of K ⊗ E-algebras PG(λ)(k) = {g ∈ G(k)| limt→0 λ(t)gλ(t)
−1 exists.} where k is a general K ⊗ E-

algebra.

PG(λ) is a smooth subgroup of G, and all parabolic subgroups of G are of the form PG(λ) for

some λ.

Define UG(λ)(k) = {g ∈ G(k)| limt→0 λ(t)gλ(t)
−1 = 1}. Then UG(λ) ⊂ PG(λ) is the unipotent

radical.

Denote by LG(λ) the quotient PG(λ)/UG(λ).

Let f : G → H be a group scheme morphism. We have induced group scheme morphisms

PG(f) : PG(λ)→ PH(f∗λ) and UG(f) : UG(λ)→ UH(f∗λ) ([Crd11, Theorem 4.1.7]).

A cocharacter λ of G induces a filtration F (λ) on the trivial G-torsor ([SN72, IV 2.1.5]).

2.3.3.1 Theorem Consider the adjoint representation Ad : G→ GL(Lie(G)). We have

LieAut⊗(F (λ)) = F (λ)0(Lie(G))
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and

LieAut⊗!(F (λ)) = F (λ)1(Lie(G)).

As a consequence, we have PG(λ) = Aut⊗(F (λ)) and UG(λ) = Aut⊗!(F (λ)).

Proof. The first paragraph is a special case of [SN72, IV 2.1.4.1] where α = 0, 1. The second

paragraph follows from [Crd11, Theorem 4.1.7(4)].

2.3.4. Suppose PK⊗E = PG(λ) for some cocharacter λ of G. The cocharacter λ induces a filtration

F (λ) on GK⊗E.

Let (T, ϕT , θT ) be a G-ordinary filtered ϕ-P -torsor whose underlying G-torsor is a trivial G-

torsor. By Lemma 2.2.2, there exists an embedding ι : LK⊗E → PK⊗E such that θT = ι∗(θT̄ ). We’ll

explicitly construct ι when T is G-ordinary and show that such an embedding is unique. Write i

for the embedding PK⊗E → GK⊗E.

2.3.4.1 Proposition There exists a unique embedding ι : LK⊗E → PK⊗E such that Aut⊗(i∗θT )∩

PK⊗E ⊂ ι(LK⊗E).

Proof. The intersection of two parabolics of a reductive group always contains a maximal torus

([M18, 19.33]). Let S ⊂ Aut⊗(i∗θT ) ∩ PK⊗E be a maximal torus. Let S0 ⊂ S be the maximal

subtorus such that the centralizer Z(S0) is (an embedding of) the Levi factor LK⊗E of PK⊗E.

Let UK⊗E be the unipotent radical of PK⊗E. We have the Levi decomposition

LiePK⊗E = LieZ(S0)⊕ Lie(UK⊗E) = LieZ(S0)⊕
⨁︂

α∈Φ+(S0,G)

gα.
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where gα is the α-weight space and Φ+(S0, G) is the set of weights occurring in Lie(UK⊗E).

By Theorem 1.1, LieAut⊗(i∗θT ) = (i∗θT )
0(LieG). Since T isG-ordinary, we have θ0

gr•(ad)(T̄ )
(gr•(ad)(T̄ )) =

0. It is clear that the filtration i∗θT on LieG and the filtration θgr•(ad)(T̄ ) on gr•(ad)(T̄ ) = Lie(UK⊗E)

are compatible. So i∗θ
0
T (LieG) ∩ Lie(UK⊗E) = 0.

Consider the S0-weight decomposition of LieAut⊗(i∗θT )∩LiePK⊗E. By the previous paragraph,

there is no positive S0-weights, and therefore LieAut⊗(i∗θT ) ∩ LiePK⊗E ⊂ LieZ(S0). So we’ve

shown Aut⊗(i∗θT ) ∩ PK⊗E ⊂ Z(S0).

It remains to show the uniqueness of ι. Let g ∈ P (K ⊗E) and suppose Aut⊗(i∗θT ) ∩ PK⊗E ⊂

gZ(S0)g
−1. The Proposition follows from the fact that S0 ⊂ gZ(S0)g

−1 implies gZ(S0)g
−1 =

Z(S0).

2.3.4.2 Lemma If θT = ι∗θT̄ , then Aut⊗(i∗θT ) ∩ PK⊗E ⊂ ι(LK⊗E).

Proof. Choose a splitting ω of θT̄ . Choose a maximal torus S of the centralizer of ω. By Theorem

1.1 and Theorem [Crd11, 4.1.7(4)], we have

Aut⊗(i∗θT ) = LiePG(ω) =
⨁︂

⟨α,ω⟩≥0

gα

where α ranges from all S-roots of G, and gα is the S-weight space of weight α. Meanwhile,

PK⊗E = PG(λ) for some cocharacter λ : Gm → S. Since T isG-ordinary, θ0
gr•(ad)(T̄ )

(gr•(ad)(T̄ )) = 0,

which implies for any root α ∈ Φ(S,G) such that ⟨α, λ⟩ > 0 we have ⟨α, ω⟩ < 0. This lemma now

follows from the S-weight decomposition of the Lie algebra of Aut⊗(i∗θT ) ∩ PK⊗E.

2.3.5. Lemma If T is G-ordinary, the map 1− ϕgr•(ad)T̄ is invertible.
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Proof. By Corallary 2.3.1, it suffices to show all slopes of gr•(ad)T̄ are negative numbers.

The G-ordinarity condition guarantees the Hodge polygon of gr•(ad)T̄ lies below the x-axis

(except for the left endpoint which is the origin). Weak admissibility of gr•(ad)T̄ implies the

Newton polygon of gr•(ad)T̄ and the Hodge polygon of gr•(ad)T̄ have the same right endpoint,

and the Newton polygon of gr•(ad)T̄ lies on or above the Hodge polygon of gr•(ad)T̄ . In particular,

the largest slope of the Newton polygon is smaller or equal to the largest slope of the Hodge polygon.

In other words, all slopes of the Newton polygon are negative numbers.

2.3.6. Lemma Let T be a filtered ϕ-P -torsor. Assume T is weakly admissible and G-ordinary.

A section ι : LK0⊗E ↪→ PK0⊗E induces a projection PK0⊗E
πU−→ UK0⊗E and a decomposition

PK0⊗E = LK0⊗EUK0⊗E.

There exists a unique section ι such that ϕT = ι∗(ϕT̄ ). (See 2.2.1.)

Proof. For ease of notation, write L, P , U for LK0⊗E, PK0⊗E, and UK0⊗E, respectively. Fix a

framing ξ of T . Write T̄ for (πL)∗T .

We have fixed a framing ξ̄ ∈ L(K0 ⊗ E) of T̄ . Choose a section ι0 : L ↪→ P , which induces

a projection P
πU,0−−→ U . There exists a unique isomorphism of P -torsors (ι0)∗T̄ ∼= T under which

(ι0)∗ξ̄ is identified with ξ. We identify (ι0)∗T̄ and T via this isomorphism. By remark 2.1.4,

ϕT = (ι0)∗(ϕT̄ ) if and only if Xξ = ι0(Xξ̄). Or equivalently, πU,0(Xξ) = 1.

Set M0 := πU,0(Xξ), and A0 := ι0(πL(Xξ)). Then Xξ = A0M0 (we identify U as a normal

subgroup of P ). Let ι : L ↪→ P be another section with induced projection P
πU−→ U . Set

A := ι(πL(Xξ)) and M := πU(Xξ). Note that there exists N ∈ U(K0⊗E) such that A = NA0N
−1

([SN72, IV 2.2.5.3]). Since

AM = A0M0 = Xξ
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we have NA0N
−1M = A0(A

−1
0 NA0N

−1M) = A0M0, and thus

M0 = AdA−1
0
(N)N−1M.

For ease of notation, we write ϕAd := AdA−1
0
, and M0 = ϕAd(N)N−1M .

For an integer 1 ≤ i ≤ s, write gri for the projection Ui−1 → Ui−1/Ui. We use additive notation

when working with abelian groups.

We have

gr1M = (1− ϕAd) gr1(N) + gr1M0.

Note that (1− ϕAd) gr1(N) = (1− ϕ−1
gr• ad T̄

) gr1(N). By Lemma 2.3.5, (1− ϕAd) : LieU → LieU is

invertible. We choose N ∈ U such gr1(N) = (ϕAd − 1)−1M0 (choosing ι is equivalent to choosing

N). Hence we can arrange it so that gr1M = 0.

Now we assume gr1M0 = 0, that is, M0 ∈ U1. We choose ι such that N ∈ U1. We have

gr2M = (1− ϕAd)gr2(N) + gr2M0.

We can kill gr2(M) in a similar manner. We repeat this process, and will ultimately kill M .

The uniqueness of ι is a byproduct of the proof of the existence part. In each step of the above

algorithm, the choice is unique.

Denote by Scin(P ) the set of sections L ↪→ P . Note that Scin(P ) is a U -torsor ([SN72, IV

2.2.5.3]).
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2.3.7. Let (T̄ , ϕT̄ , θT̄ ) be a filtered ϕ-L-torsor which is weakly admissible and G-ordinary (with

respect to the parabolic P ).

The following map

δ : Scin(PK0⊗E)× Scin(PK⊗E)→ Lift(T̄ )

(ιϕ, ιθ) ↦→ (T, (ιϕ)∗ϕT̄ , (ιθ)∗θT̄ )

is a surjection by Lemma 2.3.6 and Lemma 2.2.2.

Note that U(K0 ⊗ E) acts diagonally on Scin(PK0⊗E)× Scin(PK⊗E).

2.3.7.1 Theorem We have bijections

Lift(T̄ ) ∼= {Orbits of Scin(PK0⊗E)× Scin(PK⊗E) under U(K0 ⊗ E) action}

∼= Scin(PK⊗E)

Proof. We only need to show two liftings of T̄ are equivalent if and only if they lie in the same

UK0⊗E-orbit.

Let δ(ι1ϕ, ι
1
θ) and δ(ι2ϕ, ι

2
θ) be two liftings. Let h : δ(ι1ϕ, ι

1
θ)
∼= δ(ι2ϕ, ι

2
θ) be an isomorphism of

filtered ϕ-G-torsors whose pushforward along πL is the identity map. Identify the underlying

trivial PK0⊗E-torsor with PK0⊗E. Then h is just conjugation by an element u of the unipotent

radical U(K0 ⊗ E). In particular,

(ι1ϕ)∗ϕT̄ = (uι2ϕu
−1)∗ϕT̄ , (ι1θ)∗θT̄ = (uι2θu

−1)∗θT̄ .

By Proposition 2.3.4 and Lemma 2.3.4, two different sections ιθ : LK⊗E ↪→ PK⊗E gives two different
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filtrations (ιθ)∗θT̄ . Therefore we have ι
1
θ = uι2θu

−1. Similarly, by Lemma 2.3.6, we have ι1ϕ = uι2ϕu
−1.

So (ι1ϕ, ι
1
θ) and (ι2ϕ, ι

2
θ) are in the same U -orbit, as desired.

The theorem above is reminiscent of the double complex computing the cohomology of filtered

ϕ-modules.

2.3.8. Recall

{1} = Us ⊂ Us−1 ⊂ · · · ⊂ U0 = U

is the upper central series of U .

2.3.8.1 Corollary Let Ti be a filtered ϕ-P/Ui-torsor for some 1 ≤ i ≤ s, which can be lifted to

a filtered ϕ-P -torsor. Assume T̄ := Ti mod U/Ui is a G-ordinary and weakly admissible filtered

ϕ-L-torsor.

The set of filtered ϕ-P/Ui+1-torsors which lifts Ti and admits a lifting to to a filtered ϕ-P -torsor

is an Qp-affine space isomorphic to Ui(K ⊗ E)/Ui+1(K ⊗ E).

2.4. Crystallinity of parabolic liftings

2.4.1. Enough gaps in Hodge-Tate weights We say a crystalline representation ρ : GK →

L(E) has enough gaps in Hodge-Tate weights with respect to P if the adjoint representation

GK
ρ−→ L(E)→ Aut(LieU)(E)

has labelled Hodge-Tate weights slightly less then 0 in the sense of [EG19, 6.3].
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We remark that having enough gaps in Hodge-Tate weights is strictly stronger than being G-

ordinary. More precisely, G-ordinarity does not require one of the inequalities in [EG19, 6.3] to be

strict.

2.4.2. Proposition A filtered ϕ-P -torsor T is weakly admissible if the filtered ϕ-L-torsor (πL)∗(T )

is weakly admissible with respect to P .

Proof. We first remark this proposition for general linear groups is a reformulation of the standard

fact that the category of weakly admissible filtered ϕ-modules is an abelian category (see, for

example, [C11, Proposition 8.2.10]).

Write T̄ = (πL)∗(T ). The parabolic P of G is defined by a cocharacter λ of G.

Let f : G→ GL(V ) be an algebraic representation. Then we have induced maps

PG(λ)(f) : P = PG(λ)→ PGL(V )(f∗λ) =: P ′

and

LG(λ)(f) : L = LG(λ)→ LGL(V )(f∗λ) =: L′.

The filtered ϕ-L′-torsor (LG(λ))∗(T̄ ) is weakly admissible because T̄ is weakly admisible. Write i

for the embedding P ⊂ G. Since

(LG(λ)(f))∗(πL)∗T = (πL′)∗(PG(λ)(f))∗T

using the result for GL(V ) it follows that i∗T is weakly admissible as a filtered ϕ-G-torsor by

standard Tannakian theory arguments. Again by Tannakian theory or more precisely the fact that
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the Tannakian category of representations of P are generated by a single faithful embedding, T is

weakly admissible as a filtered ϕ-P -torsor.

Theorem 2.3.7 and Proposition 2.4.2 together give a complete description of parabolic liftings

of G-ordinary crystalline representations, which allow us to prove Theorem (A) with the help of

some Galois cohomology arguments.

2.4.3. Let P be a parabolic of G with the unipotent radical U and Levi factor L. Let ρ : GK →

L(E) be a Galois representation. A parabolic lifting is a commutative diagram

GK
ρ̃ →→

ρ

↘↘

P (E)

↙↙
L(E)

2.4.3.1 Theorem If ρ is crystalline with enough gaps in Hodge-Tate weights with respect to

P , any parabolic lifting ρ̃ : GK → P (E) is crystalline.

2.4.3.2 We’ll prove the theorem by inductively constructing weakly admissible filtered ϕ-P/Ui-

torsors which corresponds to ρ̃ mod Ui via Fontaine’s functors Vcris and Dcris.

Proof. Since crystallinity is insensitive to base change, we assume the filtered ϕ-L-torsor Dcris(ρ)

has a trivial underlying L-torsor, by possibly enlarging the coefficient field E.

By [EG19, Lemma 6.3.1], having enough gaps in Hodge-Tate weights implies for all i,

H1
f (GK , Ui/Ui+1) = H1(GK , Ui/Ui+1)
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where H1
f is the subgroup of crystalline extensions. Here Ui/Ui+1 is endowed with the adjoint

action GK
ρ−→ L(E)

Ad−→ Aut(Ui/Ui+1). Write ρi for ρ̃ mod Ui.

We argue by induction. Assume ρi : GK → P/Ui is crystalline (and admits a lifting to P ). By

Corollary 2.3.8.1 and Proposition 2.4.2, the set of crystalline representations GK → P/Ui+1 which

lifts ρi and admits a lifting to P is an affine space isomorphic to

Ui(K ⊗ E)/Ui+1(K ⊗ E)

which has the same Qp-dimension as H1
f (GK , Ui/Ui+1). On the other hand, the set of all liftings

(not necessarily crystalline) is an H1(GK , Ui/Ui+1)-torsor. An injective, affine map of an affine

space into another affine space

{crystalline representations valued in P/Ui+1 lifting ρi and admits a lifting to P}

↪→{representations valued in P/Ui+1 lifting ρi}

of the same dimension is an isomorphism. By comparing the dimension, we conclude ρi+1 is

crystalline.

2.4.4. Remark We remark that proving Theorem (A) using the strategy of the proof of Proposi-

tion 2.4.2 will not work. This is because G-ordinarity is not preserved by PG(λ)(f). (Hint: consider

the simplest example Sym2 : GL(V )→ GL(Sym2(V )).)

2.5. Extensions of anti-G-ordinary filtered ϕ-L-torsors
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We give a more complete picture of the theory of parabolic extensions by working out the

anti-G-ordinary case.

2.5.1. Definition Let (T, ϕT , θT ) be a filtered ϕ-P -torsor. T̄ = (πL)∗T is a filtered ϕ-L-torsor.

We say θT , T , or T̄ is anti-G-ordinary if the filtration θgr•(ad)(T̄ ) on the vector space gr•(ad)(T̄ )

satisfies θ1
gr•(ad)T̄

(gr•(ad)T̄ ) = gr•(ad)T̄ . In other words, the Hodge polygon of θgr•(ad)T̄ lies above

the x-axis except for the left endpoint.

2.5.2. Proposition Let (T, ϕT , θT ) be a weakly admissible, anti-G-ordinary filtered ϕ-P -torsor.

(1) There is a unique section ι : LK0⊗E ↪→ PK0⊗E such that ϕT = ι∗((πL)∗ϕT ).

(2) For any section ι : LK⊗E ↪→ PK⊗E, ι∗((πL)∗θT ) = θT .

(3) For any section ι : LK0⊗E ↪→ PK0⊗E, (T, ϕT , θT ) ∼= ι∗((πL)∗(T, ϕT , θT )).

Proof. (1) The proof of Lemma 2.3.6 works verbatim.

(2) We adapt the arguments of subsection 2.3.4. Choose any section ι : LK⊗E ↪→ PK⊗E. Let

S ⊂ Aut⊗(i∗θT ) ∩ PK⊗E be a maximal torus. Let S0 ⊂ S be the maximal subtorus such that the

centralizer Z(S0) is (an embedding of) the Levi factor LK⊗E of PK⊗E. Let UK⊗E be the unipotent

radical of PK⊗E. We have the Levi decomposition

LiePK⊗E = LieZ(S0)⊕ Lie(UK⊗E) = LieZ(S0)⊕
⨁︂

α∈Φ+(S0,G)

gα.

By Theorem 1.1, LieAut⊗(i∗θT ) = (i∗θT )
0(LieG). Since T is anti-G-ordinary, we have

θ1gr•(ad)(T̄ )(gr
•(ad)(T̄ )) = gr•(ad)(T̄ ).
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It is clear that the filtration i∗θT on LieG and the filtration θgr•(ad)(T̄ ) on gr•(ad)(T̄ ) = Lie(UK⊗E)

are compatible. So i∗θ
0
T (LieG) ∩ Lie(UK⊗E) ⊃ i∗θ

1
T (LieG) ∩ Lie(UK⊗E) = Lie(UK⊗E). Thus we

have

(†) UK⊗E ⊂ Aut⊗(i∗θT ).

By Lemma 2.2.2, ι′∗((πL)∗θT ) = θT for some ι′. There exists an N ∈ U(K ⊗ E) such that

ι′ = NιN−1. By (†), NθTN
−1 = θT , and therefore ι∗((πL)∗θT ) = θT .

(3) is a consequence of (1) and (2).

2.5.3. Corollary Let P be a parabolic of G with the unipotent radical U and Levi factor L. Let

ρ : GK → L(E) be a Galois representation. If ρ is crystalline and anti-G-ordinary with respect to

P , there is one and only one crystalline parabolic lifting ρ̃ : GK → P (E) of ρ.

Proof. By the previous lemma, up to isomorphism, there exists a unique parabolic extension of

the filtered ϕ-P -torsor which lifts Dcris(ρ). The corollary follows from the equivalence of categories

explained in 2.1.7.
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Chapter 3

G-completely reducible mod p Galois

representations: the classification and

lifts

1. A variant of Steinberg-Winter theorem

The key tool in this section is dynamic methods.

1.1. Dynamic methods We review [Crd14, Section 4.1]. Let X be a scheme over a base scheme

S, and fix a Gm-action m : Gm ×X → X on X. For each x ∈ X(S), we say

lim
t→0

m(t, x) exists,
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if the morphism Gm → X, t ↦→ m(t, x) extends a a morphism A1 → X. If the limit exists, the

origin 0 ∈ A1(S) maps to a unique element α ∈ X(S); we write limt→0m(t, x) = α.

Let λ be a cocharacter of a reductive group G over a field k. Define the following functor on

the category of k-algebras

PG(λ)(A) = {g ∈ G(A)| lim
t→0

λ(t)gλ(t)−1 exists.}

where A is a general k-algebra.

Define

UG(λ)(A) = {g ∈ G(A)| lim
t→0

λ(t)gλ(t)−1 = 1},

and denote by ZG(λ) the centralizer of λ in G.

Since G is a reductive group over a field, PG(λ) is a parabolic subgroup of G, UG(λ) is the

unipotent radical of PG(λ), and ZG(λ) is a Levi subgroup of PG(λ).

The following proposition is the first application of dynamic methods in this section, and

motivates us to consider G-compete reducibility in Steinberg-Winter type questions.

1.2. Proposition Let M be a connected reductive group over a field k. Let k̄ be the algebraic

closure of k. Let FM : M → M be an automorphism of M which can be realized as conjugation

by an element g ∈ G(k) after an embedding M ↪→ G.

If g is semisimple, then g and ZM(M)◦ generate a G-completely reducible subgroup.

Proof. Let P ⊂ Gk̄ be a parabolic subgroup of G which contains both g and ZM(M)◦. We want

to show a Levi subgroup of P also contains both g and ZM(M)◦.

Put L := ZP (ZM(M)◦), the centralizer of ZM(M)◦ in P . Note that conjugation by g fixes L.
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We claim L contains a maximal torus of G. Since ZM(M)◦ is a torus, it is contained in a maximal

torus of P . A maximal torus of P is also a maximal torus of G. Any maximal torus containing

ZM(M)◦ is in the centralizer of ZM(M)◦ because of commutativity of tori.

By Steinberg-Winter, there exists a maximal torus T ⊂ L which is fixed by g. By the previous

paragraph, T is also a maximal torus of G.

By dynamic methods, there exists a cocharacter λ : Gm → T such that P = PG(λ). The

two cocharacters λ, gλg−1 : Gm → T lie in the same maximal torus, and can be regarded as

elements of the cocharacter lattice X∗(G, T ). Since g ∈ P , g(PG(λ))g
−1 = PG(gλg

−1) = PG(λ).

So λ, gλg−1 ∈ X∗(G, T ) are in the same Weyl chamber. Since g ∈ NG(T ), gλg
−1 and λ are in the

same Weyl orbit, and thus we must have λ = gλg−1. So g ∈ ZG(λ) and ZM(M)◦ ⊂ T ⊂ ZG(λ).

Since ZG(λ) is a Levi subgroup of P , we are done.

1.3. A generalization of dynamic methods Dynamic methods allow us to prove theorems

over general base schemes by doing mathematical analysis. To do so, we need to generalize the

functors PG(−).

Let f : Gm → G be a k-scheme morphism. Define the following functor on the category of

k-algebras

PG(f)(A) = {g ∈ G(A)| lim
t→0

f(t)gf(t)−1 exists.}

where A is a general k-algebra. We call f a fake cocharacter. Here “a limit exists” means the

scheme morphism Gm → G, defined by t ↦→ f(t)gf(t)−1, extends to a scheme morphism A1 → G.

Note that PG(f) is not representable in general. We define similarly UG(f).
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1.4. Lemma Let G be a connected reductive group over a field k. Let λ, µ : Gm → G be

cocharacters of G. Assume PG(λ) = PG(µ) =: B is a Borel subgroup of G. Let U be the unipotent

radical of B.

(1) The functor PG(µλ) is representable by a Borel subgroup. In fact, we have PG(µλ) =

PG(µ) = PG(λ).

(2) The limit

lim
t→0

λ(t)µ(t)λ(t)−1µ(t)−1

exists in the sense of subsection 1.1, and lies in U .

(3) Let u be an element of U . The limit

lim
t→0

λ(t)uµ(t)u−1λ(t)−1µ(t)−1

exists in the sense of subsection 1.1 and lies in U .

(4) Now assume λ is a product of cocharacters λ1, . . . , λs such that PG(λi) = B for all i. Then

PG(λ) = B, and the limits in (2) and (3) still exist and lie in U .

Moreover, for any embedding G ↪→ H of connected reductive groups, PH(λ) is representable

by a parabolic subgroup of H.

Proof. (1) Since all maximal tori in B are conjugate to each other, there exists an element x ∈

UG(λ) = UG(µ) such that conjugation by x maps the maximal torus containing λ to the maximal
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torus containing µ. In particular, (xλx−1)µ = µ(xλx−1). Write ξ for xλx−1. We have

lim
t→0

µ(t)λ(t)gλ(t)−1µ(t)−1 = lim
t→0

µ(t)x−1ξ(t)xgx−1ξ(t)−1xµ(t)−1

= lim
t→0

(µ(t)x−1µ(t)−1) · (µ(t)ξ(t)xgx−1ξ(t)−1µ(t)−1) · (µ(t)xµ(t)−1)

= lim
t→0

µ(t)ξ(t)xgx−1ξ(t)−1µ(t)−1

Note that the last step is because x ∈ UG(µ), and limt→0 µ(t)xµ(t)
−1 = 1. So we have PG(µλ) =

x−1PG(µξ)x. Since µξ is a genuine cocharacter, PG(µξ) is representable by a parabolic.

Since µξ = ξµ, we can regard µ and ξ as elements in a cocharacter lattice X∗(G, T ) where T

is a maximal torus containing µ and ξ. Since PG(µ) = PG(λ) = PG(ξ), µ and ξ lie in the (interior

of the) same Weyl chamber. The cocharacter µξ is the sum of µ and ξ in the cocharacter lattice

X∗(G, T ), and lies in the same Weyl chamber. So PG(µξ) = PG(µ) = PG(λ). Since x ∈ B, we have

PG(µλ) = x−1PG(µξ)x = PG(µ) = PG(λ).

(2) Since all maximal tori of B are conjugate to each other, there exists an element g ∈ U such

that gZG(λ)g
−1 = ZG(µ). Write ξ := gλg−1, and we have ξµ = µξ. By part (1), PG(ξµ) = B. By

the dynamic description of the Borel B, the limits

lim
t→0

ξ(t)gξ(t)−1 = 1,

lim
t→0

ξ(t)µ(t)g−1µ(t)−1ξ(t)−1 = 1, and

lim
t→0

µ(t)gµ(t)−1 = 1
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all exist. The expression

λ(t)µ(t)λ(t)−1µ(t)−1 = g−1ξ(t)gµ(t)g−1ξ(t)−1gµ(t)−1

= g−1 · (ξ(t)gξ(t)−1) · (ξ(t)µ(t)g−1µ(t)−1ξ(t)−1) · (µ(t)gµ(t)−1)

has a limit as t→ 0.

(3) We have

λ(t)uµ(t)u−1λ(t)−1µ(t)−1 = (λ(t)uµ(t)u−1λ(t)−1uµ(t)−1u−1)(uµ(t)u−1µ(t)−1).

So (3) follows from (2).

(4) The method is the same but notations are more complicated. We define inductively cochar-

acters ξithat commute with each other, and elements ui of U . Our induction assumption is

PG(λ1 · · ·λj) = PG(ξ1 · · · ξj) = B for all j < s. Define ξ1 := λ1 and u1 := 1. Let ui be an

element of U such that ξi := uiλiu
−1
i commutes with ξ1 · · · ξi−1. Write ζj for ξ1ξ2 · · · ξj, and write

vj for uj/uj−1 (set u0 = 1). We have, for g ∈ G,

λ(t)gλ(t)−1 =(ζ1(t)v2ζ1(t)
−1)(ζ2(t)v3ζ2(t)

−1) · · ·

(ζs(t)usgu
−1
s ζs(t)

−1)

(ζs−1(t)vsζs−1(t)
−1)−1 · · · (ζ1(t)v2ζ1(t)−1)−1 (†)
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which has a limit if and only if g ∈ B. Similarly,

λ(t)µ(t)λ(t)−1µ(t)−1 =(ζ1(t)v2ζ1(t)
−1)(ζ2(t)v3ζ2(t)

−1) · · ·

(ζs(t)usµ(t)u
−1
s ζs(t)

−1µ(t)−1

µ(t)(ζs−1(t)vsζs−1(t)
−1)−1 · · · (ζ1(t)v2ζ1(t)−1)−1µ(t)−1

By (1), PG(µζj) = B for all j, and therefore each of the factors µ(t)(ζj(t)vj+1ζj(t)
−1)−1µ(t)−1

admits a limit 1. So λ(t)µ(t)λ(t)−1µ(t)−1 admits a limit in U by (3).

Next we consider the “moreover” part. (†) holds for g ∈ H as well. So PH(λ) = u−1
s PH(ζs)us

is a parabolic subgroup of H.

1.5. Lemma Let F : M → M be an automorphism of a connected reductive group. Let B ⊂ M

be a Borel subgroup fixed by F , with unipotent radical U . There exists a cocharacter µ of M , a

positive integer d and an element u of U such that µ = uF d(µ)u−1 and B = PM(µ).

Proof. By replacing M by its derived subgroup, we can and do assume M is semi-simple. Let µ

be a cocharacter of M such that B = PM(µ).

Let i ≥ 0 be an integer. There exists a maximal torus Ti of B such that F i(µ) ⊂ Ti. Since

all maximal tori of B are conjugate by an element of U , there exists an element ui of U such that

T0 = uiTiu
−1
i .

So u−1
i F i(µ)ui ⊂ T0, and we can regard it as an element xi of the cocharacter lattice X∗(M,T0).

Since µ is a regular cocharacter, its centralizer ZM(µ) is a maximal torus of M , and thus is just

T0. Since automorphisms of M send the centralizers to the centralizers, u−1
i F iui : M → M fixes

T0. Recall that Aut(M) ⊂ Inn(M) ⋊ Aut(Dynkin(Φ(M,T0))), that is, after fixing a pinning, an
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automorphism of M comes from an automorphism of its Dynkin diagram. Since u−1
i F iui fixes T0

and B, it induces an isomorphism of the Dynkin diagram of M and thus induces an isometry of

the coroot lattice of M . Since M is semi-simple, its coroot lattice and its cocharacter lattice span

the same R-vector space, and thus u−1
i F iui induces an isometry of X∗(M,T0)⊗Z R. In particular,

the set {xi} is bounded and thus finite. So xi0 = xi0+d for some i0 ≥ 0 and d > 0. We have

u−1
i0
F i0(µ)ui0 = u−1

i0+dF
i0+d(µ)ui0+d. Thus µ = ui0u

−1
i0+dF

d(µ)ui0+du
−1
i0
.

Recall a subgroup Γ ⊂ G(k̄) is said to be G-irreducible if Γ is not contained in any proper

parabolic subgroup of G(k̄).

1.6. Theorem Let M be a connected reductive group over a field k. Let k̄ be the algebraic

closure of k. Let FM : M → M be an automorphism of M which can be realized as conjugation

by an element g ∈ G(k) after an embedding M ↪→ G.

If g and ZM(M) generate a G-irreducible subgroup, then M is a torus.

Proof. One of the key ingredients is the results of Steinberg on endormorphisms of linear algebraic

groups. By [St68, Theorem 7.2], any automorphism of a linear algebraic group fixes a Borel

subgroup. Let BM ⊂M be a Borel fixed by FM .

There exists a cocharacter λ : Gm → M such that BM = PM(λ). Let UM be the unipotent

radical of BM . By the previous lemma, there exists d > 0 and an element u of UM such that

F d
M(λ) = uλu−1. Consider the fake cocharacter µ : Gm →M , defined by

µ := F d−1
M (λ)F d−2

M (λ) · · ·FM(λ)λ.

Note that FM(µ) = (uλu−1)µλ−1.
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By Lemma 1.4, we have

(i) PG(µ) is representable by a parabolic subgroup of G;

(ii) PM(µ) = PM(λ) = M ∩ PG(M).

1.6.0.1 Claim g ∈ PG(µ).

Proof. We verify this using the definition of PG(µ). We have

lim
t→0

µ(t)gµ(t)−1 = lim
t→0

µ(t)gµ(t)−1g−1g

= lim
t→0

µ(t)FM(µ)(t)−1g

= lim
t→0

µ(t)λ(t)µ(t)−1uλ(t)−1u−1g

= lim
t→0

(µ(t)λ(t)µ(t)−1λ(t)−1)(λ(t)uλ(t)−1)u−1g

The claim follows from Lemma 1.4 (4).

Note that since µ is valued in M , ZM(M) ⊂ ZG(µ).

Let Γ be the subgroup of G generated by ZM(M)◦ and g. As a consequence of the claim,

we have Γ ⊂ PG(µ). By Lemma 1.4 (1), PM(µ) = PM(λ) is a Borel subgroup of M . By the

dynamic description of Borel subgroups, we have PG(µ) ∩ M = PM(µ). So PG(µ) is a proper

parabolic subgroup of G if PM(µ) is a proper parabolic subgroup of M . Since Γ is assumed to

be G-irreducible, we must have PM(µ) = M . Since M = PM(µ) = BM is chosen to be a Borel

subgroup of M , M is forced to be a torus.
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1.7. Corollary Let M be a connected reductive group over a field k. Let k̄ be the algebraic

closure of k. Let FM : M → M be an automorphism of M which can be realized as conjugation

by an element g ∈ G(k) after an embedding M ↪→ G.

Assume

(i) g and ZM(M)◦ generate a G-completely reducible subgroup;

(ii) rkM = rkG and char k ̸= 2, 3; and

(iii) M has a connected center.

Then FM fixes a maximal torus T of Mk̄.

Proof. Let Γ be the subgroup of G generated by ZM(M) and g. If Γ is G-irreducible, we are done

because of Theorem 1.6. So we assume there exists a proper parabolic subgroup P of Gk̄ such that

Γ ⊂ P .

By Borel-de Siebenthal theory (see [Pep15] or [Gil10, Theorem 0.1]), when k ̸= 2, 3, rkM = rkG

implies M = ZG(ZM(M))◦.

We will prove a slightly stronger version of the corollary. We claim FM fixes a maximal torus

of Mk̄ assuming (i), (ii), and

(iii’) There exists a torus Z of M such that M = ZG(Z)
◦.

Since Γ is G-completely reducible, there exists a Levi subgroup L ⊂ P such that Γ ⊂ L. Note

that (M ∩ L)◦ = ZL(Z)
◦, which is a reductive subgroup (see [Gil10, Lemma 0.2(1)]) of L fixed by

g. We claim (M ∩ L)◦ is of maximal rank. Let S be any maximal torus of L containing Z. Since

S is commutative and connected, we have S ⊂ ZL(Z)
◦ = (M ∩ L)◦. Thus rk(M ∩ L)◦ = rkS =

rkL = rkG.
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We apply induction on the dimension of G. Since ZL(Z)
◦ = (M ∩ L)◦, assumption (iii’) is

satisfied by (M ∩ L)◦; assumption (i) is also satisfied because L is a Levi subgroup of G. Since

dimL < dimG, by induction there exists a maximal torus T of (M ∩ L)◦ which is fixed by FM .

Since rk(M ∩ L)◦ = rkG, T is also a maximal torus of G.

1.8. We explain how our methods can possibly be used to establish a stronger form of Steinberg-

Winter, at least for groups having connected center. Dynamic methods are very well behaved

for disconnected linear algebraic groups. We similarly define G-complete reducibility for general

linear algebraic groups by replacing parabolics by pseudo-parabolics. Let F : M → M be an

automorphism which can be realized as conjugation by an element g of G after an embedding

M ↪→ G. Let H be the scheme-theoretic closure of the (abstract) group generated by M and

g. Note that H is a disconnected reductive group, and rkH = rkM . Let Γ be the subgroup of

H generated by ZM(M)◦ and g. We expect that the H-complete reducibility of Γ implies the

existence of a fixed maximal torus.

2. The structure of G-completely reducible mod ϖ Galois represen-

tations

In this section, we give a complete description of all G-completely reducible mod ϖ Galois repre-

sentations valued in split reductive groups.

The first step is to show G-complete reducibility implies tame ramification, reducing the clas-

sification of mod ϖ Galois representations to the question of classification of (certain) solvable
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subgroups of derived length 2 of reductive groups.

2.1. Lemma Let PK be the wild inertia of GK . If ρ̄ : GK → G(F̄p) is G-completely reducible,

ρ̄(PK) = {id}.

Proof. Let PK ⊂ GK be the wild inertia. The image ρ̄(PK) ⊂ G(F̄p) is a p-group, and thus consists

of unipotent elements. By [BT71, Corollaire 3.9], there exists a parabolic subgroup P of GF̄p
with

unipotent radical Ru(P ) such that

� ρ̄(PK) ⊂ Ru(P )(F̄p), and

� N(ρ̄(PK)) ⊂ P (F̄p);

here N(ρ̄(PK)) is the normalizer of ρ̄(PK). Since PK is a normal subgroup of GK , ρ̄(GK) ⊂

N(ρ̄(PK)) ⊂ P (F̄p). Since ρ̄ is G-completely reducible, ρ̄(GK) is contained in a Levi subgroup L

of P . So ρ̄(PK) ⊂ L(F̄p) ∩Ru(P )(F̄p) = {id}.

2.2. Definition We say ρ̄ : GK → G(F̄p) is strongly semi-simple if there exists a maximal torus

T of G(F̄p) such that ρ̄(IK) ⊂ T (F̄p) and ρ̄(GK) ⊂ NG(T (F̄p)).

2.3. Theorem If ρ̄ : GK → G(F̄p) is G-completely reducible, then ρ̄ is strongly semisimple.

Moreover, if ρ̄ is G-irreducible, there exists a unique maximal torus T of G(F̄p) containing

ρ̄(IK). Consequently, if ρ̄(GK) ⊂ G(F), T has a model defined over the ring of Witt vectors W (F).

Proof. By induction on the dimension of G, we can reduce the general case to the case where ρ̄ is

G-irreducible. Recall that ρ̄ is G-irreducible if it does not factor through any proper parabolic of
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G. If ρ̄ does factor through a proper parabolic of G, the G-complete reducibility forces ρ̄ to factor

through a proper Levi subgroup of G, which is a reductive group of strictly smaller dimension.

So we assume ρ̄ is G-irreducible in the rest of the proof. By Lemma 2.1, ρ̄(IK) is a finite

cyclic group generated by elements of order prime to p. Write M for Z◦
G(F̄p)

(ρ̄(IK)), the neutral

component of the centralizer of ρ̄(IK) in G. Since ρ̄(IK) consists of semi-simple elements of G(F),

M is a reductive subgroup of G. Let ΦK ∈ GK be a topological generator of GK/IK . Since IK is a

normal subgroup of GK , the conjugation by ρ̄(ΦK) action induces an automorphism of M , which

we denote by FM : M →M .

Next we show ρ̄(IK) ⊂ ZM(M). Since G is connected, a semisimple element of G is contained

in a maximal torus. Since ρ̄(IK) is a cyclic group consisting of semi-simple elements, there exists

a maximal torus T containing ρ̄(IK). Since a torus is connected, we have T ⊂ M , and thus

ρ̄(IK) ⊂M(F̄p). It is immediate from the definition of M that ρ̄(IK) ⊂ ZM(M).

By Theorem 1.6, M is a torus. Let T be any maximal torus of G containing ρ̄(IK). Since

T is commutative and connected, we have T ⊂ ZG(ρ̄(IK))
◦ = M . So M is the unique maximal

torus containing ρ̄(IK). Now consider the “moreover” part. For σ ∈ Gal(F̄p/F), σ(M) is also a

maximal torus containing ρ̄(IK). So σ(M) = M , and thus by Galois descent M is defined over F.

By [Crd14, B.3.5], T has a model over W (F).

2.4. Example We illustrate the technical proof using a very concrete example. Let G = GL4.

Let ρ̄ : GK → GL4(F̄p) be a semi-simple Galois representation. We decompose V = Vχ1 ⊕ Vχ2 into

IK-isotropic subspaces. Here χ1, χ2 : IK → F̄×
p are distinct charatcers such that for v ∈ Vχi

and
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σ ∈ IK , ρ̄(σ)v = χi(σ)v, i = 1, 2.

ρ̄|IK =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ1

χ1

χ2

χ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
There are two possibilities: either both Vi are ρ̄(ΦK)-stable, or ρ̄(ΦK) sends Vi to V3−i, i = 1, 2.

The first case is simple: V = Vχ1 ⊕ Vχ2 as a GK-module. Now we consider the latter case. By

Steinberg’s theorem [St68, Theorem 7.2], we can assume ρ̄(ΦK) fixes a Borel

PM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗

∗

∗ ∗

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
of M = GL2×GL2 ⊂ GL4 and thus we must have

ρ̄(ΦK) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b

c

d f

e

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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for some a, b, c, d, e, f ∈ F̄p. The Borel subgroup PM is of shape PM(λ) for

λ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tα ∗

tβ

tγ ∗

tδ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
for α > β and γ > δ. We have

ρ̄(ΦK)λ(t)ρ̄(ΦK)
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tγ ∗

tδ

tα ∗

tβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and thus

ρ̄(ΦK)λ(t)ρ̄(ΦK)
−1λ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tα+γ ∗

tβ+δ

tα+γ ∗

tβ+δ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Since α + γ > β + δ, we have

PGL4(ρ̄(ΦK)λρ̄(ΦK)
−1λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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and finally we observe ρ̄(ΦK) ∈ PGL4(ρ̄(ΦK)λρ̄(ΦK)
−1λ). In general, by Lemma 1.5, there exists

an integer d such that
∏︁0

i=d−1 ρ̄(ΦK)
iλ(t)ρ̄(ΦK)

−i gives the desired parabolic.

3. Crystalline lifts of irreducible mod ϖ Galois representations

Write κ for the residue field of K. Fix a coefficient field E with ring of integers O and uniformizer

ϖ. Write F for the residue field O/ϖ. Assume κ ⊂ F. Let ΦK ∈ GK be a (lift of a) topological

generator of GK/IK . Fix an algebraic closure K̄ of K.

In this section, we assume G is a split group since we are primarily interested in Galois repre-

sentations valued in L-groups. The L-group of a connected reductive group is split, albeit possibly

disconnected.

3.1. For each maximal torus T of G, write MT,cris for the set of representations IK → T (O), which

can be extended to a crystalline representation GK′ → T (O) for some finite unramified extension

K ′/K inside K̄. Let W (G, T ) be the Weyl group of G with respect to T . Since the union of two

finite unramified extensions inside K̄ is still a finite unramified extension, MT,cris is an abelian

group.

The abelian groupMT,cris has a Z[W (G, T )]-module structure, defined by wv := (σ ↦→ wv(σ)w−1),

for w ∈ W (G, T ) and v ∈MT,cris.

The abelian group MT,cris also has a Z[GK/IK ]-module structure, defined by αv := (σ ↦→

v(α−1σα)) for α ∈ GK and v ∈MT,cris.

The following lemma is clear.
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3.1.0.1 Lemma and Definition The Z[W (G, T )]-module structure and the Z[GK/IK ]-module

structure on MT,cris commute with each other, and therefore MT,cris is a Z[W (G, T )]⊗ Z[GK/IK ]-

module.

Similarly, write MT,F for the abelian group of mod ϖ representations IK → T (F). The abelian

group MT,F has a Z[W (G, T )]⊗ Z[GK/IK ]-module structure.

3.2. Lemma Write ζ : NG(T )→ W (G, T ) for the quotient map.

(1) Let w be an element of NG(T )(O) of finite order. An element v ∈ MT,cris extends to a

continuous representation ρ : GK → NG(T )(O) by setting ρ(ΦK) = w−1 and ρ|IK = v if and only

if

v ∈ ker(MT,cris
ζ(w)⊗1−1⊗ΦK−−−−−−−−−→MT,cris).

(2) Let w̄ be an element of NG(T )(F). An element v ∈ MT,F extends to a representation

ρ̄ : GK → NG(T )(F) by setting ρ̄(ΦK) = w̄−1 and ρ̄|IK = v if and only if

v ∈ ker(MT,F
ζ(w̄)⊗1−1⊗ΦK−−−−−−−−−→MT,F).

Proof. (1) Since w is of finite order, it suffices to show v ∈ MT,cris extends to a representation

ρ : WK → NG(T )(O) of the Weil group WK
∼= IK ⋊Z by setting ρ(ΦK) = w−1 and ρ|IK = v if and

only if v ∈ ker(MT,cris
ζ(w)⊗1−1⊗ΦK−−−−−−−−−→MT,cris). If v is extendable to ρ, then for all σ ∈ IK

ρ(Φ−1
K σΦK) = wρ(σ)w−1;

the left hand side restricted to IK is (1⊗ΦK)v, and the right hand side restricted to IK is (ζ(w)⊗1)v.
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So (1⊗ΦK)v = (ζ(w)⊗1)v. Conversely, if (1⊗ΦK)v = (ζ(w)⊗1)v, then v(Φ−1
K σΦK) = wv(σ)w−1

for all σ ∈ IK . Define ρ(σΦ
n) := v(σ)w−n for all σ ∈ IK and n ∈ Z. It is clear ρ is well-defined on

WF , and extends to GF uniquely by continuity.

(2) is similar to (1).

Note that by [Crd14, 5.1.6], the Weyl group W (G, T ) is a constant group scheme when T is

split.

3.2.1. Definition For an element of the Weyl group w ∈ W (G, T ) = W (G, T )(F) = W (G, T )(O),

define

MT,w ,cris := ker(MT,cris
w⊗1−1⊗ΦK−−−−−−−→MT,cris), and

MT,w ,F := ker(MT,F
w⊗1−1⊗ΦK−−−−−−−→MT,F).

The following simple lemma is essentially how we construct crystalline lifts.

3.3. Lemma Let Z[X] be the polynomial ring. Let a(X), b(X) ∈ Z[X] be two polynomials. Let

n and N be integers. Assume a(n)b(n) = 0.

Let ˜︂M be a Z[X]/(a(X)b(X)−N)-module. Write M for ˜︂M ⊗Z Z/N .

If ˜︂M has a torsion-free, finitely generated underlying abelian group, the sequence

0→ a(X)M →M
·b(X)−−−→ b(X)M → 0

is short exact.
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Proof. Pick v̄ ∈ ker(M → b(X)M). Let v ∈ ˜︂M be a lifting of v̄. We have b(X)v ↦→ 0 in M .

Since M = ˜︂M ⊗ Z/N , b(X)v = Nu for some u ∈ ˜︂M . Multiply both sides by a(X), we get

a(X)b(X)v = Nv = Na(X)u. Since ˜︂M is Z-torsion-free, we have v = a(X)u, as desired.

3.4. Proposition If w [F:κ] = 1 and E contains K, the map

MT,w ,cris →MT,w ,F

is surjective.

Proof. Write f := [F : κ]. Let Kf be the unramified extension of K of degree f .

We single out a Z[W (G, T )]⊗Z[GK/IK ]-submodule M0
T,cris ⊂MT,cris which consists of elements

that can be extended to a representation GKf
→ T (O). Note that M0

T,cris → MT,F is surjective

because the fundamental character of niveau f admits a crystalline lift, namely, the Lubin-Tate

character of the field Kf . Put M
0
T,w ,cris := M0

T,cris ∩MT,w ,cris.

Note that on both M0
T,cris and MT,F, we have (w ⊗ 1)f = (1⊗ΦK)

f = id, where ΦK is the fixed

topological generator of GK/IK .

Put

Ξ :=

f−1∑︂
i=0

w i ⊗ Φf−1−i
K .

Commutativity of w ⊗ 1 and 1 ⊗ ΦK implies (w ⊗ 1 − 1 ⊗ ΦK)Ξ = (w ⊗ 1)f − (1 ⊗ ΦK)
f . In

particular, the inclusion ΞM0
T,cris →M0

T,cris factors through M0
T,w ,cris (which is the arrow at the top

of the diagram below).
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Consider the commutative diagram

ΞM0
T,cris

→→

↓↓

M0
T,w ,cris

↓↓

→→M0
T,cris

↓↓

w⊗1−1⊗ΦK →→M0
T,cris

↓↓
ΞMT,F →→

↓↓

MT,w ,F →→MT,F
w⊗1−1⊗ΦK →→MT,F

0

It is clear that ΞM0
T,cris → ΞMT,F is surjective. So it suffices to show

ΞMT,F ↪→MT,w ,F

is surjective.

Let χ̄ : IK → F× be a fundamental character of niveau f . Note that χ̄ generates the abelian

group MGm,F. Indeed, there is an abelian group isomorphism ιχ̄ : Z/(qf − 1)
∼=−→ MGm,F, sending 1

to χ̄. We have MT,F ∼= MGm,F ⊗Z HomGrpSch(Gm, T ). Note that the Weyl group element w acts on

HomGrpSch(Gm, T ) via conjugation v ↦→ wvw−1.

We specialize Lemma 3.3 as follows:

� Set ˜︂M = HomGrpSch(Gm, T ), and regard it as a Z[X]-module where X acts by w ;

� Set M = MT,F, and regard M as a Z[X]-module via X ↦→ w ⊗ 1;

� Set N = qf − 1;

� Set n = q;

� Set a(X) =
∑︁f−1−i

i=0 X iqf−1−i;
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� Set b(X) = q −X;

We can identify M with ˜︂M ⊗Z Z/(qf − 1) via the map ιχ̄ : Z/(qf − 1)
∼=−→MGm,F.

Here are a few things to check:

(i) ˜︂M is finitely generated and torsion-free over Z.

(ii) (a(X)b(X)− qf + 1) kills ˜︂M ;

(iii) ˜︂M ⊗Z Z/(qf − 1) ∼= M as abelian groups;

(iv) a(q)b(q) = 0.

Items (i), (iii) and (iv) are clear. For item (ii), notice that a(X)b(X) = qf−Xf . Since we assumed

w f = 1, a(X)b(X) = qf − 1.

The goal of the rest of this section is to prove the following theorem:

3.5. Theorem Let κ be the residue field of K. Let F/κ be a finite extension. Let Kur be the

maximal unramified extension of K with ring of integers OKur .

Let ρ̄ : GK → G(F) be a strongly semi-simple (see Definition 2.2) representation.

(1) There exists a crystalline representation ρ : GK → G(OKur) lifting ρ̄.

(2) Assume G admits a simply-connected derived subgroup and ρ̄ is G-irreducible. Let Fρ̄ be

the splitting field of ρ̄|IK , that is, the smallest field extension Fρ̄ of F such that ρ̄|IK : IK → G(F)

factors through the Fρ̄-points of a split torus of G. Then ρ can be chosen to have image in G(OKρ̄)

where Kρ̄ is the unramified extension of K with residue field Fρ̄.
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3.6. The strategy is as follows: the first step is to choose a lift of ρ̄|IK which admits an extension

to the whose Galois group GK . This is already done in Proposition 3.4. The second step is to

choose a lift of all Frobenius elements. The continuity of the lift is free because we’ll only use finite

order lifts (modulo the image of IK) of Frobenius elements.

3.7. Lemma There exists a finite subgroup ˜︁N ⊂ NG(T )(W (F)) such that ˜︁N → NG(T )(F) is

surjective.

Proof. The key ingredient is Tits’ theory of extended Weyl groups.

By [Ti66], there exists a subgroup ˜︂W ⊂ NG(T )(W (F)) which is isomorphic to the extension of

the Weyl group W (G, T ) by (Z/2)⊗l for some l ≥ 0, and generates the whole Weyl group. Write

[−] : T (F)→ T (W (F)) for the Teichm̈uller lift.

3.7.0.1 Fact The Teichmüller lift is the unique p-adic continuous multiplicative section of

T (W (F))→ T (F).

Proof. We include a proof here because it is short. It is well-known for T = Gm.

In general, choose a faithful representation i : T → GLN ⊂ MatN×N . Let s, t : T (F) →

T (O) be two multiplicative sections. We have i(s(x)) − i(t(x)) ≡ 1 mod pf for all x ∈ T (F);

(i(s(x))− i(t(x)))p
nf ≡ 1 mod p(n+1)f ; and i(s(x))− i(t(x)) = i(s(xpnf

))− i(t(xpnf
)) ≡ (i(s(x))−

i(t(x)))p
nf ≡ 1 mod pnf for all n.

For each w ∈ ˜︂W and x ∈ T (F), x ↦→ w−1[wxw−1]w is a continuous section of T (W (F))→ T (F)

and must be equal to the Techmüller lift. Let ˜︁N be the composite ˜︂W · [T (F)]. Since for all
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w,w′ ∈ ˜︂W and x, x′ ∈ T (F), we have w[x]w′[x′] = ww′[w′−1xw′x′], ˜︁N is a finite order subgroup of

NG(T )(W (F)), as desired.

The existence of ˜︁N has the following immediate consequence:

3.8. Corollary Let ρ̄ : GK → G(F) be a G-completely reducible representation. There exists a

lift ρ : GK → G(W (F)) of ρ̄.

Indeed, for any lift v of ρ̄|IK to G(O) that can be extended to the whole Galois group GK ,

there exists a lift ρ̄ to G(O) whose inertia is v.

Proof. We first prove the first paragraph. Set ρ|IK to be the Teichmüller lift of ρ̄|IK . Let ΦK ∈ GK

be a lift of the topological generator of GK/IK . Choose an element n ∈ ˜︁N which lifts ρ̄(ΦK). Set

ρ(ΦK) = n. Write n = wt where w is an element of Tits’ extended Weyl group ˜︂W and t lies in

the Teichmüller lift of T (F). Let σ be an element of IK . Write x for ρ̄(σ). We have ρ(ΦKσΦ
−1
K ) =

[ρ̄(ΦKσΦ
−1
K )] = [wxw−1]. By the proof of the previous lemma, [wxw−1] = w[x]w−1 = wρ(σ)w−1 =

nρ(σ)n−1, and thus ρ extends uniquely to a continuous homomorphism GK → G(W (F)).

Now we prove the “indeed” part. It is an immediate consequence of Lemma 3.2 and Lemma

3.7.

3.9. Lemma Let ρ̄ : GK → G(F) be a G-irreducible Galois representaion. By Theorem 2.3, there

exists a unique maximal torus T of G such that ρ̄(GK) ⊂ NG(T )(F).

Let κ be the residue field of K. Let F0 ⊂ F be the smallest subfield of F containing κ such

that ρ̄(IK) ⊂ T (F0). (Recall that G is a Chevalley group and has a Z-model.) Let ΦK ∈ GK be a

lift of a topological generator of GK/IK . The map GK → NG(T )(F) → W (G, T )(F) maps ΦK to

an element w of the Weyl group W (G, T )(F).
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If G admits a simply-connected derived subgroup, then w[F0:κ] = 1 in W (G, T )(F).

Proof. Write f0 := [F0 : κ]. Let s ∈ ρ̄(IK) be a generator. By the proof of Theorem 2.3, T = ZG(s)
◦

is the connected centralizer of s. Since ρ̄(IK) ⊂ T (F0), we have ρ̄(ΦK)
f0sρ̄(ΦK)

−f0 = s. So

ρ̄(ΦK)
f0 ∈ ZG(s)∩NG(T ). Since G has a simply-connected derived subgroup, ZG(s) = ZG(s)

◦. So

ρ̄(ΦK)
f0 ∈ T , that is, w[F0:κ] = 1 in W (G, T )(F).

Proof of Theorem 3.5. (1) We choose a sufficiently large coefficient field E (which is unramified

over K) such that the cardinality of the Weyl group W (G, T ) divides [F : κ]. The assumption of

Proposition 3.4 is satisfied. So there exists a crystalline lift v : IK → T (O) such that v = ρ̄|IK

mod ϖ. By Lemma 3.2, v can be extended to GK .

(2) For ease of notation, replace F by Fρ̄. Write O for OKρ̄ . We choose the field F0 as in Lemma

3.9. Note that the maximal torus in Lemma 3.9 is split: let S be a maximal split torus over F

such that ρ̄(IK) ⊂ S(F); since T = ZG(ρ̄(IK))
◦, we have T ⊃ S; now since G is a split group, we

must have S = T . Let Kf0 be the unramified extension of K of degree [Kf0 : K] = [F0 : κ]. Let

O0 be the ring of integers of Kf0 . We have O0 ⊂ O. By the previous Lemma, Proposition 3.4 is

applicable, and thus there exists a lift v : IK → T (O0) such that v = ρ̄|IK mod ϖ and v admits an

extension to a representation GK → NG(T )(O0). By Corollary 3.8, v admits an extension to GK

which lifts ρ̄.

Fix ΦK ∈ GK , a lift of a topological generator of GK/IK . By Lemma 3.7, we choose a finite

order lift X ∈ ˜︁N ⊂ NG(T )(O) of ρ̄(ΦK). Since the Weyl group scheme is a constant group scheme,

any two lifts of ρ̄(ΦK) have the same conjugation action on the maximal torus NG(T )(O), and

therefore we can extend v to a representation GK → NG(T )(O) by setting ΦK ↦→ X.
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4. Hodge-Tate theory for Galois representations valued in reductive

groups

The Hodge-Tate theory for GLN is reviewed in Appendix 3.5. In this section, we discuss Hodge-

Tate theory for general reductive groups, and show G-irreducible mod ϖ Galois representations

admit Hodge-Tate regular crystalline lifts.

4.1. First properties of Hodge-Tate cocharacters

4.1.1. Definitions Fix an algebraic closure Qp of Qp. Let K,E ⊂ Qp be finite extensions of Qp.

The field E will serve as the coefficient field. To define colabeled Hodge-Tate gradings, we assume

K is a subfield of E and therefore GE as a subgroup of GK .

Let C := CK be the completed algebraic closure of K. Let σ : E ↪→ C be an embedding.

Let (ρ, V ) be a Hodge-Tate representation of GK . Then one can define the σ-colabeled Hodge-Tate

grading on C⊗σ,E V by setting the i-th graded piece to be

Im((C(i)⊗σ,E V )GE ⊗E C(−i)→ C⊗σ,E V )

which is compatible with tensor product and duality.

Let G be a reductive group over E. A G-valued representation is Hodge-Tate if for all repre-

sentations G → GL(V ), V is a Hodge-Tate GK-module. Let ρ : GK → G(E) be a Hodge-Tate

G-valued representation. Consider G(σ)◦ρ : GK → G(C). By Tannakian theory, there is a cochar-

acter HT (ρ)σ : Gm → GC, such that for any faithful representation i : G→ GLN , the composition

i(HT (ρ)σ) recovers the Hodge-Tate grading on i(G(σ) ◦ ρ) : GK → GLN(C).
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Set HT (ρ) := (HT (ρ)σ)σ:E↪→C ∈
∏︁

E↪→C X∗(GC). We call HT (ρ) the co-labeled Hodge-Tate

cocharacter of ρ.

The formation of co-labeled Hodge-Tate cocharacters is clearly functorial in G.

4.1.2. Lemma Let f : G → H be a morphism of reductive groups over E. If ρ : GK → G(E) is

a Hodge-Tate representation, we have HT (f ◦ ρ) = f(HT (ρ)).

Proof. It follows immediately from Tannakian theory.

4.1.3. Regular cocharacter Let H be a reductive group with maximal torus S. A cocharacter

x ∈ X∗(H,S) is said to be regular if it is not killed by any root of H (with respect to S).

We say ρ is Hodge-Tate regular if for all σ : E ↪→ C, the cocharacter HT (ρ)σ of GC is regular.

When G = GLN , we can also define labeled Hodge-Tate weights (see Appendix 3.5). It turns out

labeled Hodge-Tate regularity is equivalent to colabeled Hodge-Tate regularity. So our definition

coincides with the usual notion of Hodge-Tate regularity in the literature.

4.1.4. Lemma Assume G = GLN . Assume E admits an embedding of the Galois closure of K.

Then ρ is Hodge-Tate regular if and only if the labeled Hodge-Tate weight k = (kτ )τ :K↪→E is regular

in the sense that each kτ ∈ ZN contains distinct numbers.

Proof. It follows from Proposition 5.1.4.
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4.1.5. Lemma Let K ′/K be a finite field extension such that K ′ ⊂ E. Let ρ : GK → G(E) be a

Hodge-Tate G-valued representation. We have HT (ρ|GK′ ) = HT (ρ).

Proof. Note that the Definition 4.1.1 only makes use of GE and does not depend on K.

4.1.6. Lemma Let ρ1, ρ2 : GK → G(E) be two Hodge-Tate representations whose image is abelian

and consists of semisimple elements. If ρ1ρ2 = ρ2ρ1, then HT (ρ1ρ2) = HT (ρ1)HT (ρ2).

Proof. By the previous lemma, it is harmless to shrink GK and thus we can assume ρ1, ρ2 both

factor through a maximal torus T of G. By descent, we can assume T is split. Write i : T ↪→ G

for the embedding of the maximal torus T . Let t1, t2 : GK → T (E) be representations such that

i(t1) = ρ1 and i(t2) = ρ2.

We have HT (ρ1) = i(HT (t1)) and HT (ρ2) = i(HT (t2)) by functoriality (Lemma 4.1.2). So

it suffices to show HT (t1t2) = HT (t1)HT (t2). Since T is a split torus, the general case follows

from the special case T = Gm. The Hodge-Tate cocharacter of t1t2 : GK → Gm(E) is completely

decided by the Hodge-Tate weight of t1t2. The lemma follows because the Hodge-Tate weight of

t1t2 is the sum of the Hodge-Tate weight of t1 and the Hodge-Tate weight of t2.

We use the following lemma to construct Hodge-Tate regular cocharacters.

4.1.7. Lemma Assume E = Kf is the unramified extension of K of degree f inside the fixed

algebraic closure K := Qp of K. Fix a maximal split torus T of G. Write i : T → G for the

embedding.
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For each colabel σ0 : Kf ↪→ C, and each cocharacter λ ∈ X∗(G(C), T (C)), there exists a

crystalline representation t : GKf
→ T (Kf ) such that

HT (i(t))σ =

⎧⎪⎪⎨⎪⎪⎩
λ if σ = σ0,

the trivial cocharacter if otherwise.

Proof. Let χLT : GKf
→ O∗

Kf
be a Lubin-Tate character. Choose an isomorphism T ∼= Gm

×r,

r = rkT .

The field Kf is a subfield of K by its choice. The composite Kf ↪→ K ↪→ C defines a canonical

embedding of Kf in C. Since Kf/K is a Galois extension, there exists a unique ι ∈ Gal(Kf/K)

such that σ0 ◦ ι is the canonical embedding Kf ↪→ CK .

Put t = ι(χh1
LT, · · · , χ

hr
LT), h1, · · · , hr ∈ Z. By Lemma 4.1.2 and Lemma 5.3.5, HT (i(t))σ is

the trivial cocharacter if σ ̸= σ0. Since the co-labeled Hodge-Tate weights of the Lubin-Tate char-

acter is (1, 0 · · · , 0), if we let the tuple (h1, · · · , hr) range over all Zr, thenHT (i(ι(χh1
LT, · · · , χ

hr
LT)))

σ0

ranges over all cocharacters inX∗(G(C), T (C)). So we can choose (h1, · · · , hr) so thatHT (i(ι(χh1
LT, · · · , χ

hr
LT)))

σ0 =

λ.

4.2. Hodge-Tate regular lifts of strongly semisimple mod ϖ Galois representations

In many applications, we need Hodge-Tate regular crystalline representations. For example,

crystalline deformation rings of regular Hodge-Tate weights have the largest dimension, which is

exploited in the work [EG19].

The following lemma shows as long as a crystalline lift exists, Hodge-Tate regular lifts also

exist.
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We will specialize to the case where E = Kf , the unramified extension of K of degree f .

4.2.1. Local class field theory Let ArtK : K× → Gab
K be the local Artin map, which we

normalize so that a uniformizer corresponds to a geometric Frobenius element.

Note that ArtK induces an isomorphism

Art−1
K : Gal(Kab/Kur)

∼=−→ O×
K

See the paragraph after the proof of [Iw86, 6.2] for a reference. Denote by rK the induced map

IK → O×
K .

4.2.1.1 Theorem [Iw86, 6.11] Let σ : K → K ′ be an isomorphism of fields. Then the following

diagram is commutative:

K×

σ

↓↓

ArtK →→ Gab
K

σ∗

↓↓
K ′× ArtK′ →→ Gab

K′

Here σ∗ : τ ↦→ στσ−1.

4.2.2. Corollary Let σ : K → K be a continuous field automorphism. Then rK(στσ
−1) =

σ(rK(τ)) for all τ ∈ IK .

Proof. It is an immediate consequence of Theorem 4.2.1.1.
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4.2.3. Theorem Let ρ̄ : GK → G(F) be a G-completely reducible representation. Let κ be the

residue field of K. Assume κ ⊂ F.

(1) There exists a Hodge-Tate regular crystalline lift ρ : GK → G(OKf
) for some positive

integer f .

(2) If G has a simply connected derived subgroup and F is the splitting field of ρ̄|IK (see

Theorem 3.5), then f can be taken as [F : κ].

Proof. Write i : T ↪→ G for the embedding of the maximal torus T .

We will show that as long as a crystalline lift exists, a Hodge-Tate regular crystalline also exists

with the same coefficient field. The existence of crystalline lifts is Theorem 3.5.

We keep notations used in the proof of Proposition 3.4. We set O := OKf
. Recall that

Ξ :=
∑︁f−1

i=0 w i⊗Φf−1−i
K , where ΦK ∈ GK/IK is a generator of GK/IK , and w ∈ W (G, T ) is the Weyl

group element which corresponds to ρ̄(ΦK)
−1. Recall that the submodule M0

T,cris ⊂MT,cris consists

of representations IK → T (O) which are extendable to GKf
. For each element of u ∈ M0

T,cris,

choose an extension tu : GKf
→ T (O). The Hodge-Tate cocharacter HT (i(tu)) does not depend

on the choice of tu. It makes sense to write HT (u) for HT (i(tu)) (where tu is any choice of

extension).

In the proof of Proposition 3.4, we’ve shown that there exists v ∈ ΞM0
T,cris ⊂M0

T,w ,cris which is

a lift of ρ̄|IK .

Fix a colabel σ0 : Kf ↪→ C. By Lemma 4.1.7, there exists a crystalline representation t : GKf
→

T (O) such that HT (i(t))σ is a regular cocharacter in X∗(G(C), T (C)) if σ = σ0, and is the trivial

cocharacter if σ ̸= σ0.
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The restriction t|IK defines an element v0 ∈M0
T,cris. By Lemma 4.1.2, we have

HT ((w ⊗ 1)v0) = wHT (v0)w−1.

By Lemma 5.3.5 and Corollary 4.2.2, we have

HT ((1⊗ ΦK)v0)
σ = HT (v0)σ◦Φ

−1
K .

Summing up, we have

HT (Ξv0)σ0◦Φ−1−i+f
K = HT (

f−1∑︂
j=0

w j ⊗ Φf−1−j
K v0)

σ0◦Φ−1−i+f
K

=

f−1∏︂
j=0

HT (w j ⊗ Φf−1−j
K v0)

σ0◦Φ−1−i+f
K

=

f−1∏︂
j=0

w jHT (1⊗ Φf−1−j
K v0)

σ0◦Φ−1−i+f
K w−j

=

f−1∏︂
j=0

w jHT (v0)σ0◦Φ−1−i+f
K ◦Φ1+j−f

K w−j

= w iHT (v0)σ0w−i

By Definition 4.1.3, Ξv0 is Hodge-Tate regular.

Let C be a very large positive integer. Write N for the cardinality of F×. Define v′ :=

v + CNΞv0. Since MT,F is N -torsion, v′ is a lift of ρ̄|IK . We have HT (v′) = HT (v)HT (Ξv0)CN .

Since HT (Ξv0) is a regular cocharacter, HT (v′) is also a regular cocharacter if C ≫ 0.

Since ΞM0
T,cris ⊂ M0

T,w ,cris, we have v + Ξv0 ∈ MT,w ,cris. By Corollary 3.8, v′ extends to a
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representation GK → G(O) which is a crystalline representation lifting ρ̄.

5. Appendix: Hodge-Tate theory with coefficients

Let K/Qp, E/Qp be finite extensions. Assume E admits an embedding of the Galois closure of K.

Fix an embedding K ↪→ E. Let V be a finite dimensional E-vector space. Let ρ : GK → GL(V )

be a continuous representation. Assume ρ is Hodge-Tate. Let C := CK be the completed algebraic

closure of K. Let BHT :=
⨁︁

n∈ZC(n) be the Hodge-Tate period ring. Then BHT⊗V := BHT⊗Qp V

is a C⊗ E-module with GK-action.

Let σ be an embedding E ↪→ C. Define

Vσ := {
∑︂

xi ⊗ yi ∈ BHT ⊗ V |
∑︂

σ(a)xi ⊗ yi =
∑︂

xi ⊗ ayi for all a ∈ E}

=
⋂︂
a∈E

Ker(l1⊗a − lσ(a)⊗1) (where lx is scalar multiplication by x)

It is easy to see that

5.0.1. Lemma Let Lσ ⊂ C be the subfield generated by K and σ(E).

(i) Vσ is a GLσ -stable C⊗ E-submodule of BHT ⊗ V ;

(ii) Vσ is isomorphic to BHT ⊗σ,E V as a GLσ -semi-linear C-module;

(iii) BHT ⊗ V =
⨁︁

σ:E↪→C Vσ.
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Let L be the Galois closure of Lσ in C. Write Dσ(V ) := V GL
σ . By (iii),

⨁︂
σ:E↪→C

Dσ(V ) = (BHT ⊗ V )GL = DHT(V )⊗K L

The Hodge-Tate grading on DHT(V ) induces a grading on each of Dσ(V ). So Dσ(Vσ) is a graded L-

vector space. We denote by HTσ(V ) the multiset of integers n in which n occurs with multiplicity

dimL gr
n Dσ(Vσ), and call it the σ-co-labeled Hodge-Tate weights of V . 1

5.1. Labeled Hodge-Tate weights Let τ : K ↪→ E be an embedding. Define

Ṽ τ := {
∑︂

xi ⊗ yi ∈ BHT ⊗ V |
∑︂

axi ⊗ yi =
∑︂

xi ⊗ τ(a)yi for all a ∈ K}

=
⋂︂
a∈K

Ker(la⊗1 − l1⊗τ(a))

5.1.1. Lemma We have

Ṽ τ =
⨁︂

σ:E↪→C,σ|τK=τ−1

Vσ

Proof. Unravel the definitions.

While Vσ is only GLσ -stable, Ṽ τ is GK-stable! Write D̃τ (V ) := (Ṽ τ )
GK . We want to remind

readers the usual definition of τ -labeled Hodge-Tate weights (for example, the definition in [GK14,

1.1]).

1This is a non-standard terminology.
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5.1.2. Definition The multiset HTτ (V ) is as follows: an integer n appears with multiplicity

dimE grn(DHT(V )⊗E⊗QpK,τ E)

5.1.3. Lemma We have dimE grn(DHT(V )⊗E⊗QpK,τ E) = dimE grn(D̃τ (V )).

Proof. It is easy to see (by unravelling the definitions) that the natural map

Ṽ
GK

τ ↪→ DHT(V ) ↠ DHT(V )⊗E⊗QpK,τ E

is injective, and E-linear. So it must be an E-isomorphism because of the direct sum decomposition.

When we divide a multiset by an integer s, we divide the multiplicity of all members of the

multiset by s. For example 1
2
{1, 1, 2, 2, 2, 2} = {1, 2, 2}.

5.1.4. Proposition We have HTτ (V ) = 1
[E:K]

⋃︁
σ:E↪→C,σ|τK=τ−1 HT

σ(V ).

Proof. Let L be as before. We have

D̃τ (V )⊗K L = Ṽ
GL

τ =
⨁︂

σ:E↪→C,σ|τK=τ−1

V GL
σ =

⨁︂
σ:E↪→C,σ|τK=τ−1

Dσ(V )

as graded modules. So

dimE(D̃τ (V )) =
1

[E : K]
dimK(D̃τ (V )) =

1

[E : K]
dimL(D̃τ (V )⊗KL) =

1

[E : K]

∑︂
σ:E↪→C,σ|τK=τ−1

dimLDσ(V )
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Thus the multiset of τ -labeled Hodge-Tate weights is the average of certain multisets of σ-co-

labeled Hodge-Tate weights.

5.2. Galois twist The following is a convenient observation.

5.2.1. Lemma Let K, E be arbitrary finite extensions of Qp. Let L/E be a field extension. Let

σ : E ↪→ C be an embedding. Let σ̃ : L ↪→ C be an embedding extending σ. Let K ′/K be a finite

extension. Then

(1) HTσ(Res
GK′
GK

V ) = HTσ(V );

(2) HTσ(V ) = HTσ̃(V ⊗E L).

Assume moreover that E admits an embedding of the Galois closure of K. Let τ : K ↪→ E be an

embedding. Then

(3) HTτ (V ) = HTτ (V ⊗E L).

Proof. (1), (3): unravel definitions; (2): BHT⊗L,σ̃ (V ⊗EL) = (BHT⊗L,σ̃L)⊗EV = BHT⊗E,σV .

5.2.2. Corollary Assume E contains the Galois closure of K. Let θ ∈ Aut(E/Qp). Let τ : K ↪→

E be an embedding. Then

(1) HTσ(V ⊗E,θ E) = HTσ◦θ(V ).

(2) HTτ (V ⊗E,θ E) = HTθ−1◦τ (V ).
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Proof. (1) It is a special case of Lemma 5.2.1(2).

(2) By Proposition 5.1.4,

HTτ (V ⊗E,θ E) =
1

[E : K]

∑︂
σ:E↪→C,σ|τK=τ−1

HTσ(V ⊗E,θ E)

=
1

[E : K]

∑︂
σ:E↪→C,σ|τK=τ−1

HTσ◦θ(V )

=
1

[E : K]

∑︂
σ:E↪→C,σ◦θ−1|τK=τ−1

HTσ(V )

= HTθ−1◦τ (V )

5.3. Lubin-Tate characters In this subsection, we want to rewrite some results of [Se89, III.A.1-

III.A.5] using the language we just developed.

5.3.1. Remark Proposition B.2 of [C11, Appendix B] contains a result more general than this

subsection.

5.3.2. Note that the cyclotomic character has Hodge-Tate weight −1.

5.3.3. Lubin-Tate characters of Galois extensions of Qp We start with the simpliest case.

Let E = K/Qp be a finite Galois extension. Let π be a uniformizer of K. Let Fπ be the Lubin-Tate

formal group associated to K and π. Let χK := χK,π : GK → O×
E be the Tate module of Fπ, as is

the notation of [Se89]. Then χK |IK = r⊗−1
K (see subsection 4.2.2). (So rK is crystalline.)
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5.3.3.1 Lemma Let σ1 ∈ Gal(K/Qp). Then a σ-co-labeled Hodge-Tate weight of σ1 ◦ χK is

−1 if σ = σ−1
1 , and 0 if otherwise.

Proof. See [Se89, Thm 2, III.A.5] and [Se89, Prop III.A.4]. Note that

� Serre’s K and E are reversed,

� Galois hypothesis is required by [Se89, III.A.3(b)],

� Serre’s Wσ is our gr0 Vσ.

5.3.4. Lemma Now suppose E = K/Qp is not necessarily Galois. A σ-co-labeled Hodge-Tate

weight of χK is −1 if σ = id 2, and 0 if otherwise.

Proof. Choose a Galois closure L of K over Qp. Consider

Gab
L

rec
↓↓

→→ Gab
K

rec
↓↓

L× NL/K →→ K×

By local class field theory, χK |GL
= NL/K ◦ χL =

∏︁
σ∈Gal(L/K) σ ◦ χL. By Lemma 5.3.3, for

τ ∈ Gal(L/Qp),

HTτ (χK |GL
) =

⎧⎪⎪⎨⎪⎪⎩
−1 if τ fixes K

0 if otherwise

Now apply Lemma 5.2.1(1), (2) to conclude.

2More precisely the tautological embedding of E in C
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5.3.5. Lemma Let K/Qp be a finite extension, and let E/Qp be a finite extension admitting

ι : K ↪→ E.

(1) For each σ : E ↪→ C, the σ-co-labeled Hodge-Tate weight of ι ◦χK is −1 if σ ◦ ι = idK , and

0 if otherwise.

(2) Suppose further E admits an embedding of the normal closure of K. Then for each σ :

K → E, the σ-labeled Hodge-Tate weight of ι ◦ χK is −1 if σ = ι, and 0 if otherwise.

Proof. (1) We have

HTσ(ι ◦ χK) = HTσ◦ι(χK) By Lemma 5.2.1(2)

=

⎧⎪⎪⎨⎪⎪⎩
−1 if σ ◦ ι = idK

0 if otherwise

By Lemma 5.3.4

(2) Follows from Proposition 5.1.4 and (1).

5.3.6. Lemma Let K/Qp be a finite extension. Let L/K be an unramified extension in C. Let L′

be the Galois closure of L over Qp. Let ι : K ↪→ L′ be the tautological embedding. Let ΦK ∈ GK

be a lift of a topological generator of GK/IK . Let d = [L : K]. Then

(1) Let σ : L ↪→ C. Then

HTσ(IndGK
GL

(χL)) = HTσ(χL) ∪ HTσ(ΦK ◦ χL) ∪ · · · ∪ HTσ(Φd−1
K ◦ χL)
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(2) Let τ : K ↪→ C. Then

HTτ (Ind
GK
GL

(ι ◦ χL)) =

⎧⎪⎪⎨⎪⎪⎩
{0, . . . , 0,−1} if τ is the canonical embedding, and

{0, . . . , 0, 0} if otherwise.

Proof. (1) Follows from Lemma 5.2.1 and Corollary 4.2.2.

(2) We have

HTτ (Ind
GK
GL

(ι ◦ χL)) =
1

[L′ : K]

⋃︂
σ̃:L′↪→C,σ̃|τK◦τ=id

HTσ̃(IndGK
GL

(ι ◦ χL))

=
1

[L′ : K]

⋃︂
σ̃:L′↪→C,σ̃|τK◦τ=id,σ:=σ̃|L

HTσ(IndGK
GL

(χL))

=
1

[L : K]

⋃︂
σ:L↪→C,σ|τK◦τ=id

HTσ(IndGK
GL

(χL))

=
1

[L : K]

⋃︂
σ:L↪→C,σ|τK◦τ=id

HTσ(χL) ∪ HTσ(ΦK ◦ χL) ∪ · · · ∪ HTσ(Φd−1
K ◦ χL)

=
1

[L : K]

⋃︂
σ:L↪→C,σ|τK◦τ=id

d−1⋃︂
k=0

δσ,ι◦Φk
K

Here δX,Y is {−1} if X = Y and is {0} if otherwise. Since Φk
K is the identity when restricted

on K, the last line is 0 unless τ is the canonical embedding; in this case, the last line becomes

1
[L:K]

⋃︁d−1
j=0

⋃︁d−1
k=0 δι◦Φj

K ,ι◦Φk
K
= {0, . . . , 0,−1}.
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Chapter 4

Lifting extension classes

1. Lyndon-Demuškin theory

Assume p ̸= 2.

Let K/Qp be a finite extension containing the p-th roots of unity. The maximal pro-p quotient

of the absolute Galois group GK has a very nice description. The following well-known theorem

can be found, for example, in [Se02, Section II.5.6].

1.0.1. Theorem Let GK(p) be the maximal pro-p quotient of GK . Then GK(p) is the pro-p

completion of the following one-relator group

Γdisc := ⟨x0, · · · , xn+1|xq
0(x0, x1)(x2, x3) . . . (xn, xn+1)⟩

where n = [K : Qp], (x, y) = x−1y−1xy, and q = ps is the largest power of p such that K contains

the q-th roots of unity.
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1.0.2. Definition A continuous GK-module A is said to be Lyndon-Demuškin if GK acts on A

through GK(p).

1.1. Discrete group cohomology of Demuškin groups

The main reference of this subsection is [Ly50].

1.1.0.1 Derivations A derivation of a group G is a left G-module M , together with a map

D : G→M such that D(uv) = Du+ uDv.

Say F is a free group with generators x1,. . .xm. Denote by dFJ the module of universal

derivations. Then dFJ is the free Z[F ]-module with basis {dxi|i = 1, . . . ,m}.

Let u ∈ F . We can write du ∈ dFJ as a linear combination of the basis elements: du =∑︁
∂u
∂xi

dxi where
∂u
∂xi
∈ Z[F ].

1.1.0.2 Theorem ([Ly50, Corollary 11.2]) Let G = ⟨x1, . . . , xm|R⟩ be a one-relator group

where R = Qq for no q > 1. Let K be any left G-module. Then

H2(G,K) ∼= K/(
∂R

∂x1

, . . .
∂R

∂xm

)K

and Hn(G,K) = 0 for all n > 2.

1.1.0.3 Corollary We have H2(Γdisc,Fp) = Fp.
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Proof. We have the following computation:

∂R

∂x0

= 1 + x0 + · · ·+ xq−2
0 + xq−1

0 x−1
1

∂R

∂x1

= xq−1
0 x−1

1 (x0 − 1)

∂R

∂x2

= xq
0(x0, x1)x

−1
2 (x−1

3 − 1)

∂R

∂x3

= xq
0(x0, x1)x

−1
2 x−1

3 (x2 − 1)

...
...

∂R

∂x2k

= xq
0(x0, x1) · · · (x2k−2, x2k−1)x

−1
2k (x

−1
2k+1 − 1)

∂R

∂x2k+1

= xq
0(x0, x1) · · · (x2k−2, x2k−1)x

−1
2k x

−1
2k+1(x2k − 1)

...
...

Since H2(Γdisc,Fp) =
Fp

(∂R/∂x0,··· ,∂R/xn+1)
, it suffices to show

∂R

∂x0

Fp = · · · =
∂R

∂xn+1

Fp = 0.

Since Fp is a trivial GK-module, it is clear ∂R
∂x1

Fp = . . . ∂R
∂xn+1

Fp = 0. We also have ∂R
∂x0

= 1 + 1 +

· · ·+ 1 = q = 0 mod p.

1.2. Comparing cohomology of Demuškin groups and Galois cohomology

Let K/Qp be a p-adic field containing the group of p-th root of unity. Let A be a Lyndon-

Demuškin GK-module. We want to compare the usual group cohomology H•(Γdisc, A) and the

continuous profinite cohomology H•(GK , A).
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Note that there is a functorial map

(†) H•(GK , A)→ H•(Γdisc, A)

induced from the forgetful functor Modcont(GK(p))→ Mod(Γdisc).

1.2.1. Lemma Let Fp be the GK-module with trivial GK-action. Then (†) induces isomorphisms:

(1) H1(GK ,Fp) = H1(Γdisc,Fp);

(2) H2(GK ,Fp) = H2(Γdisc,Fp);

Proof. (1) We have

H1(GK ,Fp) = Homcont(GK ,Fp);

H1(Γdisc,Fp) = Hom(Γdisc,Fp).

Since H1(GK ,Fp) classifies continuous extension classes of two trivial GK-modules, (†) is injective.

By local Euler characteristic, dimH1(GK ,Fp) = [K : Qp] + dimH0(GK ,Fp) + dimH2(GK ,Fp) =

n+ 2 = dimH1(Γdisc,Fp). So (†) is an isomorphism.

(2) We have a commutative diagram

H1(GK ,Fp)×H1(GK ,Fp)

↓↓ ↓↓

∪ →→ H2(GK ,Fp)

↓↓
H1(Γdisc,Fp)×H1(Γdisc,Fp)

∪ →→ H2(Γdisc,Fp)

Note that the first row is a non-degenerate pairing, and H2(GK ,F) ∼= F by local Tate duality. By

Lyndon’s theorem or Corollary 1.1.0.3, we have H2(Γdisc,F) ∼= F. So it remains to show the cup

product of the second row is non-trivial. Let [c0], [c1] ∈ H1(Γdisc,Fp). [c0] ∪ [c1] = 0 if and only if
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there exists a group homomorphism

Γdisc →

⎡⎢⎢⎢⎢⎣
1 c0 ∗

1 c1

1

⎤⎥⎥⎥⎥⎦
for some ∗. Define ci : Γ

disc → Fp by sending xi to 1 and other generators to 0, i = 0, 1. Then

[c0] ∪ [c1] ̸= 0.

1.2.2. Corollary Let A be a finite Fp-vector space endowed with Lyndon-Demuškin GK-action.

Then (†) is an isomorphism H•(GK , A) ∼= H•(Γdisc, A).

Proof. By Theorem 1.1.0.2, the cohomology groups Hk(Γdisc, A) = 0 for k > 2. So it remains to

compare the cohomology groups of degree ≤ 2.

Let GK(p) be the maximal pro-p quotient of GK . Then A is a GK(p)-module. Since GK(p) is

a pro-p group, A must contain the trivial representation Fp. In particular, there is a short exact

sequence

0→ Fp → A→ A′ → 0

which induces the long exact sequence

H0(GK , A
′) →→

↓↓

H1(GK ,Fp) →→

↓↓

H1(GK , A) →→

↓↓

H1(GK , A
′) →→

↓↓

H2(GK ,Fp)

↓↓
H0(Γdisc, A′) →→ H1(Γdisc,Fp) →→ H1(Γdisc, A) →→ H1(Γdisc, A′) →→ H2(Γdisc,Fp)

We apply induction on the length of A. By the Five Lemma, we have H1(GK , A) = H1(Γdisc, A).
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We also have the long exact sequence

H1(GK , A
′) →→

↓↓

H2(GK ,Fp) →→

↓↓

H2(GK , A) →→

↓↓

H2(GK , A
′) →→

↓↓

H3(GK ,Fp)

↓↓
H1(Γdisc, A′) →→ H2(Γdisc,Fp) →→ H2(Γdisc, A) →→ H2(Γdisc, A′) →→ H3(Γdisc,Fp)

By Lyndon’s theorem, H3(Γdisc,Fp) = 0. By local Tate duality, H3(GK ,Fp) = 0. Again by the

Five Lemma, we have H2(GK , A) = H2(Γdisc, A).

By induction on the order of A, (†) is an isomorphism for any finite p-power torsion group A.

1.2.3. Corollary Let A be a finite Zp-module endowed with Lyndon-Demuškin GK-action. Then

there is a canonical isomorphism H•(GK , A) = H•(Γdisc, A).

Proof. We have a short exact sequence for each k > 0,

0→ lim←−
i

1Hk−1(GK , A/p
iA)→ Hk(GK , A)→ lim←−

i

Hk(GK , A/p
iA)→ 0.

The first term is 0 due to the finiteness of the cohomology of torsion GK-modules. So Hk(GK , A) =

lim←−
i

Hk(GK , A/p
iA), and the corollary is reduced to the p-power torsion case. By [Ly50, Theorem

11.1], H•(Γdisc, A/piA) is a finite set. So we have Hk(Γdisc, A) = lim←−
i

Hk(Γdisc, A/pi) by a similar

argument.

The lemma above tells us that, for our purposes, the cohomology groups of GK(p) can be

computed via the discrete model. So we can make use of the fine machineries of combinatorial

group theory.
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1.3. Lyndon-Demuškin Complex

1.3.1. Abelian coefficient case Let A be a GK-module whose underlying abelian group is a

finitely generated Zp-module such that the the action of GK factors through GK(p).

Then there is an explicit co-chain complex computing the Galois cohomology H•(GK , A).

Define C•
LD(A) = [C0

LD(A)
d1−→ C1

LD(A)
d2−→ C2

LD(A)] as the following cochain complex supported

on degrees [0,2]

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x0

. . .

1− xn+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−−−−−−−−→ A⊕(n+2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R/∂x0

. . .

∂R/∂xn+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

−−−−−−−−−−→ A.

Then by [Ly50, Section 11] (the proof of [Ly50, Theorem 11.1]),

H•(C•
LD(A)) = H•(GK , A).

The idea of Lyndon Demuškin complex is simple. A 1-cochain c ∈ C1
LD(A) is simply a set-

theoretical function

c : {x0, . . . , xn+1} → A.

We can extend c to be a function on the free group

c : ⟨x0, . . . , xn+1⟩ → A

by setting c(gh) := c(g)+g ·c(h) for any g, h in the free group with (n+2) generators; equivalently,
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c is the map which makes the following diagram commute

⟨x0, . . . , xn+1⟩
(id,c)→→

id

→→

⟨x0, . . . , xn+1⟩⋉ A

↓↓
⟨x0, . . . , xn+1⟩

Let

R = xq
0(x0, x1)(x2, x3) . . . (xn, xn+1)

be the single relation defining the Demuškin group. The differential operator d2 : C1
LD(A) →

C2
LD(A) is nothing but the evaluation of the extended map c at the relation R, that is, d2(c) = c(R).

So a 1-cochain c is a 1-cocycle if and only if its evaluation at R is 0; equivalently, the map c factors

through ⟨x0, . . . , xn+1|R⟩ and the following diagram commutes.

⟨x0, . . . , xn+1|R⟩
(id,c)→→

id

→→

⟨x0, . . . , xn+1|R⟩⋉ A

↓↓
⟨x0, . . . , xn+1|R⟩

Before we proceed to nilpotent coefficient case, we review cupproducts in group cohomology.

1.4. General cup products in group cohomology

Let V be a unipotent algebraic group of class 2 over OE. Let Γ be an abstract group, together

with a homomorphism θ : Γ → Aut(V )(OE). By the Lie correspondence, Aut(LieV ) ∼= Aut(V ),

and thus θ induces a OE-linear Γ-action on LieV which respects Lie brackets.

We fix a grading LieV = V1 ⊕ V2 such that [V1, V1] ⊂ V2, and [V, V2] = 0. We will write V for

V (OE) for simplicity.
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Let f : Γ → V be a crossed homomorphism. By definition, for any g1, g2 ∈ Γ, f(g1g2) =

f(g1)g1f(g2). Write c = c1 + c2 for log(f), where c1 values in V1 and c2 values in V2. By the

Baker-Campbell-Hausdorff formula, we have

(∗) c(gh) = c(g) + gc(h) + [c(g), gc(h)]/2

= (c1(g) + gc1(h)) + (c2(g) + gc2(h)) + [c1(g), gc1(h)]/2

1.4.1. Lemma Let a, b ∈ H1(Γ, V1) be two crossed homomorphisms. The 2-cochain B(a, b) :

(g, h) ↦→ [a(g), gb(h)] is a 2-cocycle.

Proof. By definition, we have

d2(B(a, b))(g1, g2, g3) = g1[a(g2), g2b(g3)]− [d1a(g1, g2), g1g2b(g3)]

+ [a(g1), g1d
1b(g2, g3)] + [a(g1), g1b(g2)]

= g1[a(g2), g2b(g3)]− [a(g1) + g1a(g2), g1g2b(g3)]

+ [a(g1), g1b(g2) + g1g2b(g3)] + [a(g1), g1b(g2)]

= 0

For crossed homomorphisms a ∈ H1(Γ, V1), define Q(a) := B(a, a).

Define a∪b := (Q(a+b, a+b)−Q(a)−Q(b))/2 = (B(a, b)+B(b, a))/2. We have a∪b ∈ H2(Γ, V2).

1.4.2. Lemma Let Γ′ ⊂ Γ be a normal subgroup of finite index. Write ∆ for Γ/Γ′.

The cup product ∪ : H1(Γ′, V1)×H1(Γ′, V1)→ H2(Γ′, V2) is ∆-equivariant.

Proof. Let a, b ∈ H1(Γ1, V1), and let σ ∈ Γ. We have by definition σ · a(g) = σa(σ−1gσ), and
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σ · B(a, b)(g, h) = σB(a, b)(σ−1gσ, σ−1hσ) (see [Se02, Section I.5.8]). We immediately have σ ·

B(a, b) = B(σ · a, σ · b).

1.4.3. Nilpotent coefficients Let E/Qp be a finite extension with ring of integers OE, residue

field F, and uniformizer ϖ.

Let U be a unipotent (smooth connected) linear algebraic group over SpecOE. Write

1 = U0 ⊂ U1 · · · ⊂ Uk = U

for the upper central series of U .

Assume p > k. There is a canonical isomorphism of schemes U ∼= LieU sending g ↦→ log g. To

define the logarithm function, it is convenient to choose an embedding U ↪→ GLN , and define log

using the commutative diagram

U

↓↓

→→ GLN

log≤k

↓↓
LieU →→MatN×N

where log≤k is the truncated logorithm function.

We assume k = 2 from now on because it suffices for our applications.

Fix a Galois action GK → Aut(U)(OE) such that the image group is a pro-p subgroup of

Aut(U)(OE).

Let A be an OE-algebra. Recall that a non-abelian crossed homomorphism valued in U(A) is

a map c : GK → U(A) such that

c(gh) = c(g)(g · c(h))
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for all g, h ∈ GK . Set c := log(c) : GK → LieU(A). By the Baker-Campbell-Hausdorff formula,

(†) c(gh) = c(g) + g · c(h) + 1

2
[c(g), g · c(h)].

Our definition of the Lyndon-Demuškin cochain complex is motivated by (†).

1.4.3.1 Definition Let A be an OE-algebra. The Lyndon-Demuškin complex with nilpotent

coefficients is defined to be the following cochain complex C•
LD(U(A)) supported on degrees [0,2]:

LieU(A)
d1−→ (LieU(A))⊕n+2 d2−→ LieU(A)

where d1 is defined by

d1(v) =

(︃
−v + xi · v +

1

2
[−v, xi · v]

)︃
i=0,...,n+1

.

We need some preparations before we define d2. An element c = (α0, · · · , αn+1) ∈ C1
LD(U(A)) can

be regarded as a function on the free group with (n+ 2) generators

c : ⟨x0, · · · , xn+1⟩ → LieU(A)

by setting c(xi) = αi for each i and extending it to the whole free group by

c(gh) := c(g) + g · c(h) + 1

2
[c(g), g · c(h)]
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(To see it is well defined, note that exp(c) is a crossed homomorphism for a free group.) We define

d2 as

d2(c) := c(R) = c(xq
0(x0, x1)(x2, x3) . . . (xn, xn+1)).

For, c = d1(v), we have c(xi) = −v+xi ·v+[−v, xi ·v]/2 and c(xj) = −v+xj ·v+[−v, xj ·v]/2.

So c(xixj) = c(xi) + xi · c(xj) + [c(xi), xi · c(xj)]/2 = −v + xixj · v + [−v, xixj · v]/2. Therefore

(d1(v))(g) = −v+g ·v+[−v, g ·v]/2 for all g in the free group. In particular, d2(d1(v)) = −v+R·v =

0.

1.4.3.2 Remark (1) When U is an abelian group, then we recover the definition (for the

cohomology of U(A)) in the previous section;

(2) The main reason we define C•
LD(U(A)) this way is because we want to compare it with

C•
LD(LieU(A)).

Note that C•
LD(LieU(A)) and C•

LD(U(A)) have the same underlying group, but their differential

d• is different.

(3) Note that d2(c) = 0 if and only if c defines a crossed homomorphism c : GK → LieU(A) in

the sense of (†).

A crossed homomorphism c : GK → LieU(A) can be interpreted as a group homomorphism

GK → U(A) ⋊ GK , g ↦→ exp(c(g)) ⋊ g. On the other hand, an element c ∈ C1
LD(U(A)) can

be interpreted as a group homomorphism rc : ⟨x0, · · · , xn+1⟩ → U(A) ⋊ ⟨x0, · · · , xn+1⟩, g ↦→

exp(c(g)) ⋊ g. So c defines a crossed homomorphism if and only if rc(R) = 1, which is exactly

d2(c) = 0.

(4) The differential maps are generally non-linear.
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1.4.3.3 Definition We define Zi
LD := (di+1)−1(0), and Bi

LD := di(Ci−1
LD ) for i = 0, 1, 2.

1.4.3.4 Proposition For any OE-alegbra A, we have

H0(GK , U(A)) ∼= Z0
LD(U(A))

and a surjection of pointed sets

Z1
LD(U(A))→ H1(GK , U(A)).

Proof. The second claim is explained in remark 1.4.3.2(3). The first claim follows from the defini-

tions.

LieU has a lower central series filtration. Let Z(U) be the center of U . Write Uad for U/Z(U).

Since U is nilpotent of class 2, LieU is isomporphic to its graded Lie algebra LieU ∼= gr•(LieU).

We will fix a grading LieU ∼= Z(U) ⊕ Uad of the Lie algebra LieU once for all. In particular, we

fixed a projection pr : LieU → Z(U).

1.4.4. Cup products Let c ∈ C1
LD(U

ad(A)). Let ˜︁c ∈ C1
LD(U(A)) be the (unique) lift of c such

that pr(˜︁c(x0)) = . . . pr(˜︁c(xn+1)) = 0. Define

Q(c) := pr(d2(˜︁c)) = pr(˜︁c(R)) ∈ C2
LD(Z(U)(A)).

By expanding Q(−) using the Baker-Campbell-Hausdorff formula, we can show it is a quadratic

form. By induction on length for any word w ∈ ⟨x0, . . . , xn+1⟩, we have c(w) =
∏︁

i αic(xi) +
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∑︁
i,j βij[c(xi), γijc(xj)] with αi, βij, γij ∈ Z[⟨x0, . . . , xn+1⟩]. Hence pr˜︁c(w) = pr(

∑︁
i,j βij[c(xi), γijc(xj)])

is a quadratic form.

We define

C1
LD(U

ad(A))× C1
LD(U

ad(A))
∪−→ C2

LD(Z(U)(A))

x ∪ y :=
1

2
(Q(x+ y)−Q(x)−Q(y))

which is a symmetric bilinear form.

Remark Alternatively, we can choose an arbitrary lift ˜︁c of c. Now pr(d2(˜︁c)) is an inhomogeneous

polynomial of degree two. We recover Q by taking the homogeneous part of degree two.

1.4.4.1 Lemma Under the identification C1
LD(U(A)) = C1

LD(U
ad(A))⊕C1

LD(Z(U)(A)), we have

Z1
LD(U(A)) = {(x, y) ∈ C1

LD(U
ad(A))⊕ C1

LD(Z(U)(A))|d2x = 0, x ∪ x+ d2y = 0}.

Proof. It is obvious from the definition of d2 and Q. The projection of d2(x, y) to C2
LD(U

ad(A)) is

d2x; and the projection of d2(x, y) to C2
LD(Z(U)(A)) is x ∪ x+ d2y.

Write H1
LD(U

ad)(A) for Z1
LD(U

ad)(A)/B1
LD(U

ad)(A).

1.4.4.2 Lemma The pairing ∪ on the cochain level induces a symmetric pairing on the coho-

mology level

H1
LD(U

ad(A))×H1
LD(U

ad(A))
∪−→ H2

LD(Z(U)(A)).
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Proof. It suffices to show for all x ∈ Z1
LD(U

ad)(A) and y ∈ B1
LD(U

ad)(A), Q(x + y) − Q(x) ∈

B2
LD(Z(U)(A)) (taking x = 0 gives Q(y) ∈ B2

LD(Z(U)(A))).

Let ˜︁x ∈ C1
LD(U(A)) be the unique extension of x such that pr ˜︁x = 0. The cocycle ˜︁x represents a

group homomorphism ρ˜︁x : ⟨x0, · · · , xn+1⟩ → U(A)⋊ ⟨x0, · · · , xn+1|R⟩ such that ρ˜︁x(R) ∈ Z(U)(A).

There exists n ∈ U(A) such that nρ˜︁xn−1 is represented by a cocycle (x + y, f) extending x + y.

We have nρ˜︁x(R)n−1ρ˜︁x(R)−1 = 1 ∈ U(A)⋊ ⟨x0, · · · , xn+1|R⟩ since ρ˜︁x(R) lies in the center of U(A).

Since Q(x + y) − d2(f) = nρ˜︁x(R)n−1 and Q(x) = ρ˜︁x(R), we have Q(x + y) − Q(x) = d2f ∈

B2
LD(Z(U)(A)).

We now compare it with group cohomology.

1.4.4.3 Lemma There exists an isomorphism of F-vector spacesH2
LD(Z(U)(F))

∼=−→ H2(GK , Z(U)(F))

such that the following diagram commutes

H1
LD(U

ad(F))×H1
LD(U

ad(F)) ∪ →→

↓↓

H2
LD(Z(U)(F))

∼=
↓↓

H1(GK , U
ad(F))×H1(GK , U

ad(F)) ∪ →→ H2(GK , Z(U)(F))

Proof. Say dimF H
1(GK , U

ad(F)) = d. The cup product (which is symmetric bilinear) can be

thought of as a quadratic polynomial in F[X1, · · · , Xd]. To show the two cup products differ by

a unit, it suffices to show they have the same zero locus in the affine space Ad. On the group-

theoretic side, for [x] ∈ H1(GK , U
ad(F̄p)), [x] ∪ [x] = [0] if and only if [x] extends to a cocycle in

H1(GK , U(F̄p)). So it remains to show the same thing is true on the Lyndon-Demuškin side. This

has been proved in Lemma 1.4.4.1. Let [x] ∈ H1
LD(U

ad(F)). Assume x ∪ x ∈ B2
LD(Z(U)(F̄p). Say

x ∪ x = dy, y ∈ C1
LD(Z(U)(F̄p)). Then d2(x,−y) = 0, and thus (x,−y) ∈ Z1

LD(U(F̄p)). Conversely
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if (x, y) ∈ Z1
LD(U(F̄p)) for some y, then [x] ∪ [x] = [−d2y] = 0.

Recall Z1
LD(U(A)) (Lyndon-Demuškin complex with non-abelian coefficients) and Z1

LD(LieU(A))

(Lyndon-Demuškin complex with abelian coefficients) are both subsets of C1
LD(U(A)).

1.4.4.4 Lemma If Z(U)(F) ∼= F, then

Z1
LD(U(F)) ⊂ Z1

LD(LieU(F))

that is, the non-abelian cocycles with U(F)-coefficients are automatically abelian cocycles with

(LieU(F))-coefficients.

Proof. We have remarked in 1.4.3.2(2) that C1
LD(U(F)) and C1

LD(LieU(F)) have the same under-

lying space. By Lemma 1.4.4.1, an element of Z1
LD(U(F)) is a pair (x, y) such that d2x = 0

and x ∪ x + d2y = 0. By our assumption that GK acts on F trivially and Corollary 1.1.0.3,

C2
LD(Z(U)(F)) = H2(GK , Z(U)(F)) and thus B2

LD(Z(U)(F)) = 0. So d2y = 0 automatically, and

(x, y) defines an element of Z1
LD(LieU(F)).

2. An analysis of cup products

Let E be a p-adic field with ring of integers OE, residue field F and uniformizer ϖ.

Let U be a smooth connected unipotent group of class 2 over SpecOE, with center Z(U) ∼= Ga.

Write Uad for U/Z(U).
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2.0.1. Definition Let K ′ be a p-adic field. A Lyndon-Demuškin action GK′ → Aut(U)(OE) is

said to be mildly regular if the following are satisfied:

(MR1) H0(GK′ , Uad(E)) = 0;

(MR2) The bilinear pairing

∪F : C1
LD(U

ad(F))× C1
LD(U

ad(F))→ C2
LD(Z(U)(F))

is non-degenerate.

2.0.1.1 Remark In practice U is the unipotent radical of a parabolic subgroup of a reductive

group and (MR2) is equivalent to “p being not too small”. We worked out the G2-case in Appendix

4.7, and showed that if p > 5, (MR2) always holds. The same proof but with more complicated

notation should work for general reductive groups.

2.0.1.2 Remark In general, (MR2) can be checked by computer algebra systems because it

is a finite field vector space question for a finite number of small p’s. We include an algorithm

(written in SageMath) in Appendix 4.8.

The following proposition is a summary of Appendix 4.7:

Proposition If U is the unipotent radical of the short root parabolic of G2 or the quotient

of the unipotent radical of the long root parabolic of G2 by its center, then (MR2) is true when

p ≥ 5.
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2.0.2. Definition Given a tuple of labeled Hodge-Tate weights λ, we say λ is slightly less than 0

if for each σ : K ′ ↪→ Q̄p, λσ consists of non-positive integers, and for at least one σ, λσ consists of

negative integers. (The cyclotomic character has Hodge-Tate weight −1.)

2.0.3. Proposition Assume p ≥ 5. If U is the unipotent radical of the short root parabolic of

G2 or the quotient of the unipotent radical of the long root parabolic of G2 by its center, then

GK′ → Aut(U)(OE) is mildly regular if Uad(E) is Hodge-Tate of labeled Hodge-Tate weights

slightly less then 0.

Proof. Write λ for the labeled Hodge-Tate weights of the Galois module Uad(E). IfH0(GK′ , Uad(E)) ̸=

0, then for all embedding σ : K ′ ↪→ Q̄p, 0 ∈ λσ.

The proposition now follows from Remark 2.0.1.2.

2.1. Cup products mod ϖ

2.1.1. Lemma The image of Z1
LD(U

ad(OE))→ C1
LD(U

ad(F)) has codimension at most dimE Uad(E).

Proof. Say dimFC
1
LD(U

ad(F)) = rankOE
C1

LD(U
ad(OE)) = N .

Since Z1
LD(U

ad(OE)) is the kernel of C
1
LD(U

ad(OE))→ C2
LD(U

ad(OE)), and rankOE
C2

LD(U
ad(OE)) =

dimE Uad(E), we have

rankOE
Z1

LD(U
ad(OE)) ≥ N − dimE Uad(E).

Since C2
LD(U

ad(OE)) is torsion-free, Z1
LD(U

ad(OE)) is saturated in C1
LD(U

ad(OE)), and is thus

a direct summand. In particular, the image of Z1
LD(U

ad(OE)) in C1
LD(U

ad(F)) has dimension

≥ N − dimE Uad(E).
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2.1.2. Lemma If

∪F : C1
LD(U

ad(F))× C1
LD(U

ad(F))→ C2
LD(Z(U)(F))

is non-degenerate, then the kernel of

∪′F : Z1
LD(U

ad(OE))/ϖ × Z1
LD(U

ad(OE))/ϖ → C2
LD(Z(U)(F))

has dimension at most dimE Uad(E).

Remark Note that Z1
LD(U

ad(F)) ̸= Z1
LD(U

ad(OE))/ϖ in general.

Proof. For ease of notation, write C for C1
LD(U

ad(F)), and write Z for the image of Z1
LD(U

ad(OE))

in C. Note that Z ∼= Z1
LD(U

ad(OE))/ϖ by the proof of the above lemma.

Let K ⊂ Z be the kernel of ∪′F. Since the cup product on C is non-degenerate, there exists

a subspace F ⊂ C of dimension equal to that of K, such that the restriction of the cup product

to (F + K) is also non-degenerate. Since F ∩ Z = 0, dimC ≥ dim(F + Z) = dimZ + dimF =

dimZ + dimK. The lemma now follows from the previous lemma.

We also record the following lemma whose proof is similar.

2.1.3. Lemma (1) The image of Z1
LD(U

ad(F))→ C1
LD(U

ad(F)) has codimension at most dimE Uad(E).

(2) If

∪F : C1
LD(U

ad(F))× C1
LD(U

ad(F))→ C2
LD(Z(U)(F))

is non-degenerate, then the kernel of

∪F : Z1
LD(U

ad(F))× Z1
LD(U

ad(F))→ C2
LD(Z(U)(F))
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has dimension at most dimE Uad(E).

2.2. Nontriviality of cup products

2.2.1. Example: the completely split case In this paragraph we analyze the special case

where the GK′ action on Uad(F) is trivial and H2(GK′ , Z(U)(F)) = Z(U)(F) = F. It will be used

in the proof of Theorem 2.2.2. We keep the notations from subsection 1.4.

Since the center of LieU is one-dimensional, the Lie bracket

Uad(F)× Uad(F) [−,−]−−−→ Z(U)(F)

is a non-degenerate, alternating pairing. Choose a basis {e1, · · · , ek, e′1, · · · , e′k} of Uad(F) such

that [e′i, e
′
j] = [ei, ej] = 0 and [ei, e

′
j] = −[e′i, ej] = δi,j. Since by assumption the GK′-action on

Uad(F) is trivial, the cup product

∪ : H1(GK′ , Uad(F))×H1(GK′ , Uad(F))→ H2(GK′ , Z(U)(F))

is isomorphic to the (exterior) direct sum of cup products

∪i : H1(GK′ ,Fei ⊕ Fe′i)×H1(GK′ ,Fei ⊕ Fe′i)→ H1(GK′ ,F)

Write ∧ for the usual cup product H1(GK′ ,F)×H1(GK′ ,F)→ H2(GK′ ,F) which appears in local
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Tate duality. By definition, for a, b ∈ H1(GK′ ,F) we have

Q(aei + be′i) = B(aei + be′i, aei + be′i)

= ((g, h) ↦→ [a(g)ei + b(g)e′i, a(h)ei + b(h)e′i])

= ((g, h) ↦→ (a(g)b(h)− b(g)a(h))

= a ∧ b− b ∧ a

= 2a ∧ b

and thus for a1, b1, a2, b2 ∈ H1(GK′ ,F)

B(a1ei + b1e
′
i, a2ei + b2e

′
i) = 2(a1 ∧ b2 + a2 ∧ b2)

Since ∧ is a non-degenerate pairing, B is also a non-degenerate pairing.

2.2.2. Theorem Let K ′/K be a finite Galois extension of p-adic fields of prime-to-p degree. Let

r : GK → Aut(U)(OE) be a continuous group homomorphism.

If r|GK′ is Lyndon-Demuškin and mildly regular, then one of the following are true:

(i) H2(GK , Z(U)(F)) = 0, or

(ii) the symmetric bilinear pairing

H1(GK , U
ad(OE))⊗ F×H1(GK , U

ad(OE))⊗ F→ H2(GK , Z(U)(OE))⊗ F

is non-trivial.
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RemarkNote thatH1
LD(U

ad(OE)) ∼= H1(GK′ , Uad(OE)), andH1(GK′ , Uad(OE))
GK = H1(GK , U

ad(OE)).

The symmetric pairing in the theorem is the restriction to H1(GK′ , Uad(OE)) of the symmetric

pairing defined in Lemma 1.4.4.2.

Proof. Assume H2(GK , Z(U)(F)) ̸= 0. Consider the diagram

H1(GK , U
ad(OE))×H1(GK , U

ad(OE)) →→
↙ ↖

↓↓

H2(GK , Z(U)(OE))

∼=
↓↓

H1(GK′ , Uad(OE))×H1(GK′ , Uad(OE)) →→ H2(GK′ , Z(U)(OE))

Z1
LD(U

ad(OE))× Z1
LD(U

ad(OE))

↑↑

→→ C2(Z(U)(OE))

↑↑

By Lemma 2.1.2, the kernel of

H1(GK′ , Uad(OE))/ϖ ×H1(GK′ , Uad(OE))/ϖ → H2(GK′ , Z(U)(F))

has F-dimension at most dimE Uad(E). Write ∆ for GK/GK′ , which acts on H1(GK′ , Uad(OE))

with fixed-point subspace H1(GK , U
ad(OE)).

By an averaging argument (explained below), the kernel of

H1(GK , U
ad(OE))/ϖ ×H1(GK , U

ad(OE))/ϖ → H2(GK , Z(U)(F))

is contained in the kernel of

H1(GK′ , Uad(OE))/ϖ ×H1(GK′ , Uad(OE))/ϖ → H2(GK′ , Z(U)(F))
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and thus has F-dimension at most dimE Uad(E). (Let [c] ∈ H1(GK , U
ad(OE))/ϖ and suppose

[c]∪ [d] = 0 for all [d] ∈ H1(GK , U
ad(OE))/ϖ. Let [c′] ∈ H1(GK′ , Uad(OE))/ϖ. Then

∑︁
σ∈∆ σ([c]∪

[c′]) = [c]∪
∑︁

σ∈∆ σ([c′]) = 0. Since H2(GK , Z(U)(F)) ̸= 0 and H2(GK′ , Z(U)(F)) is 1-dimensional,

we have H2(GK , Z(U)(F)) = H2(GK′ , Z(U)(F)) and thus
∑︁

σ∈∆ σ([c] ∪ [c′]) = #∆σ([c] ∪ [c′]).)

By the local Euler characteristic,

dimE H1(GK , U
ad(E)) = dimE H2(GK , U

ad(E)) + dimE H0(GK , U
ad(E)) + dimE Uad(E)[K : Qp]

≥ dimE H2(GK , U
ad(E)) + dimE Uad(E).

We will now consider two possibilities: H2(GK , U
ad(F)) ̸= 0 and H2(GK , U

ad(F)) = 0.

Case H2(GK , U
ad(F)) ̸= 0. Since H2(GK , U

ad(F)) ̸= 0, H2(GK , U
ad(OE)) is non-trivial.

So either we have dimE H2(GK , U
ad(E)) > 0, or H2(GK , U

ad(OE)) has non-trivial torsion. If

H2(GK , U
ad(OE)) has non-trivial torsion, then again by the local Euler characteristic (mod ϖ ver-

sion), H1(GK , U
ad(OE)) also has non-trivial torsion. In either case, dimF H

1(GK , U
ad(OE))/ϖ ≥

dimE Uad(E) + 1. So the kernel of the cup product is a proper subspace of H1(GK , U
ad(OE))/ϖ.

If K ̸= Qp, then

dimE H1(GK , U
ad(E)) = dimE H2(GK , U

ad(E)) + dimE H0(GK , U
ad(E)) + dimE Uad(E)[K : Qp]

≥ 2 dimE Uad(E)

and (iii) must be true.

Case H2(GK , U
ad(F)) = 0. By Nakayama’s Lemma, H2(GK , U

ad(OE)) = 0. By [EG19],

there exists a perfect OE-complex [C0 → C1 → C2] concentrated in degrees [0, 2] which computes
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H•(GK , U
ad(OE)). By the universal coefficient theorem, there exists a short exact sequence

0→ H1(C•)⊗ F→ H1(C• ⊗ F)→ TorOE
1 (H2(C•),F)→ 0

So H1(GK , U
ad(OE))⊗OE

F = H1(GK , U
ad(F)). We assume (i) and (ii) are false, and try to get a

contradiction. The kernel of

H1(GK , U
ad(OE))⊗ F×H1(GK , U

ad(OE))⊗ F→ H2(GK , Z(U)(OE))⊗ F

has dimension h1 := dimFH
1(GK , U

ad(F)). By the local Euler characteristic,

(*) h1 = dimE Uad(E)[K : Qp] + dimFH
0(GK , U

ad(F)).

By Lemma 2.1.3, the kernel kZ of

Z1
LD(U

ad(F))× Z1
LD(U

ad(F))→ H2(GK′ , Z(U)(F))

has dimension at most dimE Uad(E). Since the cup product is trivial on H1(GK , U
ad(F)), we have

(**) dim kZ ≥ dimH1(GK , U
ad(F)) + dimB1

LD(U
ad(F)) = h1 + dimB1

LD(U
ad(F)).

Combining (∗) and (∗∗), we have

dimE Uad(E) ≥ dimF kZ ≥ dimE Uad(E)[K : Qp] + dimF H
0(GK , U

ad(F)) + dimB1
LD(U

ad(F))
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So we conclude that

1 = [K : Qp]

0 = H0(GK , U
ad(F))

0 = B1
LD(U

ad(F))

In particular, we have H0(GK′ , Uad(F)) = Uad(F), and the cup product on H1(GK′ , Uad(F)) has

dimension exactly dimE Uad(E). However, by Example 2.2.1, the cup product on H1(GK′ , Uad(F))

is non-degenerate by local Tate duality.

Theorem 2.2.2 is used in the following scenerio.

2.2.2.1 Lemma Let L be a split reductive group over F. Let r : GK → L(F) be a Galois

representation valued in L. Let rss be the semi-simplification of r. Write GK′ for the kernel of rss.

Then the degree [K ′ : K] divides (q − 1)r#WL where

� r is the rank of L,

� q is a power of p, and

� #WL is the cardinality of the Weyl group of L.

Proof. By Theorem 2.3, rss is tamely ramified and factors through the normalizer of a maximal

torus of L (after possibly extending the base field).

In particular, if L = G2 and p > 3, the kernel of rss defines a Galois extension K ′/K of

prime-to-p degree; and r|GK′ is Lyndon-Demuškin since it has trivial semi-simplification.
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3. Non-abelian obstruction theory via Lyndon-Demuškin cocycle group with external

Galois action

Let K/Qp be a p-adic field. Let E/Qp be a finite extension with ring of integers OE, residue field

F, and uniformizer ϖ.

Let L be a split reductive group over OE. Fix a Galois representation

r◦ : GK → L(OE)

throughout this section.

Let U be a unipotent group over OE whose adjoint group is abelian. Let Z(U) be the center

of U . The adjoint group Uad is defined to be U/Z(U).

Fix a group scheme homomorphism ϕ : L → Aut(U) throughout this section. In particular,

there is a Galois action ϕ(r◦) : GK
r◦−→ L(OE)

ϕ(OE)−−−→ Aut(U)(OE). We will talk about non-abelian

Galois cohomology H•(GK , U(OE)) and H•(GK , U(F)) using this Galois action throughout this

section.

Let K ′/K be a prime-to-p, finite Galois extension of K containing the group of p-th root of

unity, such that r◦(GK′) ⊂ L(OE) is a pro-p group. Write ∆ for Gal(K ′/K). Set Γ := GK , and

H := GK′ .

3.1. Non-abelian inflation-restriction Let R be either OE or F. For ease of notation, write U

for U(R).
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3.1.0.1 Non-abelian Galois cohomology We recall a few facts about the non-abelian ver-

sion of Galois cohomology. Let Γ be a (profinite) group Let

0→ A→ B → C → 0

be a short exact sequence of groups with continuous Γ-action. If A → B is central, that is, A is

contained in the center of B, then we have a long exact sequence ([Se02, Proposition 43, 5.7])

1→ AΓ → BΓ → CΓ

−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)

δ−→ H2(Γ, A)

of pointed sets. Let H ⊂ G be a closed normal subgroup. Then there is an exact sequence ([Se02,

5.8])

1→ H1(Γ/H,AH)→ H1(Γ, A)→ H1(H,A)Γ/H .

If A is an abelian group, then the sequence above can be upgraded to the inflation-restriction exact

sequence:

1→ H1(Γ/H,AH)→ H1(Γ, A)→ H1(H,A)Γ/H → H2(Γ, AH).

3.1.0.2 Theorem [Ko02, Theorem 3.15] Let Γ be a profinite group, H a normal subgroup of

finite index, and A an (abelian) G-module whose elements have finite order coprime to (Γ : H).

Then

Hn(Γ/H,AH) = 0
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for all n ≥ 1, and the restriction

Hn(Γ, A)→ Hn(H,A)Γ/H

is an isomorphism.

The fact above gives the following diagram with exact columns

H1(Γ, Z(U))
∼=
res
→→

↓↓

H1(H,Z(U))∆

↓↓
H1(Γ, U) ↘

↙

res
→→

α1

↓↓

H1(H,U)∆

α2

↓↓
H1(Γ, Uad)

∼=
res
→→

δ1
↓↓

H1(H,Uad)∆

δ2
↓↓

H2(Γ, Z(U)) ↘
↙ →→ H2(H,Z(U))

3.1.0.3 Proposition The restriction map of non-abelian 1-cocycles

H1(Γ, U)→ H1(H,U)∆

is a bijection.

Proof. Let [c] ∈ H1(H,U)∆. Since δ1(res
−1(α2[c])) = δ2(α2[c]) = 0, there exists [b] ∈ H1(Γ, U)

such that α1(res([b])) = α2([c]). Since α−1
2 (α2([c])) is a H1(H,Z(U))∆-torsor, we can twist [b] to

make res([b]) = [c].
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3.1.0.4 Representation-theoretic interpretation of non-abelian 1-cocycles Let P be a

group which is a semi-direct product L ⋉ U . Let qL : P → L be the quotient map. Fix a section

L → P of qL, which allows us to identify (set-theoretically) P with U × L. Write qU : P → U

be the projection determined by the fixed section L → P . For g ∈ P , write g = gUgL such

that gU ∈ U × {1} and gL ∈ {1} × L. Let Γ be a profinite group. Let τ̄ : Γ → L be a group

homomorphism. Let τ : Γ→ P be a lift of τ̄ . Set c := qU ◦ τ : Γ→ U . Then

c(gh) = qU(τ(g)τ(h)) = qU(τ(g)Uτ(g)Lτ(h)Uτ(h)L)

= qU(τ(g)Uτ(g)Lτ(h)Uτ(g)
−1
L τ(gh)L) (qL is a group homomorphism)

= c(g)(τ(g)Lc(h)τ(g)
−1
L )

=: c(g)(τ(g)L · c(h))

is a (non-abelian) crossed homomorphism. So H1(Γ,U) classifies liftings τ of τ̄ up to equivalence.

3.1.1. Lifting characteristic p cocycles via inflation-restriction

Let [c̄] ∈ H1(Γ, U(F)) be a characteristic p cocycle. Assume the restriction [c̄|H ] ∈ H1(H,U(F))

has a characteristic 0 lift [ch] ∈ H1(H,U(OE)). We want to build a lift [c] ∈ H1(Γ, U(OE)) of [c̄]

using [ch].

Note that when U is an abelian group, this can be easily achieved by taking the average

[c] :=
1

#∆

∑︂
g∈∆

g · [ch].

Here we identify H1(Γ, U(OE)) with a subset of H1(H,U(OE)) via Proposition 3.1.0.3.
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Such a trick does not work anymore when U is non-abelian. Nonetheless, we have the following:

3.1.1.1 Lemma If there exists [ch] ∈ H1(H,U(OE)) and [d] ∈ H1(Γ, Uad(OE)) such that

� α2([ch]) = res([d]) and

� [ch|H ] mod ϖ = [c̄|H ]

then there exists [c] ∈ H1(Γ, U(OE)) which is a lifting of [c̄].

H1(Γ, Z(U)(OE))
↘ ↙

res
→→

↓↓

H1(H,Z(U)(OE))

↓↓
H1(Γ, U(OE))

↘ ↙

res
→→

α1

↓↓

H1(H,U(OE))

α2

↓↓

∋ [ch]

[d] ∈ H1(Γ, Uad(OE)) res
→→

δ1
↓↓

H1(H,Uad(OE))

δ2
↓↓

H2(Γ, Z(U)(OE))
↘ ↙ →→ H2(H,Z(U)(OE))

Proof. Since

δ1([d]) = δ2(α2([ch])) = 0,

[d] = α1([c
′]) for some [c′] ∈ H1(Γ, U(OE)). Since res([c

′]) and [ch] ∈ H1(H,U(OE)) have the same

image in H1(H,Uad(OE)) (via α2), it makes sense to talk about the difference res([c′]) − [ch] ∈
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H1(H,Z(U)(OE)).
1 Consider the following diagram

H1(Γ, Z(U)(OE)) →→
↙ ↖

res

↓↓

H1(Γ, Z(U)(F)) δ →→
↙ ↖

res

↓↓

H2(Γ, Z(U)(OE))↙ ↖

↓↓
H1(H,Z(U)(OE)) →→ H1(H,Z(U)(F)) δ →→ H2(H,Z(U)(OE))

Let [c̄′] ∈ H1(Γ, Z(U)(F)) be the reduction mod ϖ of [c′]. Since res([c̄′])− [c̄h] has a lift,

δ(res([c̄′]− [c̄h])) = 0 ∈ H2(H,Z(U)(F)).

Therefore

δ([c̄′]− [c̄]) = δ(res([c̄′]− [c̄])) = δ(res([c̄′]− [c̄h])) = 0.

and [c̄′]− [c̄] has a characertistic 0 lift [x], and [c] := [c′]− [x] is a lift of [c̄].

The purpose of the whole Section 4.3 is to prove Theorem 3.3.2 which extends the above lemma.

3.2. External Galois action on the Lyndon-Demuškin cocycle group

The earlier subsection shows there is an identification

H1(Γ, U(OE)) ∼= H1(H,U(OE))
∆.

The goal of this subsection is to upgrade this identification to the cochain level.

Since the Galois action

ϕ(r◦)|GK′ : GK′ → U(OE)

1H1(H,U(OE)) is a H1(H,Z(U)(OE))-principle homogeneous space.
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is Lyndon-Demuškin, we have a Lyndon-Demuškin complex C•
LD(U(OE)) computingH•(H,U(OE)).

Recall that in paragraph 1.4.3.1, we explained a 1-cochain c ∈ C1
LD(U(OE)) is the same as a func-

tion

c : ⟨x0, · · · , xn+1⟩ → (LieU)(OE)

such that

c(gh) = c(g) + g · c(h) + 1

2
[c(g), g · c(h)]

for all g, h; or, equivalently, a function

c : ⟨x0, · · · , xn+1⟩ → U(OE)

such that

c(gh) = c(g)(g · c(h))

for all g, h.

A cochain c : ⟨x0, · · · , xn+1⟩ → U(OE) lies in Z1
LD(U(OE)) if and only if it factors through the

(discrete) Demuškin group ⟨x0, · · · , xn+1|R⟩ (see Remark 1.4.3.2(3)).

Let c ∈ Z1
LD(OE), regarded as a function ⟨x0, . . . , xn+1|R⟩ → U(OE). Since U(OE) is a pro-p

group, the crossed homomorphism necessarily factors through the pro-p completion, that is, we

have a commutative diagram

⟨x0, . . . , xn+1|R⟩

π
↓↓

c →→ U(OE)

GK′(p) ˆ︂⟨x0, . . . , xn+1|R⟩
p

ˆ︁c →→
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Since we have identified the pro-p quotient ofGK′ with the pro-p completion of ⟨x0, · · · , xn+1|R⟩,

we can define, for each g ∈ GK , an automorphism αg of Z1
LD(U(OE)) via

αg(c) := (h ↦→ g · ˆ︁c(g−1π(h)g)).

So we defined an action of GK on Z1
LD(U(OE)).

For ease of notation, write g · c for αg(c). Note that (g · c)(h) = (αg(c))(h) is different from

g · c(h). We apologize for the confusing notation.

3.2.0.1 Remark We don’t know whether or not we can define a GK-action on the whole

cochain group C1
LD(U(OE)). It seems to involve some subtle combinatorial group theory.

3.2.0.2 Digression We conjecture that the cup product

∪ : Z1
LD(U

ad(OE))× Z1
LD(U

ad(OE))→ C2
LD(Z(U(OE)))

is compatible with GK-action.

This conjecture would hold, for example, if for each g ∈ GK , the conjugation by g

ϕg : GK′ → GK′

can be lifted to an automorphism of free pro-p groups on (n+ 2)-generators

ϕg : ⟨x0, · · · , xn+1⟩ → ⟨x0, · · · , xn+1⟩.
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This is closely related to the so-called Dehn-Nielsen theorem. Classically, Dehn-Nielsen is say-

ing all automorphism of the fundamental group of the genus g closed surface Mg are induced

by a homeomorphism. The algebraic version of Dehn-Nielsen can be formualted as, under the

usual presentation of F = ⟨a1, b1, · · · , ag, bg⟩ → ⟨a1, b1, · · · , ag, bg|[a1, b1] · · · [ag, bg]⟩ ∼= π1(Mg), all

automorphism of π1(Mg) is induced from an automorphism of the free group F .

Conjecture Dehn-Nielsen holds for SpecK.

Assume Z(U(OE)) ∼= OE from now on.

3.3. Constructing non-abelian cocycles

Recall that H1(H,Uad)∆ = H1(GK , U
ad) where H = GK′ and K ′/K is a normal extension of

prime-to-p degree. Define

(Z1
LD)

∆ := {x ∈ Z1
LD|image of x in H1 is contained in (H1)∆}

= {x ∈ Z1
LD|g · x− x ∈ B1

LD for all g ∈ GK}

Since Z1
LD(U

ad(OE))
∆ is a submodule of a finite flat OE-module, it is finite OE-flat.

We keep all notations from the previous subsections.

Assume Z(U)(OE) = OE from now on.

We fix some notation. The quotient U → U/Z(U) = Uad induces maps ad : Z1
LD(U(OE)) →

Z1
LD(U

ad(OE)).
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3.3.1. Lemma Assume p ̸= 2 and the cup product

(†) ∪ : H1(GK , U
ad(OE))⊗ F×H1(GK , U

ad(OE))⊗ F→ H2(GK , Z(U)(F))

is non-trivial.

Let (c̄, f̄) ∈ Z1
LD(U(F)) (using Lemma 1.4.4.1). Assume c̄ ∈ Z1

LD(U
ad(F))∆. If c̄ admits a

characteristic 0 lift c′ ∈ Z1
LD(U

ad)(OE), then (c̄, f̄) admits a lift (c, f) ∈ Z1
LD(U(Z̄p)) such that

c ∈ Z1
LD(U

ad(Z̄p))
∆.

Proof. Pick an arbitrary lift f ∈ C1
LD(Z(U)(OE)) of f̄ . Choose a system of representatives {gi} ⊂

GK of ∆. Since [c̄] = 1
#∆

∑︁
gi · [c̄] ∈ H1(GK′ , Uad(F)), c′ − 1

#∆

∑︁
gi · c′ ∈ B1

LD(U
ad(Z̄p)). By

replacing c′ by the ∆-average 1
#∆

∑︁
gi · c′ + some coboundary, we assume c′ ∈ Z1

LD(U
ad(Z̄p))

∆.

Let λ ∈ Z̄×
p be a scalar.

Since the symmetric bilinear pairing (†) is non-trivial, there exists y ∈ Z1
LD(U

ad(OE))
∆ such

that y ∪ y ̸= 0 mod ϖ. Consider

(c′ + λy) ∪ (c′ + λy) + d2(f) = c′ ∪ c′ + d2(f) + 2λc′ ∪ y + λ2y ∪ y ∈ C2(Z(U)(OE)) ∼= OE

which is a degree two polynomial in λ whose Newton polygon has vertices

(0, vp(y ∪ y)), (1, vp(c
′ ∪ y)), (2, 0).

Since vp(y∪y) > 0, the polynomial above has at least one solution λ0 with positive p-adic valuation.

Set (c, f) := (c′ + λ0y, f).

We have (c, f) ∈ Z1
LD(U(Z̄p)) by Lemma 1.4.4.1 and c ∈ Z1

LD(U
ad(Z̄p))

∆.
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3.3.2. Theorem Assume p ̸= 2 and the cup product

∪ : H1(GK , U
ad(OE))⊗ F×H1(GK , U

ad(OE))⊗ F→ H2(GK , Z(U)(F))

is non-trivial.

Let [(c̄, f̄)] ∈ H1(GK , U(F)) be a characteristic p cocycle. If [c̄|GK′ ] ∈ H1(GK′ , Uad(F)) admits

a characteristic 0 lift in H1(GK′ , Uad(Z̄p)), then [(c̄, f̄)] admits a characteristic 0 lift [(c, f)] ∈

H1(GK , U(Z̄p)).

Proof. We choose a cocycle (c̄, f̄) ∈ Z1
LD(U(F)) which defines the cohomology class [(c̄, f̄)]. Clearly

c̄ ∈ Z1
LD(U

ad(F))∆. Say [d] ∈ H1(GK′ , Uad(Z̄p)) is a lift of [c̄], which is defined by d ∈ Z1
LD(U

ad(Z̄p)).

Write d̄ for the image of d in Z1
LD(U

ad(F̄p)). By changing d by a coboundary, we can assume d̄ = c̄.

Lemma 3.3.1 produces (c, f) ∈ Z1
LD(U(Z̄p)) such that c ∈ Z1

LD(U
ad(Z̄p))

∆. Now the theorem

follows from Lemma 3.1.1.1.

Theorem 3.3.2 is saying when U is a nilpotent group of class 2 with 1-dimensional center, there

exists a short exact sequence of pointed sets

H1(GK , U(Z̄p))→ H1(GK , U(F̄p))
δ−→ H2(GK′ , Uad(Z̄p))

under technical assumptions.

Combining Theorem 3.3.2 and Theorem 2.2.2, we have very nice obstruction theory for lifting

mod ϖ cohomology classes in the mildly regular case.
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3.3.3. Theorem Assume p ̸= 2. Let r : GK → L(OE) be a continuous group homomorphism.

Let K ′/K be a finite Galois extension of prime-to-p degree such that r|GK′ is Lyndon-Demuškin

and mildly regular.

There is a short exact sequence of pointed sets

H1(GK , U(Z̄p))→ H1(GK , U(F̄p))
δ−→ H2(GK′ , Uad(Z̄p))

where δ has a factorization H1(GK , U(F̄p))
p−→ H1(GK , U

ad(F̄p))→ H2(GK′ , Uad(Z̄p)).

Proof. Write ∆ for GK/GK′ . By the moreover part of Theorem 2.2.2, there are three cases to

consider.

Case I: the cup product (†)H1(GK , U
ad(Z̄p))⊗F×H1(GK , U

ad(Z̄p))⊗F→ H2(GK , Z(U)(Z̄p))⊗

F is non-trivial. This is a corollary of Theorem 3.3.2.

Case II: H2(GK , Z(U)(F)) = 0. By Nakayama’s lemma, H2(GK , Z(U)(Z̄p)) = 0.

Let [(c̄, f̄)] ∈ H1(GK , U(F̄p)) be a cohomology class defined by (c̄, f̄) ∈ Z1
LD(U(F̄p)).

Set δ : H1(GK , U(F̄p))→ H2(GK′ , Uad(Z̄p)) to be the composite

H1(GK , U(F̄p))
[(c̄,f̄)] ↦→[c̄]−−−−−−→ H1(GK , U

ad(F̄p))→ H2(GK′ , Uad(Z̄p)).

If δ([(c̄, f̄)]) = 0, then there exists a lift c ∈ Z1
LD(U

ad(Z̄p)) of c̄. By replacing c by the ∆-

average of c, we assume c ∈ Z1
LD(U

ad(Z̄p))
∆. Since H2(GK , Z(U)(Z̄p)) = 0, [c ∪ c] = 0 and

thus there exists g ∈ C1
LD(Z(U)(Z̄p))

∆ such that c ∪ c = −d2(g). Write ḡ for the image of g in

C1
LD(Z(U)(F̄p)). We have ḡ − f̄ ∈ Z1

LD(Z(U)(F̄p))
∆. Since H2(GK , Z(U)(Z̄p)) = 0, there exists a

lift h ∈ Z1
LD(Z(U)(Z̄p))

∆ of f̄−ḡ. It is clear that [(c, g+h)] ∈ H1(GK , U(Z̄p)) is a lift of [(c̄, f̄)].
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3.3.4. Corollary Assume p ̸= 2. Let r : GK → L(OE) be a continuous group homomorphism.

If there exists a finite Galois extension K ′/K of prime-to-p degree such that r|GK′ is Lyndon-

Demuškin and mildly regular, then there is a short exact sequence of pointed sets

H1(GK , U(Z̄p))→ H1(GK , U(F̄p))
δ−→ H2(GK , U

ad(Z̄p))

where δ has a factorization H1(GK , U(F̄p))
p−→ H1(GK , U

ad(F̄p))→ H2(GK , U
ad(Z̄p)).

Proof. It is an immediate consequence of Theorem 3.3.3.

4. The Machinery for lifting non-abelian cocycles

Let K/Qp be a p-adic field. Let E/Qp be the coefficient field with ring of integers OE, residue

field F and uniformizer ϖ.

4.0.1. Crystalline lifting rings Let L be a connected reductive group over OE, and r̄ : GK →

L(F) be a mod ϖ representation. Let λ be a Hodge type. The crystalline lifting ring Rcrys,λ,O
r̄ of r̄ of

p-adic Hodge type λ is constructed in [BG19, Theorem 3.3.8]. It is an O-flat quotient of the univer-

sal lifting ring, and has generic fiber equidimensional of dimension dimE L+dimE ResK⊗E/K L/Pλ

where Pλ is the parabolic subgroup determined by the p-adic Hodge type λ. If λ is a regular p-adic

Hodge type, Pλ is a Borel subgroup.

4.1. A geometric argument of Emerton-Gee
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4.1.1. Definition Let F be a coherent sheaf over a scheme X. We say F is sufficiently generically

regular (= SGR) if for each s ≥ 0, the locus

Xs := {x ∈ SpecR| dimκ(x)⊗R F ≥ s}

has codimension ≥ s+ 1 in SpecR.

4.1.2. Theorem Let X = SpecR be an irreducible component of a crystalline lifting ring of r̄.

Let runiv : GK → L(R) be the universal family of Galois representations on X. Assume X[1/p] ̸= ∅.

Let F : L→ GL(V ) be an algebraic representation where V is a vector space scheme over OE.

Assume H2(GK , F (runiv)) is SGR. Given any [c̄] ∈ H1(GK , F (r̄)), there exists a Z̄p-point of X

giving rise to a Galois representation r◦ : GK → L(Z̄p), such that the 1-cocycle [c̄] admits a lift

[c] ∈ H1(GK , F (r◦)).

Proof. The proof is almost identical to that of [EG19, Theorem 6.3.2].

Instead of repeating their argument, we would like to explain the main ideas behind the proof,

and why we need the sufficiently generically regular condition.

We have a complex of finitely generated projective R-modules concentrated on degree [0, 2]

C0 → C1 d−→ C2

which computes the Galois cohomology H•(GK , F (runiv)). Let Z1 := ker(d) and B2 := Im(d).

A mod ϖ cocycle [c̄] is represented by an element c̄ in the kernel of C1/ϖ → C2/ϖ. We fix an

arbitrary lift ˜︁c ∈ C1 of c̄. We can do a formal blowup Spec ˜︁R → SpecR, so that the pull-back of
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B2 on Spec ˜︁R a locally free sheaf. To make the exposition short, we simply assume B2 is locally

free over SpecR, but we should not think of SpecR as a local ring anymore, because after formal

blow-up, there are more points in the special fiber. Now we have a sequence of locally free sheaf

of modules

C1 → B2 → C2.

The key here is we want to regard this as a sequence of vector bundles instead of sheaf of modules.

Write V (F) for Spec(SymF∨), the vector bundle associated to the coherent sheaf F . So we have

a sequence of scheme morphisms

V (C1) V (B2) V (C2)

SpecR

f

d

s
f◦s d◦s

The element ˜︁c of C1 defines a section s : SpecR → V (C1) such that the section d ◦ s : SpecR →

V (C2) intersects with the identity section eV (C2) : SpecR→ V (C2).

It turns out c̄ ∈ ker(C1/ϖ → C2/ϖ) admits a lift in Z1, as long as the section f ◦ s intersects

with the identity section eV (B2) of V (B2). The intersection (d ◦ s) ∩ eV (C2) should occur above a

codimension 1 locus of SpecR. If the support of H2 = C2/B2 is small (that is, has big codimen-

sion), then the intersection should happen at some point x ∈ SpecR outside of the support of H2,

and we are done. Of course, we oversimplified the situation, see [EG19] for a complete account.

4.2. A non-abelian lifting theorem
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4.2.1. Theorem Let U be a unipotent linear algebraic group of class 2 whose center is isomorphic

to Ga. Write Z(U) for the center of U and Uad for U/Z(U). Fix an algebraic group homomorphism

ϕ : L→ Aut(U) with graded pieces ϕad : L→ GL(Uad) and ϕz : L→ GL(Z(U)).

Fix a mod ϖ representation r̄ : GK → L(F). Let [c̄] ∈ H1(GK , U(F)) be a characteristic p

cocycle.

Let SpecR be an irreducible component of a crystalline lifting ring of r̄.

Assume

[1] H2(GK , ϕ
ad(runiv)) is SGR;

[2] p ̸= 2;

[3] There exists a finite Galois extensionK ′/K of prime-to-p degree such that ϕ(r̄)|GK′ is Lyndon-

Demuškin; and

[4] There exists a Z̄p-point of SpecR which is mildly regular when restricted to GK′ . (In par-

ticular, SpecR[1/p] ̸= 0.)

Then there exists a Z̄p-point of SpecR which gives rise to a Galois representation r◦ : GK → L(Z̄p)

such that if we endow U(Z̄p) with the GK-action GK
r◦−→ L(Z̄p)

ϕ−→ Aut(U)(Z̄p), the cocycle [c̄] has

a characteristic 0 lift [c] ∈ H1(GK , U(Z̄p)).

Proof. Combine Theorem 4.1.2 and Corollary 3.3.4.

We explain how the above theorem will be used. Let G be a connected reductive group over

OE. Let ρ̄ : GK → G(F) be a mod ϖ representation. Assume ρ̄ factors through a parabolic P ⊂ G,

with Levi decomposition P = L ⋉ U . Denote by ϕ : L → Aut(U) the conjugation action. We
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assume U is nilpotent of class 2, so Uad is an abelian group. Write r̄ for the Levi factor of ρ̄.

P (F̄p)

↓↓
GK

ρ̄
↗↗

r̄ →→ L(F̄p)

Then ρ̄ defines a cohomology class [c̄] ∈ H1(GK , ϕ(r̄)), and the theorem above can be used to lift

[c̄].

4.3. An unobstructed lifting theorem

The following result will be used in the proof of the main theorem.

4.3.1. Proposition Let V be a unipotent linear algebraic group such that V (Z̄p) is equipped with

a continuous GK-action. Let [c̄] ∈ H1(GK , V (F̄p)) be a characteristic p cocycle. Let Z(V ) be the

center of V , and write V ad for V/Z(V ). The quotient V → V ad induces a map ad : H1(GK , V )→

H1(GK , V
ad). Assume H2(GK , Z(V )(F̄p)) = 0.

If ad([c̄]) admits a lift in H1(GK , V
ad(Z̄p)), then [c̄] admits a lift in H1(GK , V (Z̄p)).

Proof. By [Se02, Proposition 43], since Z(V ) is a central normal subgroup of V , there exists a long

exact sequence of pointed sets

H1(GK , V (Z̄p))

↓↓

ad →→ H1(GK , V
ad(Z̄p))

δ →→

↓↓

H2(GK , Z(V )(Z̄p))

↓↓
H1(GK , V (F̄p)

ad →→ H1(GK , V
ad(F̄p)) →→ H2(GK , Z(V )(F̄p))

By Nakayama’s Lemma, we have H2(GK , Z(V )(Z̄p)) = 0. In particular, there exists [c′] ∈
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H1(GK , V (Z̄p) such that ad([c̄]) = ad([c′]) mod ϖ. Write [c̄′] for [c′] mod ϖ. Say [c̄] = [c̄′] + [f̄ ]

for some [f̄ ] ∈ H1(GK , Z(V )(F̄p)) (recall that H1(GK , V ) is a H1(GK , Z(V ))-torsor). Since

H1(GK , Z(V )(Z̄p)) = 0, there exists a lift [f ] of f̄ . The cocycle [c] := [c′] + [f ] is a lift of

[c̄].

5. Codimension estimates of loci cut out by H2

Assume p > 3. Let K/Qp be a finite extension. Let E/Qp be a finite extension with ring of integers

OE, uniformizer ϖ, and residue field F.

5.1. The Emerton-Gee stack

We follow the notation of [EG19]. For each d > 0, [EG19] constructed the moduli stack

Xd = XK,d of projective étale (ϕ,ΓK)-modules of rank d.

We prove a mild generalization of [EG19, Proposition 5.4.4(1)].

Let T be a reduced finite type F̄p-scheme. Let f : T → (Xa,red)F̄p
× (Xd,red)F̄p

be a morphism.

By functoriality, there is a morphism

η : (Xa,red)F̄p
× (Xd,red)F̄p

→ (Xad,red)F̄p

sending a pair of (ϕ,Γ)-modules M,N to their hom module Homϕ,Γ(M,N). The morphism η(f)

corresponds to a family ρ̄T of rank-ad Galois representations over T . We assume H2(GK , ρ̄η(t)) is

of constant rank for all t ∈ T (F̄p). By [EG19, Lemma 5.4.1], the coherent sheaf H2(GK , ρ̄T ) is

locally free of rank r as an OE-module.
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By [EG19, Theorem 5.1.29], we can choose a complex of finite rank locally free OE-modules

C0
T → C1

T → C2
T

computing H•(GK , ρ̄T ). Since H2(GK , ρ̄T ) is a locally free sheaf, the truncated complex

C0
T → Z1

T

is again a complex of locally free OT -modules. The vector bundle V (Z1
T ) := Spec(Sym(Z1

T )
∨)

associated to the locally free sheaf Z1
T parameterizes all extensions

0→ ρ̄η(t) →?→ F̄p → 0, t ∈ T (F̄p)

of the trivial GK-representation F̄p by ρ̄η(t). There are two projection morphisms

()1 : (Xa,red)F̄p
× (Xd,red)F̄p

→ (Xa,red)F̄p

and

()2 : (Xa,red)F̄p
× (Xd,red)F̄p

→ (Xd,red)F̄p

For each t ∈ T (F̄p), f(t)1 ∈ (Xa,red)(F̄p) corresponds to a rank-a Galois representation ρ̄t1 ,

and f(t)2 ∈ (Xd,red)(F̄p) corresponds to a rank-d Galois representation ρ̄t2 . We have ρ̄η(t) =

HomGK
(ρ̄t1 , ρ̄t2). So we can also regard V (Z1

T ) is a scheme parametrizing all extensions

0→ ρ̄t1 →?→ ρ̄t2 → 0, t ∈ T (F̄p)
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and we have a morphism sending extension classes to equivalence classes of GK-representations

g : V (Z1
T )→ (Xa+d,red)F̄p

.

5.1.0.1 Lemma Let e denote the dimension of the scheme-theoretic image of T in (Xa,red)F̄p
×

(Xd,red)F̄p
. Then the scheme-theoretic image of V = V (Z1

T ) in (Xa+d,red)F̄p
has dimension at most

e+ r + ad[K : Qp].

Proof. Without loss of generality, we assume T (and hence V ) is irreducible. The proof is a routine

calculation using stacks. We follow the proof of [EG19, Proposition 5.4.4] closely.

Let v ∈ V (F̄p). Write t for the composite Spec F̄p
v−→ V → T . Write f(t) for the composite f ◦ t

Write g(v) for the composite g ◦ v. Define

Tf(t) := T ×
f,(Xa,red)F̄p×(Xd,red)F̄p ,f(t)

Spec F̄p

Vg(v) := V ×
g,(Xa,red)F̄p×(Xd,red)F̄p ,g(v)

Spec F̄p

Vf(t),g(v) := Vg(v) ×
(Xa,red)F̄p×(Xd,red)F̄p ,f(t)

Spec F̄p.

Note that Vf(t),g(v)
∼= Tf(t) ×T Vg(v).

By [stacks-project, Tag 0DS4], it suffices to show, for v lying in some dense open subset of V ,

dimVf(t),g(v) ≥ dimV − (e+ r + ad[K : Qp]).

Let ρ̄f(t)1 denote the Galois representation corresponding to f(t)1 : Spec F̄p → (Xa,red)F̄p
. Let
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ρ̄f(t)2 denote the Galois representation corresponding to f(t)2 : Spec F̄p → (Xd,red)F̄p
. Say Gt1 :=

Aut(ρ̄f(t)1), and Gt2 := Aut(ρ̄f(t)2). The morphism f(t) factors through a monomorphism

[Spec F̄p/Gt1 ]× [Spec F̄p/Gt2 ] ↪→ (Xa,red)F̄p
× (Xd,red)F̄p

which induces a monomorphism

([Spec F̄p/Gt1 ]× [Spec F̄p/Gt2 ]) ×
(Xa,red)F̄p×(Xd,red)F̄p

Vg(v) ↪→ Vg(v).

So it suffices to show

(†) dimVf(t),g(v) ≥ dimV − (e+ r + ad[K : Qp]) + dimGt1 + dimGt2

for v lying in a dense open of V .

There exists an étale cover S of (Tf(t))red such that the pull-back family ρ̄S is a trivial family

with fiber ρ̄t.

Let C0
S → Z1

S denote the pullback family of C0
T → Z1

T to S. C0
S → Z1

S is also the pullback family

of the fiber C0
t → Z1

t to S. Write W for the affine scheme associated to H1(GK , ρ̄
∨
f(t)1
⊗ ρ̄f(t)2). By

the isomorphism

H1(GK , ρ̄
∨
f(t)1
⊗ ρ̄f(t)2)

∼= ExtGK
(ρ̄f(t)1 , ρ̄f(t)2)

there is a morphism W → (Xa+d,red)F̄p
. Denote by w the image of v in w. We have

S ×T Vg(v) = S ×T V ×W Wh(w).
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Let V ′ be the kernel of S ×T V → S ×F̄p
W , which is a trivial vector bundle over S. We have

dimVf(t),g(v) = dimS ×T Vg(v)

= rankV ′ + dimS + dimWh(w)

= rankZ1
T − dimH1(GK , ρ̄

∨
f(t)1
⊗ ρ̄f(t)2) + dimS + dimWh(w)

Note that dimV − dimT = rankZ1
T , and by local Euler characteristic H0(GK , ρ̄

∨
f(t)1
⊗ ρ̄f(t)2) −

H1(GK , ρ̄
∨
f(t)1
⊗ ρ̄f(t)2) + r = −ad[K : Qp]. We can replace T by a dense open of T where

e = dimT − dimTf(t) = dimT − dimS. Combine all these equalities, (†) becomes

dimWh(w) ≥ dimH0(GK , ρ̄
∨
f(t)1
⊗ ρ̄f(t)2) + dimGt1 + dimGt2

which follows from the fact that

H0(GK , ρ̄
∨
f(t)1
⊗ ρ̄f(t)2)⋊ (Gt1 ×Gt2) ⊂ Aut(ρ̄w)

and dimWh(w) ≥ dimAut(ρ̄w).

We recall some terminology from [EG19]. Denote by urx : Gm → X1 the family of unramified

characters of GK . Let T be a reduced finite type F-scheme. Let T → X be a morphism, corre-

sponding to a family ρ̄T of GK-representations over T . We can construct the family of unramified

twisting ρ̄T ⊠urx over T ×Gm. ρ̄T is said to be twistable if whenever ρ̄t
∼= ρ̄t′⊗ura for t, t

′ ∈ T (F̄p)

and a ∈ F̄×
p , we have a = 1. ρ̄T is said to be essentially twistable if for each t ∈ T (F̄p), the set of

a ̸= 1 for which ρ̄t
∼= ρ̄t′ ⊗ ura is finite.

We say ρ̄T is untwistable if ρ̄ is not essentially twistable.
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From now on, write X = (X2,red)F̄p
for the moduli stack parameterizing (ϕ,Γ)-modules of rank

2.

Let r̄univ be the universal family of (ϕ,Γ)-modules over X .

5.2. Loci cut out by H2(GK , sym
3 / det2)

Write H2 for H2(GK ,
sym3(r̄univ)
det(r̄univ)2

). Let x ∈ X (F̄p) with corresponding Galois representation

r̄x : GK → GL2(F̄p).

5.2.0.1 Lemma If r̄x is irreducible, then

h2
x := dimF̄p

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≤ 2.

Proof. An irreducible mod ϖ representation is of the shape IndGK
GK2

χ̄ for some character χ̄ of the

degree-2 unramified extension K2 of K. A direct computation shows

sym3(r̄x) = Ind(χ̄3)⊕ Ind(χ̄ det r̄x).

Both H2(GK ,
Ind(χ̄3)
det(r̄x)2

) and H2(GK ,
Ind(χ̄det r̄x)

det(r̄x)2
) has dimension at most 1. This is because the induc-

tion of a character can’t be a direct sum of two isomorphic characters (when p ̸= 2).

5.2.0.2 Corollary The locus of r̄x in X where r̄x is irreducible and

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≥ r

121



is locally closed and of dimension at most [K : Qp]− r.

Proof. Up to unramified twist, there are only finitely many irreducible representations. The au-

tomorphism group of an irreducible representation is 1-dimensional. By Lemma 5.2.0.1, we have

h2
x ≤ 2 when r̄x is irreducible.

We first consider the locus where h2
x = 2. An irreducible representation r̄x corresponds to a

morphism x : Spec F̄p → X which factors through an immersion [Spec F̄p/Gx] ↪→ X whereGx = Gm

is the automorphism group of r̄x. So the scheme-theoretic image of x is (−1)-dimensional. This

locus consists of the scheme-theoretic image of finitely many x’s, and thus has dimension −1.

Then we consider the locus where h2
x ≤ 1. This locus consists of the unramified twists of

finitely many irreducible GK-representations. By [EG19, 3.8], a morphism x : Spec F̄p → X can

be upgraded to a morphism x ⊠ ur : Spec F̄p × Gm → X whose scheme-theoretic image consists

of the unramified twists of r̄x. By [EG19, Lemma 5.3.2], the scheme-theoretic image of x ⊠ ur is

0-dimensional.

In either case, dim of locus ≤ [K : Qp]− h2
x.

5.2.0.3 Lemma If r̄x is a direct sum of distinct characters, then

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≤ 2.

Proof. Say r̄x ∼

⎡⎢⎣χ̄1

χ̄2

⎤⎥⎦. We have

sym3(r̄x)

det(r̄)2
∼= χ̄1χ̄

−2
2 ⊕ χ̄−1

2 ⊕ χ̄−1
1 ⊕ χ̄2χ̄

−2
1 .
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If χ̄1 ̸= χ̄2, then the multiset {χ̄1χ̄
−2
2 , χ̄−1

2 , χ̄−1
1 , χ̄−2

1 χ̄2} contains at most 2 isomorphic characters.

5.2.0.4 Corollary The locus of r̄x in X where r̄x is a direct sum of distinct characters and

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≥ r

is locally closed and of dimension at most [K : Qp]− r.

Proof. By Lemma 5.2.0.3, we have h2
x ≤ 2 when x̄ = α⊕ β is a direct sum of distinct characters.

In the locus where h2
x = 2, we must have ±α = ±β = F(−1). The morphism x : Spec F̄p → X

factors through [Spec F̄p/Gx] ↪→ X and dimGx = 2. So this locus is closed of dimension −2.

In the locus where h2
x ≥ 1, we have one of the following: (i) α = F(−1), (ii) β = F(−1), (iii)

α = β2(−1), (iv) β = α2(−1). By symmetry, we can only consider case (i) and (iii). In either

case, α is determined by β and β, up to unramified twists, has only finitely many choices. Let

y : Spec F̄p → (X1)red be the point corresponding to β. Let ξ : (X1)red → X be the morphism

sending β to F̄p(−1) ⊕ β (or β2(−1) ⊕ β). We claim the scheme-theoretic image Z of ξ(y ⊠ ur)

has dimension at most −1. By [stacks-project, 0DS4], there is a dense open T ⊂ Gm such that for

all F̄p-point t of T , dimZ = dimT − dimT ×X ,t Spec F̄p. Write Tt for T ×X ,t Spec F̄p. Write Gx

for Aut(r̄x). Note that Tt is a Gx-torsor over T ×X ,t [Spec F̄p/Gx] (a closed subscheme of T ). So

dimTt ≥ dimGx = 2, and thus dimZ = dimT − dimTt ≤ 1− 2 = −1.

Finally consider the locus where h2
x ≥ 0. Up to unramified twists, both α and β have finitely

many choices. Let y1 : Spec F̄p → (X1)red and y2 : Spec F̄p → (X1)red be the points corresponding

to α and β. Let Ξ : (X1)red × (X1)red → X be the morphism sending (α, β) ↦→ α ⊕ β. Let
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Z be the scheme-theoretic image of Ξ((y1 ⊠ ur) ⊠ (y2 ⊠ ur)). By a similar argument, dimZ ≤

dim(Gm ×Gm)− dimAut(r̄x) = 2− 2 = 0.

5.2.0.5 Lemma If r̄x is a direct sum of isomorphic characters, then

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≤ 4.

Proof. This is trivial because the underlying F̄p-vector space is 4-dimensional.

5.2.0.6 Corollary The locus of r̄x in X where r̄x is a direct sum of isomorphic characters and

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≥ r

is locally closed and of dimension at most [K : Qp]− r.

Proof. The automorphism group is 4-dimensional. So the locus in the moduli stack has dimension

dimGm − dimAut(r̄x) = 1− 4 = −3.

5.2.0.7 Lemma If r̄x is a non-trivial extension of two characters, then

h2
x := dimH2(GK ,

sym3(r̄x)

det(r̄x)2
) ≤ 1

and when the equality holds, the quotient character of r̄x is a character whose third power is F̄p(1).
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Proof. This is where we make use of the assumption p > 3. Say r̄x ∼

⎡⎢⎣χ̄1 c̄

χ̄2

⎤⎥⎦. We have

sym3(r̄x) ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ̄3
1 χ̄2

1c̄ ∗ ∗

χ̄2
1χ̄2 2χ̄1χ̄2c̄ ∗

χ̄1χ̄
2
2 3χ̄2

2c̄

χ̄3
2.

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We claim sym3(r̄x) has a unique GK-invariant quotient line. Let {e1, e2} be a basis of the repre-

sentation space of r̄x such that e1 is an invariant line. Then {e31, e21e2, e1e22, e32} is a basis of the

representation space of sym3(r̄x). By duality, the claim is equivalent to saying that sym3(r̄x) has a

unique invariant line. Clearly {e31} defines an invariant line. Assume there is another invariant line

span(v). We quotient sym3(r̄x) by span(e31). The quotient representation has a unique invariant

line generated by the image of e21e2. So v ∈ span(e31, e
2
1e2). But then we must have v ∈ span(e31),

since [c̄] is a non-trivial extension class.

5.2.0.8 Corollary The locus of r̄x in X where r̄x is a non-trivial extension of two characters

and

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≥ r

is locally closed and of dimension at most [K : Qp]− r.

Proof. The locus of non-trivial extensions is the complement of all previous loci, and is thus locally

closed.
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Say r̄x is the extension of β̄ by ᾱ. By Lemma 5.2.0.7, we have h2
x ≤ 1 when r̄x is a nontrivial

extension of characters. So the locus where r̄x is a non-trivial extension of characters consists of

four sub-loci:

(i) h2
x = 1 and Ext2(β, α) = 0;

(ii) h2
x = 1 and Ext2(β, α) ̸= 0;

(iii) h2
x = 0 and Ext2(β, α) = 0; and

(iv) h2
x = 0 and Ext2(β, α) ̸= 0;

By [stacks-project, 0BDI], each sub-locus is a locally closed subset.

In each of the four cases, write T ⊂ (X1,red)F̄p
× (X1,red)F̄p

for the locus of the pairs (α, β)

satisfying the corresponding condition. Say dimT = e, and dimExt2(β, α) = r. By Lemma

5.1.0.1, each sub-locus has dimension at most

e+ r + [K : Qp].

In sub-locus (i), β has only finitely many choices, so e = −1, r = 0; in sub-locus (ii), both β

and α have only finitely many choices, so e = −2, r = 1; in sub-locus (iii), both β and α can

vary in a dense open of (X1,red)F̄p
, so e = 2dim(X1,red)F̄p

= 0, r = 0; in sub-locus (iv), when α

is chosen, β has only finitely many choices, so e = −1, r = 1. We can verify that in each case

e+ r + [K : Qp] ≤ dimX − h2
x = [K : Qp]− h2

x.
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5.2.0.9 Theorem The locus of r̄x in X for which

H2(GK ,
sym3(r̄x)

det(r̄x)2
) ≥ r

is of dimension at most [K : Qp]− r.

Proof. This theorem follows immediately from Lemma 5.2.0.1, Lemma 5.2.0.7, Lemma 5.2.0.3,

Lemma 5.2.0.5, and their corollaries.

Fix a mod ϖ representation r̄ : GK → GL2(F). Let λ be a Hodge type. Let R be an irreducible

component of the crystalline lifting ring Rcrys,λ,OE
r̄ . Assume SpecR[1/p] ̸= ∅. Let runiv be the

universal family of Galois representations on R.

Since H2(GK ,
sym3(runiv)
det(runiv)2

) is a coherent sheaf, by the semicontinuity theorem, the locus Xs :=

{x ∈ SpecR| dimκ(x)⊗R H2 ≥ s} is locally closed, and has a reduced induced scheme structure.

5.2.0.10 Theorem Let R be an irreducible component of the crystalline lifting ring with reg-

ular labeled Hodge-Tate weights. If H2(GK ,
sym3(runiv)
det(runiv)2

) is ϖ-torsion, the locus

{x ∈ SpecR| dimκ(x)⊗R H2(GK ,
sym3(runiv)

det(runiv)2
) ≥ s}

for s ≤ 1 has codimension ≥ s+ 1 in SpecR.

Proof. The proof is identical to that of [EG19, Theorem 6.1.1] if we use Theorem 5.2.0.9 instead

of [EG19, Theorem 5.5.12].
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6. The existence of crystalline lifts for the exceptional group G2

6.1. Parabolics of G2

Let G2 be the Chevalley group over OE of type G2.

Let E/Qp be a finite extension with ring of integers OE, residue field F and uniformizer ϖ.

We remind the reader of the root system of G2:

5π/6 α

β β + α β + 2α β + 3α

2β + 3α

Figure 4.1: Root system of G2

6.1.1. The short root parabolic Let P ⊂ G2 be the short root parabolic, which admits a Levi

decomposition P = L ⋉ U . The Levi factor L is a copy of GL2 and the unipotent radical U is a

nilpotent group of class 2. Write Uad for U/Z(U).

Fix an isomorphism std : L ∼= GL2. We have

� Z(U) ∼= Ga, and

� Uad ∼= G⊕4
a .
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Write LieU = Z(U) ⊕ Uad. The Levi factor acts on U by conjugation. We have an isomorphism

of L-modules

LieU ∼=
1

det2
sym3(std)⊕ 1

det

where det : L → Gm is the determinant character, and std : L
∼=−→ GL2 is the fixed isomorphism.

The above short exact sequence can be upgraded to a short exact sequence of groups with L-actions

0→ 1

det
→ U → 1

det2
sym3(std)→ 0.

6.1.2. The long root parabolic Let Q ⊂ G2 be the long root parabolic, which admits a Levi

decomposition Q = L′ ⋉ V where L′ ∼= GL2 and V is a nilpotent group of class 3. Fix an

isomorphism std : L′ ∼=−→ GL2. Write det for the composition L′ std−→ GL2
det−→ GL1.

Write U ′ for V/Z(V ). Then U ′ is a nilpotent group of class 2 whose center is isomorphic to Ga.

The conjugation action of L′ on U ′ is given by U ′/Z(U ′) ∼= std, and Z(U ′) ∼= det, as L′-modules.

6.2. Theorem Assume p > 3. Let K/Qp be a p-adic field. Let ρ̄ : GK → G2(F̄p) be a mod ϖ

Galois representation. Then ρ̄ admits a crystalline lift ρ◦ : GK → G2(Z̄p) of ρ̄.

Moreover, if ρ̄ factors through a maximal parabolic and the Levi factor r̄ρ̄ of ρ̄ admits a Hodge-

Tate regular and crystalline lift r1 such that the adjoint representation ϕLie(r1) has Hodge-Tate

weights slightly less than 0, then ρ◦ can be chosen such that it factors through the same maximal

parabolic and its Levi factor rρ◦ lies on the same irreducible component of the spectrum of the

crystalline lifting ring that r1 does.

Proof. If ρ̄ is irreducible, then ρ̄ admits a crystalline lift by Theorem 1.
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The exceptional group G2 has two maximal parabolic subgroups: the short root parabolic, and

the long root parabolic.

If ρ̄ is reducible, then it factors through either parabolic subgroups.

6.2.1. The short root parabolic case

Let P ⊂ G2 be the short root parabolic. Recall that P has a Levi decomposition P = L⋉ U .

Fix an isomorphism L ∼= GL2.

By Lemma 2.2.2.1, there exists a finite Galois extension K ′/K, of prime-to-p degree such that

r̄|K′ is Lyndon-Demuškin.

Write Z(U) for center of U , and write Uad for U/Z(U). Write ϕ : L → Aut(U) for the

conjugation action, with graded pieces ϕad : L → GL(Uad) and ϕz : L → GL(Z(U)). Write ϕLie

for ϕad ⊕ ϕz.

6.2.1.1 Lemma Assume p > 2. There exists a Hodge-Tate regular crystalline lifting r◦ :

GK → L(Z̄p) of the Levi factor r̄, such that the adoint representation ϕLie(r◦) : GK
r◦−→ L(Z̄p) →

GL(LieU(Z̄p)) has labeled Hodge-Tate weights slightly less that 0.

Proof. Since L = GL2, it is well-known Hodge-Tate regular crystalline lifts of r̄ exists. We have

ϕLie(r◦) = 1
det r◦2

sym3(r◦)⊕ 1
det r◦

. So by replacing r◦ by a Tate twist, we can ensure ϕLie(r◦) labeled

Hodge-Tate weights slightly less that 0.

Let SpecR be an irreducible component (with non-empty generic fiber) of a crystalline lifting

ring Rcrys,λ
r̄ of regular labeled Hodge-Tate weights λ such that the labeled Hodge-Tate weights

ϕLie(λ) are slightly less 0. By the lemma above, such a SpecR exists.
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Let runiv : GK → L(R) be the universal Galois representation.

The mod ϖ Galois representation r̄ defines a Galois action ϕ(r̄) : GK → Aut(U(F̄p)) on U(F̄p).

By 3.1.0.4, the datum of ρ̄ : GK → G2(F̄p) is encoded in a non-abelian cocycle [c̄] ∈ H1(GK , U(F̄p)).

The strategy for lifting ρ̄ is as follows. We choose a suitable Z̄p-point x of SpecR which defines

a lift rx : GK → L(Z̄p) of r̄, and endow U(Z̄p) with the Galois action ϕ(rx) : GK
rx−→ L(Z̄p) →

Aut(U(Z̄p)). There is a map of pointed set H1(GK , U(Z̄p))→ H1(GK , U(F̄p)). If the cohomology

class [c̄] admits a lift [c] ∈ H1(GK , U(Z̄p)), then ρ̄ admits a lift ρ : GK → G2(Z̄p) whose datum is

encoded in [c]. Such a lift ρ is crystalline by the main result of Theorem 2.4.3.1, since ϕLie(r◦) has

labeled Hodge-Tate weights slightly less than 0.

By Theorem 4.2.1, to lift the non-abelian 1-cocycle [c̄], it suffices to verify the following:

[1] H2(GK , sym
3(runiv)/ det2(runiv)) is SGR;

[2] p ̸= 2;

[3] There exists a finite Galois extensionK ′/K of prime-to-p degree such that ϕ(r̄)|GK′ is Lyndon-

Demuškin; and

[4] There exists a Z̄p-point of SpecR which is mildly regular when restricted to GK′ .

[1] is verified by Theorem 5.2.0.10. Note that since the Hodge type of SpecR is chosen so that

sym3(rx)/ det(rx)
2 has labeled Hodge-Tate weights slightly less than 0, H2(GK , sym

3(rx)/ det(rx)
2)

is torsion for any characteristic 0 point x of SpecR. [3] follows from Lemma 2.2.2.1, and [4] follows

from Proposition 2.0.3.

6.2.2. The long root parabolic case
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Let Q ⊂ G2 be the long root parabolic. Q has a Levi decomposition Q = L′ ⋉ V . Fix an

isomorphism std : L′ ∼=−→ GL2. Write det for the composition L′ std−→ GL2
det−→ GL1.

Let {1} = V0 ⊂ V1 ⊂ V2 ⊂ V3 = V be the upper central series of V . Then the conjugation

action of L′ on each graded piece is given by

� V3/V2
∼= det⊗ std;

� V2/V1
∼= det;

� V1
∼= std.

Suppose ρ̄ factors through the long root parabolic Q, but not the short root parabolic P . Then

the Levi factor

r̄ : GK
ρ̄−→ Q(F̄p)→ L′(F̄p)

is necessarily an irreducible representation. If we endow each graded piece of V (F̄p) with the Galois

action GK
r̄−→ L(Z̄p)→ GL(Vi+1(F̄p)/Vi(F̄p)), then we have, by local Tate duality,

H2(GK , V3(F̄p)/V2(F̄p)) = H2(GK , r̄ ⊗ det r̄) = 0

H2(GK , V1(F̄p)) = H2(GK , r̄) = 0

So the only cohomological obstruction occurs in the second graded piece.

The datum of ρ̄ is encoded in a non-abelian cocycle [c̄] ∈ H1(GK , V (F̄p)). Just as is done

in the short root parabolic case, it suffices to lift the cocycle [c̄]. By Proposition 4.3.1, since

the only cohomological obstruction lies in the second graded piece, it suffices to lift ad([c̄]) ∈

H1(GK , (V/V1)(F̄p)).
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Write U ′ for V/V1. Recall that U ′ is a nilpotent group of class 2 with rank-1 center, and we

can directly appeal to Theorem 4.2.1. We repeat the procedure worked out in the short root case

6.2.1.

Let r◦ be a lift of r̄ such that r◦ is Hodge-Tate regular and crystalline and the Hodge-Tate

weights of r◦ are strictly less than 0.

Let SpecR be the irreducible component of the crystalline lifting ring of r̄ containing r◦. Write

runiv : GK → GL2(R) for the universal family.

Write Z(U ′) for the center of U ′, and write U
′ ad for U ′/Z(U ′). Write ϕad for the conjugate

action L′ → Aut(U
′ ad) and write ϕz for the conjugate action L′ → Aut(Z(U ′)).

Note that ϕad(runiv) = runiv and ϕz(runiv) = det runiv.

We have the following check list:

[1] H2(GK , det(r
univ)runiv) is SGR;

[2] p ̸= 2;

[3] There exists a finite Galois extensionK ′/K of prime-to-p degree such that ϕ(r̄)|GK′ is Lyndon-

Demuškin; and

[4] There exists a Z̄p-point of SpecR which is mildly regular when restricted to GK′ .

By the assumption H2(GK , det(r
univ)runiv) = 0. [3] follows from Lemma 2.2.2.1, and [4] follows

from Proposition 2.0.3.

7. Appendix: Non-denegeracy of mod ϖ cup product for G2

Let F be a finite field of characteristic p > 3. Write G2 for the Chevalley group over F of type G2.
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Let P be the short root parabolic of G2. Let P = L ⋉ U be the Levi decomposition. Let

r̄ : GK → L(F) be a Galois representation which is Lyndon-Demuškin. Since L ∼= GL2, r̄ is the

extension of two trivial characters.

Denote by ϕ : L→ Aut(U) the conjugation action.

GK acts on U via the conjugate action GK
r◦−→ L

ϕ−→ Aut(U).

We set up a computational framework to prove various claims. Let {x0, · · · , xn, xn+1} be the

Demuškin generators.

Let {e1, e2} be a basis of the representation space of r̄ such that r◦ is upper-triangular with

respect to this basis. Without loss of generality, assume e1 =

⎡⎢⎣1
0

⎤⎥⎦ , e2 =

⎡⎢⎣0
1

⎤⎥⎦. Say for i =

0, · · · , n+ 1, r̄(xi) =

⎡⎢⎣1 li

1

⎤⎥⎦.
The set {e31, e21e2, e1e22, e32} is a basis of the representation space sym3(r̄), which is identified

with Uad(F).

In diagram 6.1, α is the short root, and β is the short root. Each root x generates a root group

Ux ⊂ U . The short root parabolic P has 7 root groups: the 5 root groups

{Uβ, Uβ+α, Uβ+2α, Uβ+3α, U2β+3α}

lying above the x-axis generates the unipotent radical U , the two root groups {Uα, U−α} lying on the

x-axis are the root groups of the Levi factor group L. Say under the identification std : L ∼= GL2,
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the matrices

⎡⎢⎣0 ∗
0 0

⎤⎥⎦ are identified with the root group Uα. Now that we have identifications

span e31 ∼ Uβ

span e21e2 ∼ Uβ+α

span e1e
2
2 ∼ Uβ+2α

span e32 ∼ Uβ+3α

For ease of notation, write E0 := e31, E1 := e21e2, E2 := e1e
2
2, E3 := e32. A basis of

C1
LD(U

ad(OE)) ∼= {⟨x0, · · · , xn+1⟩ → Uβ(OE)⊕ Uβ+α(OE)⊕ Uβ+2α(OE)⊕ Uβ+3α(OE)}

is given by

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x∗
0E0, x

∗
1E0, . . . , x∗

n+1E0,

x∗
0E1, x

∗
1E1, . . . , x∗

n+1E1,

x∗
0E2, x

∗
1E2, . . . , x∗

n+1E2,

x∗
0E3, x

∗
1E3, . . . , x∗

n+1E3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where x∗

iEj is the cochain c : ⟨x0, · · · , xn+1⟩ such that c(xk) = δikEj, where δik is the Kronecker

delta. For any c ∈ C1
LD(U

ad), we can write down the B-coordinates [c]B := (cv)v∈B of c.

7.0.1. Lemma The cup products on cochains

∪F : C1
LD(U

ad(F))× C1
LD(U

ad(F))→ C2
LD(Z(U)(F))
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is non-degenerate.

Ideas We compute the cup products v ∪ w for v, w ∈ B. The matrix [∪F]B is anti-lower-

triangular, (that is, of the shape ⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ∗

0 0 ∗ ∗

0 ∗ ∗ ∗

∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
whose anti-diagonal blocks are constant invertible matrices ), and thus non-degenerate.

To help the reader better understand what’s going on, we attached SageMath code in the

Appendix 4.8.

Proof. Recall the relator of the Lyndon-Demuškin group is

R = xq
0(x0, x1)(x2, x3) . . . (xn, xn+1).

Since we are working mod ϖ, we have for any p > 5, any g ∈ GK′ , ϕ(r̄(g))p ≡ id mod ϖ (See

Appendix 4.8 for the verification). In particular, the relator R reduces to

(x0, x1) . . . (xn, xn+1)

when we compute mod ϖ. (When p = 5, things are still good, and can be confirmed by running

the SageMath code in the appendix.)

We regard cochains in C1
LD(U

ad(F)) as a (Uad(F))-valued function on the free group with gen-

erators {x0, . . . , xn+1},
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Now we let c be the “universal” mod ϖ 1-cochain. That is, we let

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ0,0, λ1,0, . . . , λn+1,0,

λ0,1, λ1,1, . . . , λn+1,1,

λ0,2, λ1,2, . . . , λn+1,2,

λ0,3, λ1,3, . . . , λn+1,3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
be indeterminants, and set

c :=
∑︂

λi,jx
∗
iEj ∈ C1

LD(U
ad(F))⊗ Z[λi,j].

The cup product

c ∪ c = Q(c) ∈ C2
LD(Z(U)(F))⊗ Z[λi,j] = Z(U)(F)⊗ Z[λi,j] ∼= F[λi,j]

will be a quadratic form in variables {λi,j}, and the matrix of this quadratic form is nothing but

the matrix [∪F]B. Recall that c∪c = Q(c) is defined to be the projection of ˜︁c(R) onto the center of

the Lie algebra LieU , where ˜︁c ∈ C1
LD(U(F)) is the unique extension of c to a U(F)-valued cochain

as is explained in Section 4.1.
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Write [∪F]B as a block matrix

[∪F]B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

β β+α β+2α β+3α

β M11 M12 M13 M14

β+α M21 M22 M23 M24

β+2α M31 M32 M33 M34

β+3α M41 M42 M43 M44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where each Mij is an (n+ 2)× (n+ 2) matrix. We say the blocks M24, M33, M34, M42, M43, M44

are strictly below the anti-diagonal, and we call M41, M32, M23 and M14 the anti-diagonal blocks.

⎛⎜⎜⎝
β β+α β+2α β+3α

β

β+α M24

β+2α M33 M34

β+3α M42 M43 M44

⎞⎟⎟⎠

Figure 4.2: Strictly below anti-diagonal

⎛⎜⎜⎝
β β+α β+2α β+3α

β M14

β+α M23

β+2α M32

β+3α M41

⎞⎟⎟⎠
Figure 4.3: Anti-diagonal blocks

Sublemma Let g = g1g2 . . . gs. Write ϕi for ϕ(r̄(g1, . . . , gi−1)). We have

˜︁c(g) = ∑︂
ϕi˜︁c(gi) + 1

2

∑︂
i<j

[ϕi˜︁c(gi), ϕj˜︁c(gj)].
Proof. An immediate consequence of the Baker–Campbell–Hausdorff formula.
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Note that ϕ(r̄((xi, xj)) = id, so

˜︁c(R) = ˜︁c(xq
0(x0, x1)(x2, x3) . . . (xn, xn+1))

=
∑︂˜︁c((x2k, x2k+1)) +

1

2

∑︂
j<k

[˜︁c((x2j, x2j+1),˜︁c((x2k, x2k+1)]

We have

˜︁c((x2k, x2k+1)) = −ϕ(x−1
2k )(ϕ(x2k+1)− 1)˜︁c(x2k) + ϕ(x−1

2k x
−1
2k+1)(ϕ(x2k)− 1)˜︁c(x2k+1) + Zk = Yk + Zk

where Zk is a sum of Lie brackets (see below), and lies in the center of the LieU . Note that

[Yj, Yk] only contributes to the part of [∪F]B which lies strictly below the anti-diagonal, because

(ϕ(x2k) − 1) and (ϕ(x2k+1) − 1) moved the appearance of the inderterminant λi,j from the root

group Uβ+jα to the root group Uβ+(j+1)α.

So it remains to analyze
∑︁

Zk. We have

2Zk = [−ϕ(x−1
2k )˜︁c(x2k),−ϕ(x−1

2k x
−1
2k+1)˜︁c(x2k+1)]

+ [−ϕ(x−1
2k )˜︁c(x2k),+ϕ(x−1

2k x
−1
2k+1)˜︁c(x2k)]

+ [−ϕ(x−1
2k )˜︁c(x2k),+ϕ(x−1

2k x
−1
2k+1x2k)˜︁c(x2k+1)]

+ [−ϕ(x−1
2k x

−1
2k+1)˜︁c(x2k+1),+ϕ(x−1

2k x
−1
2k+1)˜︁c(x2k)]

+ [−ϕ(x−1
2k x

−1
2k+1)˜︁c(x2k+1),+ϕ(x−1

2k x
−1
2k+1x2k)˜︁c(x2k+1)]

+ [ϕ(x−1
2k x

−1
2k+1)˜︁c(x2k),+ϕ(x−1

2k x
−1
2k+1x2k)˜︁c(x2k+1)]

139



Write

2Z ′
k := [−˜︁c(x2k),−˜︁c(x2k+1)]

+ [−˜︁c(x2k),˜︁c(x2k)]

+ [−˜︁c(x2k),˜︁c(x2k+1)]

+ [−˜︁c(x2k+1),˜︁c(x2k)]

+ [−˜︁c(x2k+1),˜︁c(x2k+1)]

+ [˜︁c(x2k),˜︁c(x2k+1)]

Z ′
k is obtained by replacing all Galois action in Zk by the trivial action. Zk − Z ′

k only contributes

to the part of [∪F]B with lies strictly below the anti-diagonal for a similar reason (a “shifting”

effect). It is easy to see that

Z ′
k = [˜︁c(x2k),˜︁c(x2k+1)] = ±λ2k,0λ2k+1,3 ± λ2k+1,0λ2k,3 ± 3λ2k,1λ2k+1,2 ± 3λ2k+1,2λ2k,1.

As a consequence of these computations, we see that each of the anti-diagonal blocks of [∪]B are
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constant matrices:

±M41 = ±M14 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣ −1/2

1/2

⎤⎥⎦ ⎡⎢⎣ −1/2

1/2

⎤⎥⎦
. . . ⎡⎢⎣ −1/2

1/2

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

±M32 = ±M23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣ −3/2

3/2

⎤⎥⎦ ⎡⎢⎣ −3/2

3/2

⎤⎥⎦
. . . ⎡⎢⎣ −1/2

1/2

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So [∪F]B is an invertible matrix.

The long root parabolic case is much simpler.
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8. Appendix: Sagemath code

8.0.1. Proposition Let V ⊂ B be the unipotent radical of the Borel of G2. Let g ∈ V (Z̄p). If

p > 5, then gp = id mod ϖ.

Proof. Let P ⊃ B be the short root parabolic. Let P = L ⋉ U be the Levi decomposition. Let

π : P → L be the quotient. Say π(g) =

⎡⎢⎣1 l

0 1

⎤⎥⎦. Fix a projection P → U . Also fix a projection

U → Z(U). Say the projection of g onto U/Z(U) ∼= A4 via P → U → U/Z(U) is (u0, u1, u2, u3).

Say the projection of g onto Z(U) ∼= A1 via P → U → Z(U) is u4.

For simplicity, we write g = (l;u0, u1, u2, u3;u4). We have, for any integer q,

gq = (ql; qu0,−
1

2
q(q − 1)u0l + qu1,

−1

6
q(q − 1)(2q − 1)u0l

2 + q(q − 1)u1l + qu2,

−1

4
q2(q − 1)2u0l

3 +
1

2
q(q − 1)(2q − 1)u1l

2 +
3

2
q(q − 1)u2l + qu3, qu4;

1

120
(q − 1)q(q + 1)(3q2 − 2)u2

0l
3 − 1

2
(q − 1)q(q + 1)(u2

1 + u0u2)l)

It can be computed by hand, and can be verified by computer algebra system. The Proposition

follows from the above computation immediately.

The following is the SageMath source code for computing cup product.

# Generate b a s i s v e c t o r s o f o f Cˆ1 {LD}(U)

def generate LU ( i ) :
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Ai = var ( ”A%d”%i )

Bi = var ( ”B%d”%i )

Ci = var ( ”C%d”%i )

Di = var ( ”D%d”%i )

Ei = var ( ”E%d”%i )

l i = var ( ” l%d”%i )

g i = var ( ”g%d”%i )

h i = var ( ”h%d”%i )

Li = matrix (SR, [ [ g i , l i ] , [ 0 , h i ] ] )

u i = vec to r (SR, [ Ai , Bi , Ci , Di , Ei ] )

u i = =phi ( Li . i n v e r s e ( ) )* ui

return {”L” : Li , ”L ” : Li . i n v e r s e ( ) , ”U” : ui , ”U ” : u i }

def generate LU pa i r ( i ) :

LUi = generate LU ( i )

LUi1 = generate LU ( i +1)

return [

[ LUi [ ”L ” ] , LUi [ ”U ” ] ] ,

[ LUi1 [ ”L ” ] , LUi1 [ ”U ” ] ] ,

[ LUi [ ”L” ] , LUi [ ”U” ] ] ,

[ LUi1 [ ”L” ] , LUi1 [ ”U” ] ] ,

]
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# The matrix f o r r ( x i )

def Levi ( i ) :

h i = eval ( ”h%d”%i )

l i = eval ( ” l%d”%i )

g i = eval ( ”g%d”%i )

return matrix (SR, [ [ g i , l i ] , [ 0 , h i ] ] )

# Conjugation ac t i on o f the Levi f a c t o r on Lie U

def phi (m) :

a=m[ 0 , 0 ]

b=m[ 0 , 1 ]

c=m[ 1 , 0 ]

d=m[ 1 , 1 ]

dt = det (m)

return matrix (SR, [

[ a*a*a , a*a*b , a*b*b , b*b*b , 0 ] ,

[ 3* a*a*c , a*a*d+2*a*c*b ,2* a*b*d+b*b*c , 3*b*b*d , 0 ] ,

[ 3* a*c*c , 2* a*c*d+b*c*c , 2*b*c*d+a*d*d ,3*b*d*d , 0 ] ,

[ c*c*c , c*c*d , c*d*d , d*d*d , 0 ] ,

[ 0 , 0 , 0 , 0 , dt ] ] ) / dt/dt
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# Lie b racke t on Lie U

def brkt (X,Y) :

return =vec to r (SR, [ 0 , 0 , 0 , 0 ,

X[ 0 ] *Y[3]+3*X[ 1 ] *Y[2]=Y[ 0 ] *X[3]=3*Y[ 1 ] *X[ 2 ] ] )

# The d i f f e r e n t i a l

# d ˆ2: Cˆ1 => Cˆ2

def gene ra l cup product ( pa i r s ) :

X l i s t = [ ]

l e v i = id en t i t y mat r i x (SR, 5)

for pr in pa i r s :

X l i s t . append ( l e v i *pr [ 1 ] )

l e v i = l e v i *phi ( pr [ 0 ] )

r e t = 0

for X in X l i s t :

r e t += X

for i in range (0 , len ( X l i s t ) ) :

for j in range ( i + 1 , len ( X l i s t ) ) :

r e t += (1/2) * brkt ( X l i s t [ i ] , X l i s t [ j ] )

return r e t
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def d i f f e r e n t i a l d e g r e e 2 (p = 5 , g = 5 , n = 4 ) :

p a i r s = [ ]

LU01 = generate LU pa i r (0 )

for i in range (0 , g = 1 ) :

p a i r s . append (LU01 [ 2 ] )

p a i r s . append (LU01 [ 1 ] )

p a i r s . append (LU01 [ 2 ] )

p a i r s . append (LU01 [ 3 ] )

i = 2

while i < n + 1 :

for pr in generate LU pa i r ( i ) :

p a i r s . append ( pr )

i += 2

return gene ra l cup product ( pa i r s )

# Generate the b a s i s o f C1

def ba s i s o f C1 (n ) :

b a s i s = [ ]

for l e t t e r in ”ABCD” :

for i in range (0 , n + 2 ) :

b a s i s . append ( eval ( ”%s%d”%( l e t t e r , i ) ) )

return ba s i s
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# Organize the boundary map

# de l t a : Cˆ1(Uˆad ) => Cˆ2(Z(U))

# as a quadra t i c form

# cup : Cˆ1 x Cˆ1 => Cˆ2(Z(U))

def as quad form ( expr , v a r i a b l e s ) :

c o e f = {}

remain = expr . expand ( )

for i 1 in range (0 , len ( v a r i a b l e s ) ) :

for i 2 in range ( i1 , len ( v a r i a b l e s ) ) :

var1 = va r i a b l e s [ i 1 ]

var2 = va r i a b l e s [ i 2 ]

c o e f [ ( var1*var2 ) . r e p r ( ) ] =

remain . c o e f f i c i e n t ( var1*var2 ) . expand ( ) . f a c t o r ( )

remain == coe f [ ( var1*var2 ) . r e p r ( ) ] * var1*var2

BL arr = [ ]

for i 1 in range (0 , len ( v a r i a b l e s ) ) :

BL arr . append ( [ ] )

for i 2 in range (0 , len ( v a r i a b l e s ) ) :

var1 = va r i a b l e s [ i 1 ]

var2 = va r i a b l e s [ i 2 ]

147



i f i 1 < i 2 :

va r s = ( var1 * var2 ) . r e p r ( )

else :

v a r s = ( var2 * var1 ) . r e p r ( )

c o e f s = coe f [ va r s ] . r e p r ( )

i f i 1 == i2 :

BL arr [ =1 ] . append ( co e f [ va r s ] . expand ( ) )

else :

BL arr [ =1 ] . append ( (1/2)* co e f [ va r s ] . expand ( ) )

BL mat = matrix (SR, BL arr )

return coe f , BL mat

# Cup product

def cup product (p = 5 , g = 5 , n = 4 ) :

cR = d i f f e r e n t i a l d e g r e e 2 (p , g , n )

return as quad form (cR [ 4 ] , b a s i s o f C1 (n ) , Fa l se )

# Matrix o f cup product mod p

def mat r i x sub s t i t u t e (mat , subdict , br ing=QQ) :

new arr = [ ]
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for i in range (0 , mat . nrows ( ) ) :

new arr . append ( [ ] )

for j in range (0 , mat . n co l s ( ) ) :

entry = 0 + mat [ i ] [ j ]

entry = entry . subs ( subd i c t )

new arr [ =1 ] . append ( entry )

return matrix ( bring , new arr )

def cup product mod p (p=5, g=5, n=4):

coe f , BLm = cup product (p , g , n )

sub d i c t = {}

for i in range (0 , n+2):

sub d i c t [ eval ( ”g%d”%i ) ] = 1

sub d i c t [ eval ( ”h%d”%i ) ] = 1

BLmod = mat r i x sub s t i t u t e (BLm, sub d ic t , SR)

return BLmod

If we compute cup_product_mod_p(5,4,4) in SageMath notebook, we’ll get an anti-lower-

triangular matrix in the sense of Lemma 7.0.1.
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