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INTRODUCTION

In 1827 Gauss presented to the Royal Society of Gottingen his important paper on
the theory of surfaces, which seventy-three years afterward the eminent French
geometer, who has done more than any one else to propagate these principles, charac-
terizes as one of Gtauss’s chief titles to fame, and as still the most finished and use-
ful introduction to the study of infinitesimal geometry'. This memoir may be called :
General Investigations of Curved Surfaces, or the Paper of 1827, to distinguish it
from the original draft written out in 1825, but not published until 1900. A list of
the editions and translations of the Paper of 1827 follows. There are three editions
in Latin, two translations into French, and two into German. The paper was origin-
ally published in Latin under the title :

Ia. Disquisitiones generales circa superficies curvas

auctore Carolo Friderico Gauss
Societati regise oblatee D. 8. Octob. 1827,

and was printed in: Commentationes societatis regiee scientiarum Gottingensis recen-
tiores, Commentationes classis mathematicee. Tom. VI. (ad a. 1823-1827). Gottingee,
1828, pages 99-146. This sixth volume is rare; so much so, indeed, that the British
Museum Catalogue indicates that it is missing in that collection. With the signatures
changed, and the paging changed to pages 1-50, I also appears with the title page
added :

I5. Disquisitiones generales circa superficies curvas
auctore Carolo Friderico Gauss.
Gottingse. Typis Dieterichianis. 1828.

II. In Monge's Application de T'analyse & la géométrie, fifth edition, edited by
Liouville, Paris, 1850, on pages 505-546, is a reprint, added by the Editor, in Latin
under the title: Recherches sur la théorie générale des surfaces courbes; Par M.
C—~F. Gauss.

1G. Darboux, Bulletin des Sciences Math. Ser. 2, vol. 24, page 278, 1900,
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IITa. A third Latin edition of this paper stands in: CGauss, Werke, Herausge-
geben von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Vol. 4, Got-
tingen, 1873, pages 217-258, without change of the title of the original paper (La).

IIT4. The same, without change, in Vol. 4 of Gauss, Werke, Zweiter Abdruck,
Gottingen, 1880.

IV. A French translation was made from Liouville’s edition, II, by Captain
Tiburce Abadie, ancien éléve de I'Ecole Polytechnique, and appears in Nouvelles
Annales de Mathématique, Vol. 11, Paris, 1852, pages 196-252, under the title:
Recherches générales sur les surfaces courbes; Par M. Gauss. This latter also
appears under its own title.

Va. Another French translation is: Recherches Générales sur -les Surfaces
Courbes. Par M. C-F. Gauss, traduites en francais, suivies de notes et d’études
sur divers points de la Théorie des Surfaces et sur certaines classes de Courbes, par
M. E. Roger, Paris, 1855.

Vb. The same. Deuxidme Hdition. Grenoble (or Paris), 1870 (or 1871), 160
pages.

VI. A German translation is the first portion of the second part, namely, pages
198-232, of : Otto Boklen, Analytische Geometrie des Raumes, Zweite Auflage, Stutt-
gart, 1884, under the title (on page 198): Untersuchungen iiber die allgemeine Theorie
der krummen Flichen. Von C. F. Gauss. On the title page of the book the second
part stands as: Disquisitiones generales circa superficies curvas von C. F. Gauss, ins
Deutsche iibertragen mit Anwendungen und Zusétzen . . ..

VIIa. A second German translation is No. & of Ostwald’s Klassiker der exacten
Wissenschaften : Allgemeine Flachentheorie (Disquisitiones generales circa superficies
curvas) von Carl Friedrich Gauss, (1827). Deutsch herausgegeben von A. Wangerin.
Leipzig, 1889. 62 pages.

VII4. The same. Zweite revidirte Auflage. Leipzig, 1900. 64 pages.

The English translation of the Paper of 1827 here given is from a copy of the
original paper, Ia; but in the preparation of the translation and the notes all the
other editions, except Va, were at hand, and were used. The excellent edition of
Professor Wangerin, VII, has been used throughout most freely for the text and
notes, even when special notice of this is not made. It has been the endeavor of
the translators to retain as far as possible the notation, the form and punctuation of
the formulee, and the general style of the original papers. Some changes have been
made in order to conform to more recent notations, and the most important of these
are mentioned in the notes.
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The second paper, the translation of which is here given, is the abstract (Anzeige)
which Gauss presented in German to the Royal Society of Gottingen, and which was
published in the Gottingische gelehrte Anzeigen. Stiick 177. Pages 1761-1768. 1827.
November 5. It has been translated into English from pages 341-347 of the fourth
volume of Gauss’s Works. This abstract is in the nature of a note on the Paper of
1827, and is printed before the notes on that paper.

Recently the eighth volume of Gauss’s Works has appeared. This contains on
pages 408-442 the paper which Gauss wrote out, but did not publish, in 1825. This
paper may be called the New General Investigations of Curved Surfaces, or the Paper
of 1825, to distinguish it from the Paper of 1827. The Paper of 1825 shows the
manner in which many of the ideas were evolved, and while incomplete and in some
cases inconsistent, nevertheless, when taken in connection with the Paper of 1827,
shows the development of these ideas in the mind of Gauss. In both papers are
found the method of the spherical representation, and, as types, the three important
theorems : The measure of curvature is equal to the product of the reciprocals of the
principal radii of curvature of the surface, The measure of curvature remains unchanged
by a mere bending of the surface, The exceds of the sum of the angles of a geodesic
triangle is measured by the area of the corresponding triangle on the auxiliary sphere.
But in the Paper of 1825 the first six sections, more than one-fifth of the whole paper,
take up the consideration of theorems on curvature in a plane, as an introduction,
before the ideas are used in space; whereas the Paper of 1827 takes up these ideas
for space only. Moreover, while Gauss introduces the geodesic polar coordinates in
the Paper of 1825, in the Paper of 1827 he uses the general coordinates, p, ¢, thus
introducing a new method, as well as employing the principles used by Monge and
others.

The publication of this translation has been made possible by the liberality of
the Princeton Library Publishing Association and of the Alumni of the University
who founded the Mathematical Seminary.

H. D. TrOMPSON.
MATHEMATICAL SEMINARY,

PrinceroN UNIVERSITY LIBRARY,
January 29, 1902.
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GENERAL INVESTIGATIONS

OF

CURVED SURFACES

BY

KARL FRIEDRICH GAUSS

PRESENTED TC THE ROYAL SOCIETY, OCTOBER 8, 1827

1.

Investigations, in which the directions of various straight lines in space are to be
considered, attain a high degree of clearness and simplicity if we employ, as an auxil-
iary, a sphere of unit radius described about an arbitrary centre, and suppose the
different points of the sphere to represent the directions of straight lines parallel to
the radii ending at these points. As the position of every point in space is deter-
mined by three coordinates, that is to say, the distances of the point from three mutually
perpendicular fixed planes, it is necessary to consider, first of all, the directions of the
axes perpendicular to these planes. The points on the sphere, which represent these
directions, we shall denote by (1), (2), (3). The distance of any one of these points
from either of the other two will be a quadrant; and we shall suppose that the direc-
tions of the axes are those in which the corresponding coordinates increase.

2,

It will be advantageous to bring together here some propositions which are fre-
quently used in questions of this kind.

I. The angle between two intersecting straight lines is measured by the arc
between the points on the sphere which correspond to the directions of the lines.

II. The orientation of any plane whatever can be represented by the great circle
on the sphere, the plane of which is parallel to the given plane.
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III. The angle between two planes is equal to the spherical angle between the
great circles representing them, and, consequently, is also measured by the arc inter-
cepted between the poles of these great circles. And, in like manner, the angle of inclina-
tion of a straight line to a plane is measured by the arc drawn from the point which
corresponds to the direction of the line, perpendicular to the great circle which repre-
sents the orientation of the plane.

IV. Letting 2, g, 2; 2/, ¥/, 2/ denote the coordinates of two points, » the distance
between them, and Z the point on the sphere which represents the direction of the line
drawn from the first point to the second, we shall have

#'=ax+ rcos (1)L
Y=y +rcos(2)L
2= 2+ rcos(3)L
V. From this it follows at once that, generally,
cos? (1)L + cos® (2)L + cos®(3)L =1
and also, if Z' denote any other point on the sphere,
cos (1)L . cos (1)L’ + cos (2)L . cos (2).L'+ cos (3)L . cos (3)L'= cos LL'.

VI. Tueorem. If L, L', L", L' denote four points on the sphere, and A the angle
which the arcs LL', L' L' make at their point of intersection, then we shall have

cos LL".cos L' L'"'— cos LL'" . cos /L' — sin LL'.sin L""L'" . cos A

Demonstration. Let A denote also the point of intersection itself, and set
AL = t’ ALI= tl, ALII___ t//, A”L/II: t’ll
Then we shall have \
cos LL" = cost.cost” + sin¢ siné”’ cos A
cos L/ L' = cos ¢’ cos?'”+ sin#' sin ¢’ cos A
cos LL"" = cost cos?"'+ sin#¢ sin#” cos A
cos L'L" — cos ' cos#”’ + sin#’ sin¢” cos 4
and consequently,
cos LL" . cos L/ L'"'— cos LL''. cos I/L"
=cos 4 (cos? cos?” sin¢ sin#”’ + cos# cos?” sint sin¢’
—cos ¢ cos ¢’ sin?’ sin #"— cos ¢’ cos ¢ sin¢ sin #'’)
= cos 4 (cos ¢ sin #'—sin # cos #) (cos ¢’ sin ¢""'— sin ¢’ cos ¢'"’)
= cos 4 . sin ('—7) . sin (¢#"""—1¢")
=cos A .sin LL' . sin L""L'"
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But as there are for each great circle two branches going out from the point 4,
these two branches form at this point two angles whose sum is 180°. But our analysis
shows that those branches are to be taken whose directions are in the sense from the
point L to I/, and from the point L'’ to L'”; and since great circles intersect in two
points, it is clear that either of the two points can be chosen arbitrarily. Also, instead
of the angle 4, we can take the arc between the poles of the great circles of which the
arcs L L', L' L' are parts. But it is evident that those poles are to be chosen which
are similarly placed with respect to these arcs; that is to say, when we go from L to L’
and from Z” to L'”, both of the two poles are to be on the right, or both on the left.

VII. Let L, L', L" be the three points on the sphere and set, for brevity,

cos (1)L ==z, cos(2)L =y, cos(3)L ==z

cos (1)L =/, cos (2)L' =y, cos (3)L =27

cos (1)L = 2", cos (2)L"= y", cos (3) L' = 2"
and also

xyr z"-l—x’y”z-l—x"yz’——xy” z’—x’yz”—x”y’z:A

Let N denote the pole of the great circle of which LI/ is a part, this pole being the one

that is placed in the same position with respect to this arc as the point (1) is with
respect to the arc (2)(3). Then we shall have, by the preceding theorem,

y 2 —y z=cos(1)\ .sin (2)(3) . sin LL/,

or, because (2)(3) = 90°,

y & —y z=-cos ()N .sin LI,
and similarly,

224/ —2 #=cos (2)\ .sin LL/

2y —a' y=cos (3)\ . sin LL
Multiplying these equations by #”, 5, 2" respectively, and adding, we obtain, by means
of the second of the theorems deduced in V,

A =cos N L" .sin LI/

Now there are three cases to be distinguished. First, when L" lies on the great circle
of which the arc LL’' is a part, we shall have AL"=90°, and consequently, A = 0.
If L does not lie on that great circle, the second case will be when L is on the same
side as \; the #hird case when they are on opposite sides. In the last two cases the
points L, I/, L' will form a spherical triangle, and in the second case these points will lie
in the same order as the points (1), (2), (3), and in the opposite order in the third case.
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Denoting the angles of this triangle simply by L, L/, L and the perpendicular drawn on
the sphere from the point Z” to the side LL’ by p, we shall have

sinp—=sin L.sin LL"—sin I/ . sin I/ L",
and

AN L'=90° = p,
the upper sign being taken for the second case, the lower for the third. From this
it follows that
*A=sinL.sin LI/ .sin LL' = sin I/ . sin LL'. sin L' I
=sin L .gin LL" . sin I/ L

Moreover, it is evident that the first case can be regarded as contained in the second or
third, and it is easily seen that the expression + A represents six times the volume of
the pyramid formed by the points L, L', L' and the centre of the sphere. Whence,
finally, it is clear that the expression = & A expresses generally the volume of any
pyramid contained between the origin of coordinates and the three points whose coor-
dinates are 2, y,2; 2,4/, ¢ ; 2, y", &".

3.

A curved surface is said to possess continuous curvature at one of its points 4, if the
directions of all the straight lines drawn from 4 to points of the surface at an infinitely
small distance from A are deflected infinitely little from one and the same plane passing
through A. This plane is said to fouch the surface at the point 4. If this condition is
not satisfied for any point, the continuity of the curvature is here interrupted, as happens,
for example, at the vertex of a cone. The following investigations will be restricted to
such surfaces, or to such parts of surfaces, as have the continuity of their curvature
nowhere interrupted. We shall only observe now that the methods used to determine
the position of the tangent plane lose their meaning at singular points, in which the
continuity of the curvature is interrupted, and must lead to indeterminate solutions.

4.

The orientation of the tangent plane is most conveniently studied by means of the
direction of the straight line normal to the plane at the point 4, which is also called the
normal to the curved surface at the point A. We shall represent the direction of this
normal by the point L on the auxiliary sphere, and we shall set

cos (1)L =X, cos(2)L=Y, cos(8)L=2Z;

and denote the coordinates of the point A by #,y, 2 Also let » + dz, y + dy, 2z + dz
be the coordinates of another point A’ on the curved surface; ds its distance from A,
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which is infinitely small; and finally, let A be the point on the sphere representing the
direction of the element 4 4’. Then we shall have
dz =ds.cos (1), dy=ds.cos (2)\, dz=ds.cos(3)\
and, since A L must be equal to 90°,
X cos (1)\ + Y cos (2)A + Z cos (3)A =0
By combining these equations we obtain
Xdoe+Ydy+Zdz=0.

There are two general methods for defining the nature of a curved surface. The
Jirst uses the equation between the coordinates #, y, 2, which we may suppose reduced to
the form W = 0, where W will be a function of the indeterminates #, g, z. Let the com-
plete differential of the function W be

dW=Pdz+ Qdy+ R dz
and on the curved surface we shall have

Pde+ Qdy+ Rdz=0
and consequently,
P cos ()N + @ cos (2N + B cos (3N =0

Since this equation, as well as the one we have established above, must be true for the
directions of all elements ds on the curved surface, we easily see that X, ¥, Z must be
proportional to P, @, R respectively, and consequently, since

X+ Y+ ZP=1,
we shall have either
P Q R

A=veErern YTTvererm ITVEFeTm

or
X = z_Pz 7 Y= 2_Q2 2\’ Z = 2—R2 2
vV (PP+ @+ R?) vV (PP+ @+ R’ Vv (PP+ ¢+ RY)
The second method expresses the coordinates in the form of functions of two varia-
bles, p, g. Suppose that differentiation of these functions gives

dz=adp+d dg
dy=0bdp+1¥dg
de=cdp -+ dg
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Substituting these values in the formula given above, we obtain
@X+bY+cZ)dp + (@ X+V Y+ Z)dg=0

Since this equation must hold independently of the values of the differentials dp, dg,
we evidently shall have
aX+oY+eZ=0, o/ X+¥0 Y+ Z=0
From this we see that X, ¥, Z will be proportioned to the quantities
b —cb, ca'—ac, ab—bd
Hence, on setting, for brevity,
V(0 —cb)+ (co/ —ad) + (ab —ba')*) = A
we shall have either
be' — cb’ cd' — ac’ ab' —bd
X=—7— Y=—%x— Z=—F%x
or
b — be' F gl ba —ab’
x=°¢ - ¢ pow—cd L Aa
With these two general methods is associated a ¢hird, in which one of the coordinates,
2, say, is expressed in the form of a function of the other two, #, y. This method is
evidently only a particular case either of the first method, or of the second. If we set

dz=tdz+udy
we shall have either

x —1 —u 1

=vaFeTd TTvaTers FTvaTeT e

or
t % |
X=vate+sdy Y~ vaFersd Z-vaTET S

5.

The two solutions found in the preceding article evidently refer to opposite points of
the sphere, or to opposite directions, as one would expect, since the normal may be drawn
toward either of the two sides of the curved surface. If we wish to distinguish between
the two regions bordering upon the surface, and call one the exterior region and the other
the interior region, we can then assign to each of the two normals its appropriate solution
by aid of the theorem derived in Art. 2 (VII), and at the same time establish a criterion
for distinguishing the one region from the other.
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In the first method, such a criterion is to be drawn from the sign of the quantity W.
Indeed, generally speaking, the curved surface divides those regions of space in which W
keeps a positive value from those in which the value of W becomes negative. In fact, it
is easily seen from this theorem that, if W takes a positive value toward the exterior
region, and if the normal is supposed to be drawn outwardly, the first solution is to be
taken. Moreover, it will be easy to decide in any case whether the same rule for the
sign of Wis to hold throughout the entire surface, or whether for different parts there
will be different rules. As long as the coefficients P, @, R have finite values and do not
all vanish at the same time, the law of continuity will prevent any change.

If we follow the second method, we can imagine two systems of curved lines on the
curved surface, one system for which p is variable, ¢ constant; the other for which ¢ is
variable, p constant. The respective positions of these lines with reference to the exte-
rior region will decide which of the two solutions must be taken. In fact, whenever
the three lines, namely, the branch of the line of the former system going out from the
point A as p increases, the branch of the line of the latter system going out from the point
A as ¢ increases, and the normal drawn toward the exterior region, are simularly placed as
the z, y, z axes respectively from the origin of abscissas (e. g., if, both for the former
three lines and for the latter three, we can conceive the first directed to the left, the
second to the right, and the third upward), the first solution is to be taken. But when-
ever the relative position of the three lines is opposite to the relative position of the
%, y, z axes, the second solution will hold.

In the third method, it is to be seen whether, when # receives a positive increment, z
and y remaining constant, the point crosses toward the exterior or the interior region.
In the former case, for the normal drawn outward, the first solution holds; in the latter
case, the second.

6.

Just as each definite point on the curved surface is made to correspond to a definite
point on the sphere, by the direction of the normal to the curved surface which is trans-
ferred to the surface of the sphere, so also any line whatever, or any figure whatever, on
the latter will be represented by a corresponding line or figure on the former. In the
comparison of two figures corresponding to one another in this way, one of which will be
as the map of the other, two important points are to be considered, one when quantity
alone is considered, the other when, disregarding quantitative relations, position alone
is considered.

The first of these important points will be the basis of some ideas which it seems
judicious to introduce into the theory of curved surfaces. Thus,to each part of a curved
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surface inclosed within definite limits we assign a fofal or integral curvature, which is
represented by the area of the figure on the sphere corresponding to it. From this
integral curvature must be distinguished the somewhat more specific curvature which we
shall call the measure of curvature. The latter refers to a point of the surface, and shall
denote the quotient obtained when the integral curvature of the surface element about
a point is divided by the area of the element itself; and hence it denotes the ratio of the
infinitely small areas which correspond to one another on the curved surface and on the
sphere. The use of these innovations will be abundantly justified, as we hope, by what
we shall explain below. As for the terminology, we have thought it especially desirable
that all ambiguity be avoided. For this reason we have not thought it advantageous to
follow strictly the analogy of the terminology commonly adopted (though not approved by
all) in the theory of plane curves, according to which the measure of curvature should be
called simply curvature, but the total curvature, the amplitude. But why not be free in
the choice of words, provided they are not meaningless and not liable to a misleading
interpretation ?

The position of a figure on the sphere can be either similar to the position of the
corresponding figure on the curved surface, or opposite (inverse). The former is the case
when two lines going out on the curved surface from the same point in different, but not
opposite directions, are represented on the sphere by lines similarly placed, that is, when
the map of the line to the right is also to the right; the latter is the case when the con-
trary holds. We shall distinguish these two cases by the positive or negative sign of the
measure of curvature. But evidently this distinction can hold only when on each surface
we choose a definite face on which we suppose the figure to lie. On the auxiliary sphere
we shall use always the exterior face, that is, that turned away from the centre; on the
curved surface also there may be taken for the exterior face the one already considered,
or rather that face from which the normal is supposed to be drawn. For, evidently, there
is no change in regard to the similitude of the figures, if on the curved surface both the
figure and the normal be transferred to the opposite side, so long as the image itself
is represented on the same side of the sphere.

The positive or negative sign, which we assign to the measure of curvature accord-
ing to the position of the infinitely small figure, we extend also to the integral curvature
of a finite figure on the curved surface. However, if we wish to discuss the general case,
some explanations will be necessary, which we can only touch here briefly. So long
as the figure on the curved surface is such that to distinct points on itself there corres-
pond distinct points on the sphere, the definition needs no further explanation. But
whenever this condition is not satisfied, it will be necessary to take into account twice
or several times certain parts of the figure on the sphere. Whence for a similar, or
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inverse position, may arise an accumulation of areas, or the areas may partially or
wholly destroy each other. In such a case, the simplest way is to suppose the curved
surface divided into parts, such that each part, considered separately, satisfies the above
condition ; to assign to each of the parts its integral curvature, determining this magni-
tude by the area of the corresponding figure on the sphere, and the sign by the posi-
tion of this figure; and, finally, to assign to the total figure the integral curvature
arising from the addition of the integral curvatures which correspond to the single parts.
So, generally, the integral curvature of a figure is equal to /4 do, do denoting the
element of area of the figure, and % the measure of curvature at any point. The prin-
cipal points concerning the geometric representation of this integral reduce to the fol-
lowing. To the perimeter of the figure on the curved surface (under the restriction
of Art. 3) will correspond always a closed line on the sphere. If the latter nowhere
intersect itself, it will divide the whole surface of the sphere into two parts, one of
which will correspond to the figure on the curved surface; and its area (taken as
positive or negative according as, with respect to its perimeter, its position is similar,
or inverse, to the position of the figure on the curved surface) will represent the inte-
gral curvature of the figure on the curved surface. But whenever this line intersects
itself once or several times, it will give a complicated figure, to which, however, it is
possible to assign a definite area as legitimately as in the case of a figure without
nodes; and this area, properly interpreted, will give always an exact value for the
integral curvature. However, we must reserve for another occasion the more extended
exposition of the theory of these figures viewed from this very general standpoint.

T.

We shall now find a formula which will express the measure of curvature for
any point of a curved surface. Let do denote the area of an element of this surface;
then Zdo will be the area of the projection of this element on the plane of the coor-
dinates z, y ; and consequently, if d 3 is the area of the corresponding element on the
sphere, Zd3 will be the area of its projection on the same plane. The positive or
negative sign of Z will, in fact, indicate that the position of the projection is similar or
inverse to that of the projected element. Evidently these projections have the same
ratio as to quantity and the same relation as to position as the elements themselves.
Let us consider now a triangular element on the curved surface, and let us suppose
that the coordinates of the three points which form its projection are

Z, 4
z+de, y+dy
z+ 8z, y+ oy
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The double area of this triangle will be expressed by the formula
dz.8y—dy.0x

and this will be in a positive or negative form according as the position of the side
from the first point to the third, with respect to the side from the first point to the
second, is similar or opposite to the position of the y-axis of coordinates with respect
to the z-axis of coordinates.

In like manner, if the coordinates of the three points which form the projection of
the corresponding element on the sphere, from the centre of the sphere as origin, are

X, ¥
X+dX, Y+dY
X+8X, Y+8Y

the double area of this projection will be expressed by
dX.8Y—dY.8X

and the sign of this expression is determined in the same manner as above. Where-
fore the measure of curvature at this point of the curved surface will be

dX.8Y—dY.8X

dhes dz.0y—dy.d%

If now we suppose the nature of the curved surface to be defined according to the third
method considered in Art. 4, X and ¥ will be in the form of functions of the quanti-
ties #, y. We shall have, therefore,

dX = %%-Idx-l-%(dy
8X=%§8x+%§8y
dY=%§dx+%—§dy
sy:%’aw%—;ay

When these values have been substituted, the above expression becomes
oX 0¥V oX oY
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Setting, as above,

ce , 02
—=i, —=1U
ox oy
and also
*z P’z >’z
55 =1, =, 2 =
0 ox .0y oy
or

dt =Tdax+Udy, du=Udz+Vdy
we have from the formulse given above

X=—tz, Y=—uZ, (1+ &+ Z*=1

and hence
dX=—Zdt—tdZ
dY=—Zdu—u dZ
A+E+e)dZ+Z(tdt+udu)=0
or
dZ=—2Z*(tdt+ udu)
dX=—2(1+uv*)dt+ Z*tudu
AdY=+Z*tudt—2Z°(1+ ) du
and so
0
%=Z3(—(1+u2)T+tu U)
0 X
Fy—=Z3(—(1+u2) U+tuV)
oY
—85—=Z3(tu T—(1+#0)
0
a—;=Z3(tu U—(1+8)7)

Substituting these values in the above expression, it becomes
E=Z°(TV—U"1+ ¢+ )=2Z2*(TV—-U?
_rr—-u
(P

8.

By a suitable choice of origin and axes of coordinates, we can easily make the
values of the quantities ¢, w, U vanish for a definite point 4. Indeed, the first two
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conditions will be fulfilled at once if the tangent plane at this point be taken for the
zy-plane. If, further, the origin is placed at the point A itself, the expression for
the coordinate z evidently takes the form
=3 T2+ Uzy+ 3 V°y+ Q
where Q will be of higher degree than the second. Turning now the axes of z and y
through an angle M such that
20°

tan2 M = ——

an TO - VO
it is easily seen that there must result an equation of the form

e=3T7"+3:Vy "+ Q

In this way the third condition is also satisfied. When this has been done, it is evi-
dent that

I. If the curved surface be cut by a plane passing through the normal itself and
through the 2-axis, a plane curve will be obtained, the radius of curvature of which

at the point A will be equal to —; the posiﬁve or negative sign indicating that the

T
curve is concave or convex toward that region toward which the coordinates z are
positive.

IT. In like manner —Il7 will be the radius of curvature at the point A of the plane
curve which is the intersection of the surface and the plane through the y-axis and
the z-axis.

III. Setting # =7 cos ¢, y = sin ¢, the equation becomes

2=1% (T cos® ¢+ V sin® ¢) *+ Q
from which we see that if the section is made by a plane through the normal at A
and making an angle ¢ with the z-axis, we shall have a plane curve whose radius of
curvature at the point A will be

1
Tcos’p+ Vsin’¢

IV. Therefore, whenever we have 7'=7V, the radii of curvature in @/l the normal
planes will be equal. But if 7" and V7 are not equal, it is evident that, since for any
value whatever of the angle ¢, 7' cos® ¢ + V sin® ¢ falls between 7' and V, the radii of
curvature in the principal sections considered in I. and II. refer to the extreme curva-
tures ; that is to say, the one to the maximum curvature, the other to the minimum,
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if 7' and V have the same sign. On the other hand, one has the greatest convex
curvature, the other the greatest concave curvature, if 7' and 7 have opposite signs.
These conclusions contain almost all that the illustrious Euler was the first to prove
on the curvature of curved surfaces.

V. The measure of curvature at the point 4 on the curved surface takes the
very simple form

E=T7V,
whence we have the

TuroreM. The measure of curvature ot any point whatever of the surface is equal to a
Jraction whose numerator is unmity, and whose denominator is the product of the two extreme
radii of curvature of the sections by mormal plomes.

At the same time it is clear that the measure of curvature is positive for con-
cavo-concave or convexo-convex surfaces (which distinction is not essential), but nega-
tive for concavo-convex surfaces. If the surface consists of parts of each kind, then
on the lines separating the two kinds the measure of curvature ought to vanish. Later
we shall make a detailed study of the nature of curved surfaces for which the meas-
ure of curvature everywhere vanishes.

9.

The general formula for the measure of curvature given at the end of Art. 7 is
the most simple of all, since it involves only five elements. We shall arrive at a
more complicated formula, indeed, one involving nine elements, if we wish to use the

first method of representing a curved surface. Keeping the notation of Art. 4, let us
set also

ew_ W FW
WL g T g TF
ew ., W W
ag.az—P" PRI Bx.ay_R

so that
dP=P' dz+ R'dy + Q" dz
dQ=R"dz+ @ dy+P"de
dR= Q" dae+ P'"dy+R dz

P
Now since t=—}—3, we find through differentiation

Rdt=—RdP+ PdR=(PQ"—RP")ds+(PP'—RR")dy +(PR—R ") dz
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or, eliminating dz by means of the equation
Pdz+ Qdy+Rdz=0,
Rdt=(—R'P'+2PRQ'—P'R')ds +(PRP"+ QRQ"—P QR —R*R") dy.
In like manner we obtain
Rdu=(PRP"+ QRQ"—PQR—R'R")ds+ (—E'Q'+2 QRP"— @ R') dy
From this we conclude that
RBT=—RP+2PRQ'—P’R
RU=PRP'+ QRQ'—PQR —R*R"
R3V=_R2Ql+ 2 QRP"— QZR/
Substituting these values in the formula of Art. 7, we obtain for the measure of curv-
ature £ the following symmetric expression :
(P2+ Q2+R2)2 k =P2 (Q/ R/__PII 2) _|_ Q2 (PIRI_ QN 2) _I_RZ (P/ Q/_ RII 2)
+9 QR(QHR/I__P/PH) +9 .PR(P”R"—Q’ Q”) +9 PQ (PII Q”—R'R")

10.

We obtain a still more complicated formula, indeed, one involving fifteen elements,
if we follow the second general method of defining the nature of a curved surface. It
is, however, very important that we develop this formula also. Retaining the nota-
tions of Art. 4, let us put also

P >’z , %,
P’y e’y Py
@52187 ap.aq'—_—rela é?:ﬁ”
] Pz , o'z '
R A T
and let us put, for brevity,

be'—cb'=A

cd—acd =D

ab—bad'=0C

Hirst we see that
Adz+Bdy+ Cdz=0,
or
A B

dz=—~(7dx—7

dy.
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Thus, inasmuch as z may be regarded as a function of #, y, we have

oz, A
550
0z . B
5=t 0

Then from the formulse
dz=adp+ddq, dy=bdp—+10¥dyg,
we have
Cdp= b dz—d dy
Cdg=—bdz+a dy
Thence we obtain for the total differentials of ¢, u

03dt=(A3§_07) ¥ do—d dy) +(0___A_) (& de—a dy)
20 oC
CPdu= B—_—U— Vdz—d dy) + ——B bdz—ad
(85— s el )
If now we substitute in these formulee
04
ch'ﬂ +by —e B —Hy
204
WZCIBI_'—bYH—CB”_b,'y’
oB
a—p—za"y—l'Ca’—ay'—c'a
oB
ag =dy+ted'—ay'—cd
o0
Gy —Vataf —bd —dB
oC
W:bl o aB”—b o=l Br

and if we note that the values of the differentials d7, du thus obtained must be equal,
independently of the differentials dz, dy, to the quantities T'da+Udy, Udz+ Vdy
respectively, we shall find, after some sufficiently obvious transformations,
C*T=0aAV*+ BB+ yCb'*
—2d A0V —2B Bbb'—2 CbY
+ a//AbZ_l_BIIBbZ_i_ ,yll Ob2
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03Uz—aAa’b’—BBa’b’——yO'a'b’
T o' A(ab'+ba')+ B B(ab/+ba) +y O(ab/ +bd)
—a"Adab—B"Bab—+y" Cab
03V=aAa'2+,BBOL’Z+'y0a/Z
—2d' dad—2B Bad'—2+ Cad
ta’"Ad*+ B Ba*+ 4" Cd?
Hence, if we put, for the sake of brevity,

Aa +BB +Cy=D . . . . . . ()
Ad +BR +0y =D . . . . . . (@
Ad'+BB'+Cy'=D" . . . . . . (8

we shall have
C*T=D¥y*—2D b+ D"
CU=—Dd¥V+D (ab/+ba')—D" ab
C*V=Dda*—2D ad+D"a
From this we find, after the reckoning has been carried out,
C°(ITV—U)=(DD'"—D*(ab—ba')=(DD"—D'? (*

and therefore the formula for the measure of curvature

DD//_DIZ
F=wErEr oy
11.

By means of the formula just found we are going to establish another, which may
be counted among the most productive theorems in the theory of curved surfaces.
Let us introduce the following notation :

@+ b+ *=E
ad + 00+ cd=F
afz_l_ b/2+ 6‘/2=G

aa +obB ey =m . . . . . . (4
wo +b B +ey=m . . . . . . (b
ao’+bB'Hey=m . . . . . . (6
o +VB +dy =n . . . . . (7
o TRty = . . . . . (8
o '+ By =p I

A2+ B (P—F G — e A
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Let us eliminate from the equations 1, 4, 7 the quantities B, y, which is done by
multiplying them by bd¢'—¢¥’, ¥ C— ¢’ B, ¢ B—5C respectively and adding. In this
way we obtain

(A@Ge—ect)+a(l'C—cB)+d (eB—50))a
=Dl —ct)+mlE C—B)t+n(eB—0b0C)

an equation which is easily transformed into
AD=aA+amF—m@)+ao (mF—nk)

Likewise the elimination of a, y or a, B from the same equations gives
BD=BA+bnF—m@)+¥ (mF—nk)
CD=yA+cF—m@)+c mF—nk)

Multiplying these three equations by o', 8”, 9’ respectively and adding, we obtain

DD'"=(ad'+ BB+ yy)A+m' 0 F—m@G)+n" (mF—nE) . . . (10)

If we treat the equations 2, 5, 8 in the same way, we obtain

AD'=d A+awF—m' @)+ o (W F—n'E)
BD=BA+b(nF—m' @)+ (m'F—n'E)
CD' =yA+c(F —m'G)+c (W F—n'E)

and after these equations are multiplied by o/, 8/, 7/ respectively, addition gives

D= (d*+ B*+ YA+ m (W F—mw' Q)+ n'(m' F—2'E)
A combination of this equation with equation (10) gives
DD//_DIZZ (a'a'll_i_ BB//+ 77"— aIZ_BIZ__,ylZ)A

+E@ —nn")+F(am’"—2m'n'+ mn") + G (m'*—mm'")

It is clear that we have

or oF or , or oG oG
B 2T gy T Am, y=mm Grmmitw, o=in, G2
or
_OE , J0E , oF 0@
m = 31’0’ m—é‘aqa —‘a—q——%W
or or oG oG
n—-*a?‘—% ag: n' = 3}7, n"—-%a—q

, on  on' om” om'
aa,’+ﬁﬁ/’+77” _aIZ_B/Z_y/ZZE__a;: ap P aq
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If we sgbstitute these different expressions in the formula for the measure of curva-
ture derived at the end of the preceding article, we obtain the following formula, which

involves only the quantities &, F, G and their differential quotients of the first and
second orders :

oE a@G oF 3@ oG\*
4(EQ—P*YVEr=F(—.—— e ——
(BQ—Ffk E(ag oq 28]) aq+(ap))
—|—F(8E 0G ol o@ oF oF oF oF or aG)

g g op g ag oy ag “op o

ta(Gy S =2+ CE)) —swe—m(E- 200+ 5)

12.
Since we always have
A+ dy*+d=Edp’+ 2 Fdp .dg+ G dg,
it is clear that
V(Edp*+2Fdp.dg+ Gdg)

is the general expression for the linear element on the curved surface. The analysis
developed in the preceding article thus shows us that for finding the measure of cur-
vature there is no need of finite formulse, which express the coordinates z, y, z as
functions of the indeterminates p, ¢ ; but that the general expression for the magnitude
of any linear element is sufficient. Let us proceed to some applications of this very
important theorem.

Suppose that our surface can be developed upon another surface, curved or plane,
so that to each point of the former surface, determined by the coordinates z, y, z, will
correspond a definite point of the latter surface, whose coordinates are 2/, y/, 2’. Hvi-
dently #/, #/, 2 can also be regarded as functions of the indeterminates p, ¢, and there-
fore for the element 1/(d#'*+ dy'*+ dz'?) we shall have an expression of the form

V(Edp*+2Fdp.dg+ & dg)
where £, F', @ also denote functions of p, ¢. But from the very notion of the devel-

opment of one surface upon another it is clear that the elements corresponding to one
another on the two surfaces are necessarily equal. Therefore we shall have identically

=K, F=F, G=¢.
Thus the formula of the preceding article leads of itself to the remarkable

TuroreM. IS a curved surface is developed upon any other surface whatever, the
measure of curvature in each point remains unchanged.
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Also it is evident that any finite part whatever of the curved surface will retain the
same integral curvature after development wupon another surface.

Surfaces developable upon a plane constitute the particular case to which geom-
eters have heretofore restricted their attention. Our theory shows at once that the
measure of curvature at every point of such surfaces is equal to zero. Consequently,
if the nature of these surfaces is defined according to the third method, we shall have
at every point

oz . &z __( P’z )2:

04" 9y* \oz.oy
a criterion which, though indeed known a short time ago, has not, at least to our
knowledge, commonly been demonstrated with as much rigor as is desirable.

13.

What we have explained in the preceding article is connected with a particular
method of studying surfaces, a very worthy method which may be thoroughly devel-
oped by geometers. When a surface is regarded, not as the boundary of a solid, but
as a flexible, though not extensible solid, one dimension of which is supposed to
vanish, then the properties of the surface depend in part upon the form to which we
can suppose it reduced, and in part are absolute and remain invariable, whatever may
be the form into which the surface is bent. To these latter properties, the study of
which opens to geometry a new and fertile field, belong the measure of curvature and
the integral curvature, in the sense which we have given to these expressions. To
these belong also the theory of shortest lines, and a great part of what we reserve to
be treated later. From this point of view, a plane surface and a surface developable
on a plane, e. g., cylindrical surfaces, conical surfaces, etc., are to be regarded as essen-
tially identical; and the generic method of defining in a general manner the nature of
the surfaces thus considered is always based upon the formula

VvV (Zdp*+ 2 Fdp.dg+Gdg,
which connects the linear element with the two indeterminates p, ¢. But before fol-

lowing this study further, we must introduce the principles of the theory of shortest
lines on a given curved surface.

14.

The nature of a curved line in space is generally given in such a way that the
coordinates #, 7, z corresponding to the different points of it are given in the form of
functions of a single variable, which we shall call w. The length of such a line from
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an arbitrary initial point to the point whose coordinates are z, y, 2, is expressed by

the integral
d.Z‘ 2 d 2 d 2
dw .\l e __l __E.
f ((dw)+(dw)+(dw))
If we suppose that the position of the line undergoes an infinitely small variation, so

that the coordinates of the different points receive the variations 8z, 8y, 82, the varia-
tion of the whole length becomes

fdw.de-I—dy.dSy—I—dz.dSz
V (da*+ dy*+ d )
which expression we can change into the form
dz .8z +dy .8y +dz.d2
Vv (A2 dy*+ d77)

dx dy dz
~f (e 4y gy pram + ¥ @ e aEy T v EET 77)

We know that, in case the line is to be the shortest between its end points, all that
stands under the integral sign must vanish. Since the line must lie on the given
surface, whose nature is defined by the equation

Pde+Qdy+Rdz=0,
the variations 8z, 8y, 8z also must satisfy the equation
Pézr+Q3y+R32=0,
and from this it follows at once, according to well-known rules, that the differentials
P dz P dy P dz
V (@@t dytt+d2?) TV (dPt dyf dt) CV (dP+ dyf - deP)

must be proportional to the quantities P, @, R respectively. Let d» be the element
of the curved line; A the point on the sphere representing the direction of this ele-
ment ; L the point on the sphere representing the direction of the normal to the curved

surface ; finally, let & v, { be the coordinates of the point X\, and X, ¥, Z be those of
the point L with reference to the centre of the sphere. We shall then have

de=¢&dr, dy=ndr, dze=1Udr
from which we see that the above differentials become d§, dv, d{. And since the

quantities P, ¢, B are proportional to X, ¥, Z, the character of shortest lines is
expressed by the equations

dfé _dy _ di

XY Zz
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Moreover, it is easily seen that
vV (dE+ dy*+ d1)

is equal to the small arc on the sphere which measures the angle between the direc-
tions of the tangents at the beginning and at the end of the element dr, and is thus

d . . .
equal to Fr, if p denotes the radius of curvature of the shortest line at this point.
Thus we shall have

pdé=Xdr, pdn=Ydr, pdl{=2Zdr

15.

Suppose that an infinite number of shortest lines go out from a given point 4
on the curved surface, and suppose that we distinguish these lines from one another
by the angle that the first element of each of them makes with the first element of
one of them which we take for the first. Let ¢ be that angle, or, more generally, a
function of that angle, and » the length of such a shortest line from the point 4 to
the point whose coordinates are z, y, 2. Since to definite values of the variables », ¢
there correspond definite points of the surface, the coordinates z, 7, # can be regarded
as functions of r, ¢. We shall retain for the notation A, L, & », {, X, ¥, Z the same
meaning as in the preceding article, this notation referring to any point whatever on
any one of the shortest lines.

All the shortest lines that are of the same length » will end on another line
whose length, measured from an arbitrary initial point, we shall denote by ». Thus v
can be regarded as a function of the indeterminates r, ¢, and if N’ denotes the point
on the sphere corresponding to the direction of the element dv, and also &, %,/

denote the coordinates of this point with reference to the centre of the sphere, we
shall have

g v oy ov 92 .,
=6 5g 56T sE a5l E
From these equations and from the equations

8:1:_ ay 9z
or £ =" o7 =1
we have

dx Odx 0 0 oz dz ; i
ar "3 % '35 ar " o4 =(£&+ 0+ L) ad,_COS)‘)‘ ad)
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Let S denote the first member of this equation, which will also be a function of 7, ¢.
Differentiation of S with respect to » gives

az\® . (dy\* = (22)\"
?é’_aiv dxz  y dy . Pz 0z . a((g;) +(é7) + 5;))
ar“ar2'5$+ﬁ2'a‘§s+a7'5$+’f’ o
o35 02y, 0Les |, o(Etatt D)
C9r 2 or o arog ' T’ o

But
§2+ 7’2+ r= 1,

and therefore its differential is equal to zero; and by the preceding article we have,
if p denotes the radius of curvature of the line 7

6 X g Y 3
ar p or

]

ar — p’ 9r p -

4
P
Thus we have

N

or

1 ov 1 , 0V
:—.X’+Y’+ZCI e =2.008 LN .2 =0
since A’ evidently lies on the great circle whose pole is Z. From this we see tha.t
S is independent of 7, and is, therefore, a function of ¢ alone. But for »=0 we evi-

dently have » =0, consequently g—f; =0, and §'=0 independently of ¢. Thus, in general,

we have necessarily S=0, and so cos AN'=0, 7. ¢, AN=90°. From this follows the

TurOREM. If on a curved surface an infinite number of shortest lines 'of equal length
be drawn from the same initial point, the lnes joining their extremities will be normal o
each of the lines.

We have thought it worth while to deduce this theorem from the fundamer}tal
property of shortest lines; but the truth of the theorem can be made apparent with-
out any calculation by means of the following reasoning. Let AB, AB’ be two
shortest lines of the same length including at A an infinitely small angle, and let us
suppose that one of the angles made by the element BB’ with the lines Bfél, B'A
differs from a right angle by a finite quantity. Then, by the law of continuity, one
will be greater and the other less than a right angle. Suppose the angle at B is
equal to 90°—w, and take on the line 4B a point €, such that

BCO=BUPEB. cosec w.
Then, since the infinitely small triangle B B’ ¢ may be regarded as plane, we shall have
OCB'=BC . cos w,
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and consequently
AC+CB'=AC+B(C.coso=AB—BC.(1—cosw)=AB'—BC.(1—cosw),

7. e., the path from A to B’ through the point € is shorter than the shortest line,
Q. E. A.

16.

With the theorem of the preceding article we associate another, which we state
as follows : If on a curved surface we imagine any line whalever, from the different points
of which are drawn at right angles and toward the same side an infinite number of shortest
lines of the same length, the curve which joins their other extremities will cut each of the
lines at right angles. For the demonstration of this theorem no change need be made
in the preceding analysis, except that ¢ must denote the length of the given curve
measured from an arbitrary point; or rather, a function of this length. Thus all of
the reasoning will hold here also, with this modification, that §=0 for =0 is
now implied in the hypothesis itself. Moreover, this theorem is more general than
the preceding one, for we can regard it as including the first one if we take for the
given line the infinitely small circle described about the centre A. Finally, we may
say that here also geometric considerations may take the place of the analysis, which,
however, we shall not take the time to consider here, since they are sufficiently
obvious.

17.

We return to the formula -

V(Edp*+2 Fdp.dg+Gdg),
which expresses generally the magnitude of a linear element on the curved surface,
and investigate, first of all, the geometric meaning of the coefficients £, F, G. We
have already said in Art. 5 that two systems of lines may be supposed to lie on the
curved surface, p being variable, ¢ constant along each of the lines of the one system;
and ¢ variable, p constant along each of the lines of the other system. Any point
whatever on the surface can be regarded as the intersection of a line of the first
system with a line of the second; and then the element of the first line adjacent to
this point and corresponding to a variation dp will be equal to 1/ E.dp, and the
element of the second line corresponding to the variation d¢ will be equal to v/ & . dq.
Finally, denoting by o the angle between these elements, it is easily seen that we

shall have
F

COS w— m-
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Furthermore, the area of the surface element in the form of a parallelogram between
the two lines of the first system, to which correspond ¢, ¢ + dg, and the two lines of
the second system, to which correspond p, p+dp, will be

V(EG—F% dp.dyq.
Any line whatever on the curved surface belonging to mneither of the two sys-
tems is determined when p and ¢ are supposed to be functions of a new variable, or
one of them is supposed to be a function of the other. Let s be the length of such

a curve, measured from an arbitrary initial point, and in either direction chosen as
positive. Let 6 denote the angle which the element

ds=v(Edp*+2 Fdp.dq+ Gdg¢®)
makes with the line of the first system drawn through the initial point of the ele-
ment, and, in order that no ambiguity may arise, let us suppose that this angle is
measured from that branch of the first line on which the values of p increase, and is

taken as positive toward that side toward which the values of ¢ increase. These con-
ventions being made, it is easily seen that

cos 0.ds=v'E.dp+vG.cos w.dg_—:@%—dq

sin B.ds———l/G.sinw.dq_—_]/(EG]/_EFZ)'OZQ

18.

We shall now investigate the condition that this line be a shortest line. Since
its length s is expressed by the integral

s=fV(Edp+2 Fdp.dg+ Gdg)

the condition for a minimum requires that the variation of this integral arising from
an infinitely small change in the position become equal to zero. The calculation, for
our purpose, is more simply made in this case, if we regard p as a function of g¢.
When this is done, if the variation is denoted by the characteristic 8, we have

(?_E.dp2+2ﬂ.dp.dg+?.€.d92)8p+(2Edp+21’dg)d8p
S5 — g op ap
2 ds

_Edp+Fdg 4
=— % rt
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ok oF oG
il L Gl A f —— A
15 (8_77 P—l—zap r q+3]o 2 _d_Edp-l—qu)
' 4 2ds ds

and we know that what is included under the integral sign must vanish independently
of 8p. Thus we have

2FE ,, _oF G Edp+Fdg
. .d .d —-dzzz . T 7
gy gy St AP=2484 7
=2ds.d.v'E.cos b
ds.dE .cos @ .
2o 8= Y  9ds. - z
T ds.dl .V E .sin @
_ (Edp +§d9) B (BG—F.dp.do

:(EQ;EL_M).(%?@JF%?@)—Z V(EG—F?.dg.d0

This gives the following conditional equation for a shortest line:

1 F oF 1 F oF 1 o2F&
/E _FZ -da:—-——-——-.d e i § et Ty By e
VIEBG ) 2 E op P+o g dq dq+2 aq “r

oF ., 193G

s d
op r—y op 7
which can also be written
1 F 1 2F oF 1 2@
EG—F) . dO0=Z. . dE{+-.—.dp———.dp—-.—".
Vi ) R AR i P i i G B
From this equation, by means of the equation
cot 0 — i d_p.|_ F

V(EG—FY) dg ' V(EG—TF
it is also possible to eliminate the angle #, and to derive a differential equation of

the second order between p and ¢, which, however, would become more complicated
and less useful for applications than the preceding.

19.

The general formulse, which we have derived in Arts. 11, 18 for the measure of
curvature and the variation in the direction of a shortest line, become much simpler
if the quantities p, ¢ are so chosen that the lines of the first system cut everywhere
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orthogonally the lines of the second system; ¢. e., in such a way that we have gen-
erally @=90°, or F=0. Then the formula for the measure of curvature becomes

ap
and for the variation of the angle 6

1 oF 1 2@
]/EG'dezi'?{'dp“E'_a}T'dq
Among the various cases in which we have this condition of orthogonality, the
most important is that in which all the lines of one of the two systems, e. g., the
first, are shortest lines. Here for a constant value of g the angle 6 becomes equal to
zero, and therefore the equation for the variation of @ just given shows that we must

tErqrr=p. .2 26 (aG)2+G.%.%g+g(%)2_2ﬂa(f_£+§7§),

oL
have @=0, or that the coefficient Z must be independent of ¢; . ¢., £ must be

either a constant or a function of p alone. It will be simplest to take for p
the length of each line of the first system, which length, when all the lines of the
first system meet in a point, is to be measured from this point, or, if there is no
common intersection, from any line whatever of the second system. Having made
these conventions, it is evident that p and ¢ denote now the same quantities that
were expressed in Arts. 15, 16 by » and ¢, and that Z=1. Thus the two preced-

ing formulee become : , ,
1o k= (28) 2628
A

op*
; 1 2@
VG'OMZ"Q'@'
or, setting v G =m,
1 @*m om
=iy Bl =l
g m ap* op :

Generally speaking, m will be a function of p, ¢, and mdg the expression for the ele-
ment of any line whatever of the second system. But in the particular case where
all the lines p go out from the same point, evidently we must have m =0 for p=0.
Furthermore, in the case under discussion we will take for ¢ the angle itself which
the first element of any line whatever of the first system makes with the element of
any one of the lines chosen arbitrarily. Then, since for an infinitely small value of
p the element of a line of the second system (which can be regarded as a circle
described with radius p) is equal to pdg, we shall have for an infinitely small value

of p, m= p, and consequently, for p =0, m =0 at the same time, and %7_7&: 1.
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20.

We pause to investigate the case in which we suppose that p denotes in a gen-
eral manner the length of the shortest line drawn from a fixed point A to any other
point whatever of the surface, and ¢ the angle that the first element of this line
makes with the first element of another given shortest line going out from A. Let
B be a definite point in the latter line, for which ¢—=0, and C another definite point
of the surface, at which we denote the value of ¢ simply by A. Let us suppose the
points B, C joined by a shortest line, the parts of which, measured from B, we denote
in a general way, as in Art. 18, by s; and, as in the same article, let us denote by 6
the angle which any element ds makes with the element dp; finally, let us denote
by 6°, ¢ the values of the angle 6 at the points B, C. We have thus on the curved
surface a triangle formed by shortest lines. The angles of this triangle at B and (
we shall denote simply by the same letters, and B will be equal to 180°—#0, C' to ¢
itself. But, since it is easily seen from our analysis that all the angles are supposed
to be expressed, not in degrees, but by numbers, in such a way that the angle 57°17’
45", to which corresponds an arc equal to the radius, is taken for the unit, we must set

QO:W—B, 0,20

where 27 denotes the circumference of the sphere. Let us now examine the integral
curvature of this triangle, which is equal to

Sfrdo,

do denoting a surface element of the triangle. Wherefore, since this element is ex-
pressed by mdp .dg, we must extend the integral

ffm dp.dg

over the whole surface of the triangle. Let us begin by integration with respect to

p, which, because
1 om

m " op*’

gives -
dg. (const. — %%),

for the integral curvature of the area lying between the lines of the first system, to
which correspond the values ¢, ¢ + dg of the second indeterminate. Since this inte-
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gral curvature must vanish for p =0, the constant introduced by integration must be

0
equal to the value of £ for p=0, ¢. ¢., equal to unity. Thus we have
om
dg(l._ap),

om
where for ?’570 must be taken the value corresponding to the end of this area on the

line CB. But on this line we have, by the preceding article,

om

—dg=—

5y a9,

whence our expression is changed into dg+df. Now by a second integration, taken
from ¢ =0 to ¢= A, we obtain for the integral curvature

A+o—0°,
or
A+B+C—m

The integral curvature is equal to the area of that part of the sphere which cor-
responds to the triangle, taken with the positive or negative sign according as the
curved surface on which the triangle lies is concavo-concave or concavo-convex. For
unit area will be taken the square whose side is equal to unity (the radius of the
sphere), and then the whole surface of the sphere becomes equal to 47. Thus the
part of the surface of the sphere corresponding to the triangle is to the whole surface
of the sphere as = (A+B+C—m) is to 4m. This theorem, which, if we mistake
not, ought to be counted among the most elegant in the theory of curved surfaces,
may also be stated as follows :

The excess over 180° of the sum of the angles of a triangle formed by shortest lines
on a concavo-concave curved surface, or the deficit from 180° of the sum of the angles of
a triangle formed by shortest lines on a concavo-convex curved surface, is measured by the
area of the part of the sphere which corresponds, through the directions of the normals, to
that triangle, if the whole surface of the sphere is set equal to 720 degrees.

More generally, in any polygon whatever of n sides, each formed by a shortest
line, the excess of the sum of the angles over (2# —4) right angles, or the deficit from
(2% —4) right angles (according to the nature of the curved surface), is equal to the
area of the corresponding polygon on the sphere, if the whole surface of the sphere is
set equal to 720 degrees. This follows at once from the preceding theorem by divid-
ing the polygon into triangles.
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21.

Let us again give to the symbols p, ¢, £, F, G, o the general meanings which
were given to them above, and let us further suppose that the nature of the curved
surface is defined in a similar way by two other variables, p’, ¢/, in which case the
general linear element is expressed by

V& dp*+ 2 F dp'. d¢g'+ G dg'?)

Thus to any point whatever lying on the surface and defined by definite values of
the variables p, ¢ will correspond definite values of the variables p’, ¢/, which will
therefore be functions of p, ¢. Let us suppose we obtain by differentiating them

dp'=adp+Bdg

d¢'=ydp+38dyg
We shall now investigate the geometric meaning of the coefficients a, B, y, 8.

Now four systems of lines may thus be supposed to lie upon the curved surface,

for which p, ¢, p’, ¢’ respectively are constants. If through the definite point to
which correspond the values p, ¢, p’, ¢’ of the variables we suppose the four lines

belonging to these different systems to be drawn, the elements of these lines, corres-
ponding to the positive increments dp, dg, dp’, dq¢’, will be

VE.dp, VG.dg, VE.dp', vV&.dg.

The angles which the directions of these elements make with an arbitrary fixed direc-
tion we shall denote by M, N, M’, N', measuring them in the sense in which the
second is placed with respect to the first, so that sin(IV— M) is positive. Let us
suppose (which is permissible) that the fourth is placed in the same sense with respect
to the third, so that sin(NV'— M’) also is positive. Having made these conventions,
if we consider another point at an infinitely small distance from the first point, and
to which correspond the values p+dp, ¢ +dg, p’+dp', ¢+ dg of the variables, we
see without much difficulty that we shall have generally, 7. e., independently of the
values of the increments dp, dg, dp’, d¢/,

VE.dp.saM+VG.dg.snN=vE.dp'.sin M +v§.dg.sin V'

since each of these expressions is merely the distance of the new point from the line
from which the angles of the directions begin. But we have, by the notation intro-
duced above,

N— M= o.
In like manner we set

N—M= w’,
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and also
N— M= .
Then the equation just found can be thrown into the following form :

VE.dp.sin (M—ao+y)+v/&.dg.sin (M+ )
=V E.dp.sinM+ v . dg.sin (M + o)

or
VE.dp.sin (NV—o—a' + Y)+VE.dg.sin (N—o' + )
=V E.dp.sin (NV—o)+v&.dg.sin NV
A.nd .since the equation evidently must be independent of the initial direction, this
direction can be chosen arbitrarily. Then, setting in the second formula N'=0, or in
the first M’=0, we obtain the following equations :
VE.simo.dp'=v E.sin (o + o'—¢) . dp+1/ Q. sin (o'—1) . dg
VG .sino.dg=v'E.sin(y—o).dp+v G.sin.dg
and these equations, since they must be identical with
dp'=adp+ Bdyg
dy=ydp+38dg
determine the coefficients a, B, 7, 6. We shall have

a___\}_@'sin(w%-w’—gb), BZ\,%.sin(w’-—\p)

i sin o’ sin o'
:\/E.Sin(lll—“w) 8=\)£. sin
* G’ sine ’ G’ sine
These four equations, taken in connection with the equations
co8 m_—.i_ cos w’z_,_
VEF VEG
2 /g I4 12
Sin w:\/E——?E_TF, Sin w':xl%_,

may be written

aV(£'G'—F"*)=v EQ . sin (0+ o —)

BV (L'G'—F'*) =1 GG .sin (0 — )

YV (& @ —F'*)=vEE.sin(y— o)

SV (B Q'—F'*) =y GEF.siny

Since by the substitutions

dp'=oadp+Bdyg,
dg'=ydp+38dg
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the trinomial
B dp*+2F dp.d¢ +GF dg'*
is transformed into
Edp*+2Fdp.dg+Gdg,
we easily obtain
EG@—F"=EG —F"?(ad— By)>
and since, vice versa, the latter trinomial must be transformed into the former by the
substitution

(@8 —By)dp=38dp'—Bdy’, (a8—By)dg=—ydp' +ady,

we find A )
E82—2F78+G¢=—E%-E”
——E,88+F(a8+,87)—~6¥ay=lfa—6f:§,—2-ﬁ”
E,BZ—2FaB+GaZ=E"ET’g£%'G'

22.

From the general discussion of the preceding article we proceed to the very
extended application in which, while keeping for p, ¢ their most general meaning, we
take for p’, ¢’ the quantities denoted in Art. 15 by », . We shall use r, ¢ here
also in such a way that, for any point whatever on the surface, » will be the shortest
distance from a fixed point, and ¢ the angle at this point between the first element
of » and a fixed direction. We have thus

=1, F'=0, o=90°.
Let us set also

VvV &=m,
so that any linear element whatever becomes equal to
Vv (dr* + m* d ).
Consequently, the four equations deduced in the preceding article for a, B, y, 8 give
or
VE.cos(w—xp)———éﬁ A €

VG.COSIIJ-———-S—;‘ N ()
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VE.sin(xp_w)=m.a—¢. N &)
op
VG sing=m.2®
SNy =m 5 < a2 o® om owm s (4)
But the last and the next to the last equations of the preceding article give
(o7 or or ar\*
EG—F=E\-)— e
G—F E(aq) 27 ap sl (5)
.97 _pory 24 ary 3¢ (g
( dq 6]0) dq ( ag — s ap) “ep ©

From these equations must be determined the quantities », ¢, ¥ and (if need be)
m, as functions of p and ¢. Indeed, integration of equation (5) will give ; 7 being
found, integration of equation (6) will give ¢; and one or other of equations (1), (2)
will give i itself. Finally, m is obtained from one or other of equations (3), (4).

The general integration of equations (5), (6) must necessarily introduce two arbi-
trary functions. We shall easily understand what their meaning is, if we remem-
ber that these equations are not limited to the case we are here considering, but are
equally valid if » and ¢ are taken in the more general sense of Art. 16, so that » is
the length of the shortest line drawn normal to a fixed but arbitrary line, and ¢ is
an arbitrary function of the length of that part of the fixed line which is intercepted
between any shortest line and an arbitrary fixed point. The general solution must
embrace all this in a general way, and the arbitrary functions must go over into
definite functions only when the arbitrary line and the arbitrary functions of its
parts, which ¢ must represent, are themselves defined. In our case an infinitely
small circle may be taken, having its centre at the point from which the distances »
are measured, and ¢ will denote the parts themselves of this circle, divided by the
radius. Whence it is easily seen that the equations (5), (6) are quite sufficient for
our case, provided that the functions which they leave undefined satisfy the condi-
tion which » and ¢ satisfy for the initial point and for points at an infinitely small
distance from this point.

Moreover, in regard to the integration itself of the equations (5), (6), we know
that it can be reduced to the integration of ordinary differential equations, which, how-
ever, often happen to be so complicated that there is little to be gained by the reduc-
tion. On the contrary, the development in series, which are abundantly sufficient for
practical requirements, when only a finite portion of the surface is under considera-
tion, presents no difficulty ; and the formulese thus derived open a fruitful source for
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the solution of many important problems. But here we shall develop only a single
example in order to show the nature of the method.

23.

We shall now consider the case where all the lines for which p is constant are
shortest lines cutting orthogonally the line for which ¢ =0, which line we can regard
as the axis of abscissas. Let 4 be the point for which =0, D any point whatever
on the axis of abscissas, AD =p, B any point whatever on the shortest line normal
to AD at D, and BD =g, so that p can be regarded as the abscissa, ¢ the ordinate
of the point B. The abscissas we assume positive on the branch of the axis of
abscissas to which ¢ =0 corresponds, while we always regard r as positive. We take
the ordinates positive in the region in which ¢ is measured between 0 and 180°.

By the theorem of Art. 16 we shall have

0=190°, F=0, G=1,

and we shall set also

VvV E=n.
Thus n will be a function of p, ¢, such that for ¢ =0 it must become equal to unity.
The application of the formula of Art. 18 to our case shows that on any shortest
line whatever we must have

on
= O
dé 3q P>

where 0 denotes the angle between the element of this line and the element of the
line for which ¢ is constant. Now since the axis of abscissas is itself a shortest line,
and since, for it, we have everywhere §=0, we see that for ¢ =0 we must have

everywhere
on 0

g
Therefore we conclude that, if » is developed into a series in ascending powers of ¢,
this series must have the following form :
n=1+7¢*+g¢+ hg*+ ete.

where f, g, k, etc., will be functions of p, and we set

f=re+f p+f"p*+ ete.

g=g°+g p+yg’ p+ ete.

h=h°+kp+H p*+ ete.
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or
n=14 2@+ F u 4 fHigte*+ elo
+9°¢+ 9 pg® + ete.
+h° ¢g* + ete. ete.

24.
The equations of Art. 22 give, in our case,
. . OF _or ap . 3¢
”Sm‘!’—ap: coslp—@: —neOSY=m .= smlp——m.a—q,
2_28_7'2 or\? , O 9¢ Or 0¢
=G ) g
By the aid of these equations, the fifth and sixth of which are contained in the others,

series can be developed for », ¢, ¥, m, or for any functions whatever of these quan-

tities. We are going to establish here those series that are especially worthy of
attention.

Since for infinitely small values of p, ¢ we must have
r=ptd,
the series for #* will begin with the terms p*+¢*. We obtain the terms of higher
order by the method of undetermined coefficients,® by means of the equation

e

n op aq
Thus we have
[1] r=p 30p e L P RS — A et
+ ¢ +i9°p*¢ + 29 P°¢

+Gh— L5 P

Then we have, from the formula

.o 1 2
751n1p__ﬂ._é_p.,
[2] ring=p—34/p¢— 1P — QST FHS)PE ete

—49°pP— 29 P¢
- (%]lo_zgngZ)pg4

* We have thought it useless to give the calculation here, which can be somewhat abridged by
certain artifices.
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and from the formula

_ L0
TOOSI’J—% i
(3] reosy=g+3r°prg+is pg + @S —&F)ptg eto
ti9°p¢ + 39 ¢
+ @RS

These formulee give the angle 4. In like manner, for the calculation of the angle ¢,
series for 7cos ¢ and rsin¢ are very elegantly developed by means of the partial
differential equations

Ei;;s_qt':ncos¢.sin\p_rsin¢.";_(;
0.7 cos ¢ : X
— —— T —cos¢p.cosYy—rsing, T
S s cosy—rsing. 28
i%w-_—nsintﬁ.sinxp-]-ﬁﬂcos(ﬁ.%f
_a_'_r_sﬂ5‘i=s,1nq&cos¢-|-7'cos:;5..aJ_S
g 2y

ncos¢.g—?+sin\p.%ib=0
. &g P

A combination of these equations gives

rsiny 9.7 cos ¢

d.7¢08 ¢

reosyf. ——— 1L —

P 57 47 cosy = 7CoS ¢

rsinyg 9.rsingé ST— a'rsmd):rsind)
n ap 0

From these two equations series for rcos ¢, 7sin ¢ are easily developed, whose first
terms must evidently be p, ¢ respectively. The series are
[4] reos¢ =p+3fopg TS P¢F ES —&KSNOF ete.
T39°p¢ T 59 P¢
T @2 =) pd
[5] reing =¢—3/°p¢— /P’ — @S — ) ptg  eto.
BTV St T '
AT AV s
From a combination of equations [2], [3], [4], [56] a series for #*cos (¢ + ¢), may
be derived, and from this, dividing by the series [1], a series for cos (y + ¢), from
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which may .be found a series for the angle ¢ + ¢ itself. However, the same series
can be obtained more elegantly in the following manner. By differentiating the first
and second of the equations introduced at the beginning of this article, we obtain

Sinxp.g_z+n005¢.g.;l’+sin;’b.g—‘_p:0
P

and this combined with the equation
ncosxp.g—j + sin .%%:0

gives

rsing 9n | rsing 3P+ ¢) o+
S ‘8q+ w T ap +rcos¢.T_0

From this equation, by aid of the method of undetermined coefficients, we can easily
derive the series for ¢+ ¢, if we observe that its first term must be L, the radius
being taken equal to unity and 2« denoting the circumference of the circle,

[6] b+ od=%m—fpe— 4/ Pg— G&f"— L0 pq ete.
1 W |

—g° p¢ — 39 Py
— =3/ g

It seems worth while also to develop the area of the triangle 4 B D into a series.

For this development we may use the following conditional equation, which is easily

derived from sufficiently obvious geometric considerations, and in which § denotes the
required area:

rsinyg 0.8

p” @—i-rcomb.

o8 rsiny

S N nd

oq n f *e

the integration beginning with ¢=0. From this equation we obtain, by the method
of undetermined coefficients,

[7] S=4pg—/Pe— & e — /"= p°q ete.
—/P¢— 5 9P 9P
— 150/ P (Tt F S+ oY) P
— 5 9°r9'— &9
—(-115/2°_g%f°2)}795
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25.

From the formulse of the preceding article, which refer to a right triangle formed
by shortest lines, we proceed to the general case. Let (' be another point on the
same shortest line D B, for which point p remains the same as for the point B, and
¢, 7", ¢, ¥, 8 have the same meanings as ¢, », ¢, P, S have for the point B. There
will thus be a triangle between the points A, B, €, whose angles we denote by
A, B, C, the sides opposite these angles by @, 6, ¢, and the area by o. We represent
the measure of curvature at the points 4, B, € by a, B, y respectively. And then
supposing (which is permissible) that the quantities p, ¢, ¢ —¢' are positive, we shall
have

Ad=¢—¢, B=y, O=nr—y,
a=qg—¢, b=r, c=r, o=8—49".
We shall first express the area o by a series. By changing in [7] each of the

quantities that refer to B into those that refer to C, we obtain a formula for S
Whence we have, exact to quantities of the sixth order,

o=tpl@—) A=/ W+t qe9+47)
— a0/ PO P+ TE T g +T47)
—59° (¢ T )BT 45T 4)
This formula, by aid of series [2], namely,
osinB=p(1—4/°¢—Lfpq—49° ¢ eto)
can be changed into the following :
o=%acsin BA—%/°(pP"— ¢+ 99+ ¢
—d/ PP =84+ Ty + 747
—oey° BPg T3 8P A T 9P 497))
The measure of curvature for any point whatever of the surface becomes (by Art.
19, where m, p, ¢ were what n, ¢, p are here)
1 @0 2/+6gg+12h¢"+ ete.
n og® 1+ f¢* + ete.
=—2f—6g99g— (12 h—2 %) ¢* — etc.

Therefore we have, when p, ¢ refer to the point B,
B=—2f"—2fp—6g°¢—2/"p—b6g'pg—(124° —27)¢" —ete.
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Also

YET2 =2 p—69°9 — 2" —6 g pg — (12 h° —2£°%) ¢’ — eto.
g==—3JF*
Int%oducing these measures of curvature into the expression for o, we obtain the fol-
lowing expression, exact to quantities of the sixth order (exclusive):

c=%tacsinB(l+dsa(dp*—2¢+39¢ +3¢7
+13sBBp —6¢4+6g¢ +34¢"7)
todryBpP—2¢+ g9 +4497%)

The same precision will remain, if for p, ¢, ¢ we substitute ¢sin B, ¢ cos B, ¢ cos B — a.
This gives

[8] c=%tacsn B(1+ 5a(Ba*+4— 9accos B)
+135BBa*+ 3 —12accos B)
T sy @ +3F— 9accos B))

Since all expressions which refer to the line AD drawn normal to B¢ have disap-
peared from this equation, we may permute among themselves the points 4, B, ¢ and
the expressions that refer to them. Therefore we shall have, with the same precision,

[9] o=231besinA(1+l5a (B8 +3F2—12bccos 4)
+ 13 BB O +4— 9Ybecos A)
+ A5y (4 P+3%— 9becos 4))

[10] oc=21absinC(1+sa(Ba+46— 9abcos0)
+ s B@a”+38*— 9abceos O)
+ iy (B@+ 38 —12abcos C))

26.

The consideration of the rectilinear triangle whose sides are equal to a, b, ¢ is of
great advantage. The angles of this triangle, which we shall denote by A*, B¥, (¥,
differ from the angles of the triangle on the curved surface, namely, from 4, B, C,
by quantities of the second order; and it will be worth while to develop these differ-
ences accurately. However, it will be sufficient to show the first steps in these more
tedious than difficult calculations.

Replacing in formulee [1], [4], [56] the quantities that refer to B by those that
refer to €, we get formulee for »'%, #’ cos ¢/, »' sin¢’. Then the development of the
expression
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P+t —(¢g—¢)V—2rcosd.r cos ¢ —2rsin .7 sin’
=+ —a*—2bccos 4
=2 bc (cos A* —cos 4),
combined with the development of the expression
rsing .7 cosd’ —rcosd . sing’ =besin 4,
gives the following formula :
cos A* —cos A =—(¢—¢")psin A (3 /°+ 3/ p+19° (4 +7)
T @SSP T Hep(a Tt )
T (32255 (" +gq'+ %) + ete)
From this we have, to quantities of the fifth order,
A= A=t g—p G/ +1/ptig° @+ ¢)+157"p
Ty pl@T )30 (F+q99+ ¢7)
/TP T TP+ 1299+ T¢7)
Combining this formula with
2o0=ap(Q—3/°(p"+ ¢ +qq +q7%) —etc)
and with the values of the quantities a, B8, ¥ found in the preceding article, we obtain,
to quantities of the fifth order,

[11] A¥=A—o@GatHB+Iy &K/ P Ty p+7)
T 3h° (B¢ —2q9¢'+3¢"7)
Te/ Ot (Ep— g+ 14 gg —11¢%)
By precisely similar operations we derive
[12] Bt =B—o(fzatiBtHyt /" Ptgp2e+ty)
T3 (g —49g +397)
—0/ 2P 8¢ —8¢¢ +1147%))
[13] OF=C0—o(fgat BTyt /"P Ty rg+2¢)
+1h°(8¢"—4qq +44¢7
—w/T 2P 1 =8¢ +847))
From these formule we deduce, since the sum A* + B* 4 (* is equal to two right
angles, the excess of the sum 4 + B + ¢ over two right angles, namely,
[14] A+B+C=nto@GatiBtiyt i/ pP+igpl¢+7)
@R =47 a0+ )
This last equation could also have been derived from formula [6].
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27.

If the curved surface is a sphere of radius R, we shall have

1
a=B=y=—2f"=735 f'=0, g=0, 6k —f°°=0,
or

1
M =orpr
Consequently, formula [14] becomes

o

Ei?

which is absolutely exact. But formulse [11], [12], [13] give

A+B+C=n+

g

o
At=A—gm— 1P —¢t49¢—¢")

a o
Bf*=B—gmtigm’ —24 1294 +¢7)

a ag
C*=C—gmtigp+e+2e0 299
or, with equal exactness,

A*=A—L v

sp Isp 't 2d)

o

a
B*=B—gp~1sop@ T2
L

SR IS0 R
Neglecting quantities of the fourth order, we obtain from the above the well-known
theorem first established by the illustrious Legendre.

C*=(C A+ =24

28.

Our general formule, if we neglect terms of the fourth order, become extremely
simple, namely :
A*=A—2o0R2a+B+y)
B¥*=B—Lo(at28+y)
C*=C—Fya(a+Bt2y)
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Thus to the angles 4, B, ¢ on a non-spherical surface, unequal reductions must
be applied, so that the sines of the changed angles become proportional to the sides
opposite. The inequality, generally speaking, will be of the third order; but if the
surface differs little from a sphere, the inequality will be of a higher order. Kven in
the greatest triangles on the earth’s surface, whose angles it is possible to measure,
the difference can always be regarded as insensible. Thus, e. g., in the greatest of
the triangles which we have measured in recent years, namely, that between the
points Hohehagen, Brocken, Inselberg, where the excess of the sum of the angles was
147.856348, the calculation gave the following reductions to be applied to the angles:

Hohehagen . . . . . —47.95113

Brocken . . . . . . —47.95104

Inselberg . . . . . . —47.95131
29.

We shall conclude this study by comparing the area of a triangle on a curved
surface with the area of the rectilinear triangle whose sides are a, 6, ¢. We shall
denote the area of the latter by o*; hence

o*=1besin A¥ = Lacsin B¥*=}absin O*
We have, to quantities of the fourth order,
sin A*=gin 4 — {;ocosd.(2a+B+y)
or, with equal exactness,
sin A=sin A*. (1 + L bccos 4. (2a+B+ 7))
Substituting this value in formula [9], we shall have, to quantities of the sixth order,

oc=1besinA*. (1 + k5o (38°+ 3¢ —24ccos 4)
+ 135 BB P+ 4*—4bccos A)
+1ioy @+ 3F—4bccos 4)),

or, with equal exactness,
o=c*(1+dga(@+208+2F) + 35 B(2a°+ 0+ 2 + 5y (2a°+ 28+ %))
For the sphere this formula goes over into the following form :

o= 0% (1 + 4 a (a*+ 6+ ).
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It is easily verified that, with the same precision, the following formula may be taken
instead of the above:

*\/sinA .sin B .sin
o=0 TUA%F oin BF <in OF
sin A*. sin B* . sin
If this formula is applied to triangles on non-spherical curved surfaces, the error, gen-

erally speaking, will be of the fifth order, but will be insensible in all triangles such
as may be measured on the earth’s surface.
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GAUSS'S ABSTRACT OF THE DISQUISITIONES GENERALES CIRCA
SUPERFICIES CURVAS, PRESENTED TO THE ROYAL
SOCIETY OF GOTTINGEN.

(OTTINGISCHE GELEHRTE ANzZEIGEN. No. 177. Paces 1761-1768. 1827. NOVEMBER 5.

On the 8th of October, Hofrath Gauss presented to the Royal Society a paper :
Disquisitiones generales circa superficies curvas.

Although geometers have given much attention to general investigations of curved
surfaces and their results cover a significant portion of the domain of higher geometry,
this subject is still so far from being exhausted, that it can well be said that, up to
this time, but a small portion of an exceedingly fruitful field has been cultivated.
Through the solution of the problem, to find all representations of a given surface upon
another in which the smallest elements remain unchanged, the author sought some
years ago to give a new phase to this study. The purpose of the present discussion
is further to open up other new points of view and to develop some of the new truths
which thus become accessible. We shall here give an account of those things which
can be made intelligible in a few words. But we wish to remark at the outset that
the new theorems as well as the presentations of new ideas, if the greatest generality
is to be attained, are still partly in need of some limitations or closer determinations,
which must be omitted here.

In researches in which an infinity of directions of straight lines in space is con-
cerned, it is advantageous to represent these directions by means of those points upon
a fixed sphere, which are the end points of the radii drawn parallel to the lines. The
centre and the radius of this auailiary sphere are here quite arbitrary. The radius may
be taken equal to unity. This procedure agrees fundamentally with that which is con-
stantly employed in astronomy, where all directions are referred to a fictitious celestial
sphere of infinite radius. Spherical trigonometry and certain other theorems, to which
the author has added a new one of frequent application, then serve for the solution of
the problems which the comparison of the various directions involved can present.
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If we represent the direction of the normal at each point of the curved surtace by
the corresponding point of the sphere, determined as above indicated, namely, in this
way, to every point on the surface, let a point on the sphere correspond; then, gener-
ally speaking, to every line on the curved surface will correspond a line on the sphere,
and to every part of the former surface will correspond a part of the latter. The less
this part differs from a plane, the smaller will be the corresponding part on the sphere.
It is, therefore, a very natural idea to use as the measure of the total curvature,
which is to be assigned to a part of the curved surface, the area of the corresponding
part of the sphere. For this reason the author calls this area the infegral curvature of
the corresponding part of the curved surface. Besides the magnitude of the part, there
is also at the same time its position to be considered. And this position may be in
the two parts similar or inverse, quite independently of the relation of their magni-
tudes. The two cases can be distinguished by the positive or negative sign of the
total curvature. This distinction has, however, a definite meaning only when the
figures are regarded as upon definite sides of the two surfaces. The author regards
the figure in the case of the sphere on the outside, and in the case of the curved sur-
face on that side upon which we consider the normals erected. It follows then that
the positive sign is taken in the case of convexo-convex or concavo-concave surfaces
(which are not essentially different), and the negative in the case of concavo-convex
surfaces. If the part of the curved surface in question consists of parts of these differ-
ent sorts, still closer definition is necessary, which must be omitted here.

The comparison of the areas of two corresponding parts of the curved surface and of
the sphere leads now (in the same manner as, e. g., from the comparison of volume and
mass springs the idea of density) to a new idea. The author designates as measure of
curvature at a point of the curved surface the value of the fraction whose denominator is
the area of the infinitely small part of the curved surface at this point and whose numer-
ator is the area of the corresponding part of the surface of the auxiliary sphere, or the
integral curvature of that element. It is clear that, according to the idea of the author,
integral curvature and measure of curvature in the case of curved surfaces are analo-
gous to what, in the case of curved lines, are called respectively amplitude and curva-
ture simply. He hesitates to apply to curved surfaces the latter expressions, which
have been accepted more from custom than on account of fitness. Moreover, less
depends upon the choice of words than upon this, that their introduction shall be justi-
fied by pregnant theorems.

The solution of the problem, to find the measure of curvature at any point of a curved
surface, appears in different forms according to the manner in which the nature of the
curved surface is given. When the points in space, in general, are distinguished by
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three rectangular coordinates, the simplest method is to express one coordinate as a func-
tion of the other two. In this way we obtain the simplest expression for the measure of
curvature. But, at the same time, there arises a remarkable relation between this
measure of curvature and the curvatures of the curves formed by the intersections of
the curved surface with planes normal to it. KEuLer, as is well known, first showed
that two of these cutting planes which intersect each other at right angles have this
property, that in one is found the greatest and in the other the smallest radius of cur-
vature; or, more correctly, that in them the two extreme curvatures are found. It will
follow then from the above mentioned expression for the measure of curvature that this
will be equal to a fraction whose numerator is unity and whose denominator is the product
of the extreme radii of curvature. The expression for the measure of curvature will be
less simple, if the nature of the curved surface is determined by an equation in z, g, 2.
And it will become still more complex, if the nature of the curved surface is given so that
z, y, z are expressed in the form of functions of two new variables p, ¢. In this last case
the expression involves fifteen elements, namely, the partial differential coefficients of the
first and second orders of z, y, z with respect to p and ¢. But it is less important in itself
than for the reason that it facilitates the transition to another expression, which must be
classed with the most remarkable theorems of this study. If the nature of the curved
surface be expressed by this method, the general expression for any linear element upon
it, or for v/(d2* + dy® + dz*), has the form v/ (Edp*+ 2 Fdp.dg+ G d¢®), where B, F, G
are again functions of p and ¢. The new expression for the measure of curvature men-
tioned above contains merely these magnitudes and their partial differential coefficients
of the first and second order. Therefore we notice that, in order to determine the
measure of curvature, it is necessary to know only the general expression for a linear
element; the expressions for the coordinates z, y, z are not required. A direct result
from this is the remarkable theorem : If a curved surface, or a part of it, can be devel-
oped upon another surface, the measure of curvature at every point remains unchanged
after the development. In particular, it follows from this further: Upon a curved
surface that can be developed upon a plane, the measure of curvature is everywhere
equal to zero. From this we derive at once the characteristic equation of surfaces
developable upon a plane, namely,

oz o o’z \?
ox 0y ox .0y
when z is regarded as a function of # and y. This equation has been known for some

time, but according to the author’s judgment it has not been established previously
with the necessary rigor.
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These theorems lead to the consideration of the theory of curved surfaces from a
new point of view, where a wide and still wholly uncultivated field is open to investi-
gation. If we consider surfaces not as boundaries of bodies, but as bodies of which
one dimension vanishes, and if at the same time we conceive them as flexible but not
extensible, we see that two essentially different relations must be distinguished, namely,
on the one hand, those that presuppose a definite form of the surface in space; on the
other hand, those that are independent of the various forms which the surface may
assume. This discussion is concerned with the latter. In accordance with what has
been said, the measure of curvature belongs to this case. But it is easily seen that
the consideration of figures constructed upon the surface, their angles, their areas and
their integral curvatures, the joining of the points by means of shortest lines, and the
like, also belong to this case. All such investigations must start from this, that the
very nature of the curved surface is given by means of the expression of any linear
element in the form v/ (Edp*+ 2 Fdp.dg+ Gdg¢?). The author has embodied in the
present treatise a portion of his investigations in this field, made several years ago,
while he limits himself to such as are not too remote for an introduction, and may, to
some extent, be generally helpful in many further investigations. In our abstract, we
must limit ourselves still more, and be content with citing only a few of them as
types. The following theorems may serve for this purpose.

If upon a curved surface a system of infinitely many shortest lines of equal lengths
be drawn from one initial point, then will the line going through the end points of
these shortest lines cut each of them at right angles. If at every point of an arbitrary
line on a curved surface shortest lines of equal lengths be drawn at right angles to this
line, then will all these shortest lines be perpendicular also to the line which joins their
other end points. Both these theorems, of which the latter can be regarded as a gen-
eralization of the former, will be demonstrated both analytically and by simple geomet-
rical considerations. The excess of the sum of the angles of a triangle formed by shortest lines
over two right angles is equal to the total curvature of the triangle. It will be assumed here
that that angle (57°17/45) to which an arc equal to the radius of the sphere corresponds
will be taken as the unit for the angles, and that for the unit of total curvature will be
taken a part of the spherical surface, the area of which is a square whose side is equal to
the radius of the sphere. Evidently we can express this important theorem thus also:
the excess over two right angles of the angles of a friangle formed by shortest lines is to
eight right angles as the part of the surface of the auxiliary sphere, which corresponds
to it as its integral curvature, is to the whole surface of the sphere. In general, the
excess over 2n—4 right angles of the angles of a polygon of » sides, if these are
shortest lines, will be equal to the integral curvature of the polygon.
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The general investigations developed in this treatise will, in the conclusion, be applied
to the theory of triangles of shortest lines, of which we shall introduce only a couple of
important theorems. If @, b, ¢ be the sides of such a triangle (they will be regarded as
magnitudes of the first order); A4, B, ' the angles opposite; a, B, y the measures of
curvature at the angular points; o the area of the triangle, then, to magnitudes of the
fourth order, 4 (a +8+ ) o is the excess of the sum 4 +B + C over two right angles.
Further, with the same degree of exactness, the angles of a plane rectilinear triangle
whose sides are a, b, ¢, are respectively

A—32a+B+y) o
B—3%(a+2B+vy)o
C—+4(at+B+2y)0.

We see immediately that this last theorem is a generalization of the familiar theorem first
established by LEGENDRE. By means of this theorem we obtain the angles of a plane
triangle, correct to magnitudes of the fourth order, if we diminish each angle of the cor-
responding spherical triangle by one-third of the spherical excess. In the case of non-
spherical surfaces, we must apply unequal reductions to the angles, and this inequality,
generally speaking, is a magnitude of the third order. However, even if the whole sur-
face differs only a little from the spherical form, it will still involve also a factor denoting
the degree of the deviation from the spherical form. It is unquestionably important for
the higher geodesy that we be able to calculate the inequalities of those reductions and
thereby obtain the thorough conviction that, for all measurable triangles on the surface
of the earth, they are to be regarded as quite insensible. So it is, for example, in the
case of the greatest triangle of the triangulation carried out by the author. The greatest
side of this triangle is almost fifteen geographical® miles, and the excess of the sum
of its three angles over two right angles amounts almost to fifteen seconds. The three
reductions of the angles of the plane triangle are 4”/.95113, 47.95104, 4"7.95131. Besides,
the author also developed the missing terms of the fourth order in the above expres-
sions. Those for the sphere possess a very simple form. However, in the case of
measurable triangles upon the earth’s surface, they are quite insensible. And in the
example here introduced they would have diminished the first reduction by only two
units in the fifth decimal place and increased the third by the same amount.

* Thig German geographical mile is four minutes of arc at the equator, namely, 7.42 kilome-
ters, and is equal to about 4.6 English statute miles. [Translators.]
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NOTES.

Art. 1, p. 3, 1. 8. Gauss got the idea of using the auxiliary sphere from astron-
omy. Cf. Gauss’s Abstract, p. 45.

Art. 2, p. 3, 1. 2 fr. bot. In the Latin text sifus is used for the direction or
orientation of a plane, the position of a plane, the direction of a line, and the posi-
tion of a point.

Art. 2, p. 4,1. 14. 1In the Latin texts the notation

cos (1) L? + cos (2) L* + cos (8) L*=1

is used. This is replaced in the translations (except Boklen’s) by the more recent
notation

cos? (1) L + cos® (2) L + cos? (3) L=1.
Art. 2, p. 4, 1. 3 fr. bot. This stands in the original and in Liouville’s reprint,
cos A (cos ¢ sin ¢’ — sin ¢ cos ¢') (cos ¢/ sin ¢’ — sin ¢’ sin ¢'"").

Art. 2, pp. 4-6. Theorem VI is original with Gauss, as is also the method of
deriving VII. The following figures show the points and lines of Theorems VI and
VII:

Art. 3, p. 6. The geometric condition here stated, that the curvature be continu-
ous for each point of the surface, or part of the surface, considered is equivalent to
the analytic condition that the first and second derivatives of the function or funec-
tions defining the surface be finite and continuous for all points of the surface, or

part of the surface, considered.
Art. 4, p. 7, 1. 20. In the Latin texts the notation XX for X? etc., is used.
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Art. 4, p. 7. “The second method of representing a surface (the expression of
the coordinates by means of two auxiliary variables) was first used by Gauss for
arbitrary surfaces in the case of the problem of conformal mapping. [Astronomische
Abhandlungen, edited by H. C. Schumacher, vol. IIT, Altona, 1825; Gauss, Werke,
vol. IV, p. 189 ; reprinted in vol. 55 of Ostwald’s Klassiker.—Cf. also Gauss, Theoria
attractionis corporum sphaer. ellipt., Comment. Gott. IT, 1818 ; Gauss, Werke, vol. v,
p. 10.] Here he applies this representation for the first time to the determination of
the direction of the surface normal, and later also to the study of curvature and of
geodetic lines. The geometrical significance of the variables p, ¢ is discussed more fully
in Art. 17. This method of representation forms the source of many new theorems,
of which these are particularly worthy of mention: the corollary, that the measure of
curvature remains unchanged by the bending of the surface (Art.11, 12); the theorems
of Art. 15, 16 concerning geodetic lines; the theorem of Art. 20; and, finally, the
results derived in the conclusion, which refer a geodetic triangle to the rectilinear trian-
gle whose sides are of the same length.” [Wangerin.]

Axt. 5, p. 8. “To decide the question, which of the two systems of values found
in Art. 4 for X, ¥, Z belong to the normal directed outwards, which to the normal
directed inwards, we need only to apply the theorem of Art. 2 (VII), provided we use
the second method of representing the surface. If, on the contrary, the surface is
defined by the equation between the coordinates W= 0, then the following simpler con-
considerations lead to the answer. We draw the line do from the point 4 towards
the outer side, then, if dz, dy, dz are the projections of do, we have

Pdz+ Qdy + Rdz>0.

On the other hand, if ‘the angle between o and the normal taken outward is acute,

then
dz

dx dy

%.X -+ -%—Y ~+ %Z > 0.
This condition, since do is positive, must be combined with the preceding, if the first
solution is taken for X, ¥, Z. This result is obtained in a similar way, if the sur-
face is analytically defined by the third method.” [Wangerin.]

Art. 6, p. 10, 1. 4. The definition of measure of curvature here given is the one
generally used. But Sophie Germain defined as a measure of curvature at a point of
a surface the sum of the reciprocals of the principal radii of curvature at that point,
or double the so-called mean curvature. (f. Crelle’s Journ. fiir Math., vol. VIL
Casorati defined as a measure of curvature one-half the sum of the squares of the
reciprocals of the principal radii of curvature at a point of the surface. Cf. Rend.
del R. Istituto Lombardo, ser. 2, vol. 22, 1889 ; Acta Mathem. vol. XIV, p. 95, 1890.

-
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Art. 6, p. 11, 1. 21. Gauss did not carry out his intention of studying the most
general cases of figures mapped on the sphere.

Art. 7, p. 11, 1. 81. “That the consideration of a surface element which has the
form of a triangle can be used in the calculation of the measure of curvature, follows
from this fact that, according to the formula developed on page 12, % is independent
of the magnitudes dz, dy, 8z, dy, and that, consequently, £ has the same value for
every infinitely small triangle at the same point of the surface, therefore also for sur-
face elements of any form whatever lying at that point.” [Wangerin.]

Art. 7, p. 12, 1. 20. The notation in the Latin text for the partial derivatives:

dX dX
qz’ dy’ ete.,

has been replaced throughout by the more recent notation :

0X 09X
W} @7 ete.

Art. 7, p. 18, 1. 16. This formula, as it stands in the original and in Liouville’s

reprint, is

dY=—2°tudt —2Z° (1 + ) du.
The incorrect sign in the second member has been corrected in the reprint in Gauss,
Werke, vol. IV, and in the translations.

Art. 8, p. 15, 1. 3. Euler’s work here referred to is found in Mem. de I'Acad.
de Berlin, vol. XVI, 1760.

Art. 10, p. 18, 11. 8, 9, 10. Instead of D, D', D" as here defined, the Italian
geometers have introduced magnitudes denoted by the same letters and equal, in
Gauss’s notation, to

D D’ D"
V(EG—F? v (EG—F? Vv (EG—F?

respectively.

Art. 11, p. 19, 1. 4, 6, fr. bot. In the original and in Liouville’s reprint, two of
these formulee are incorrectly given :

_a£=m”+n, n:aF 1 o8
o¢
The proper corrections have been made in Gauss, Werke, vol. IV, and in the trans-
lations.
Art. 13, p. 21,1. 20. Gauss published nothing further on the properties of devel-

opable surfaces.
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Art. 14, p. 22, 1. 8. The transformation is easily made by means of integration
by parts.

A_rt. 17, p. 25. If we go from the point p, ¢ to the point (p + dp, ¢), and if the
Cartesian coordinates of the first point are %, y, 2, and of the second z+dz, y+dy,

2+ dz; with ds the linear element between the two points, then the direction cosines
of ds are

dz dy dz
08 o0 = —— 4 22
GOB b ==y cos,B_dS, 008 y = ——
Since we assume here ¢ =Constant or dg=0, we have also
ox oy oz
dx=§?7-d]o, dy=5];'d]o, dz=—a—]—7-djo, ds == v E.dp.

If dp is positive, the change ds will be taken in the positive direction. Therefore
ds=v E.dp,

Co8 a:T/_E—.é—];’ COSBZ—V—E—.@? cosy"—‘ﬁ'@,

In like manner, along the line p = Constant, if cos a’, cos B/, cosy’ are the direction
cosines, we obtain

QD
QO

1 ® 1 oy 1 2
AT COS'B’:W'@’ cos‘)’,zﬁ'—q'

cos o/ =

And since
€08 @ = ¢os a ¢os a’ + cos B cos B+ cos y cos v/,
F
COS w— ~1/—EG_
From this follows
. vV (EG— F?)
SN w — W

And the area of the quadrilateral formed by the lines p, p+dp, ¢, ¢ +dg is
do=v(EG—F .dp.dg.

Art. 21, p. 83, 1. 12. 1In the original, in Liouville’s reprint, in the two French
translations, and in Boklen’s translation, the next to the last formula of this article
is written ”

EG—F
EBS—F(a8+By)+Gay=gm—gm- ¥
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The proper correction in sign has been made in Gauss, Werke, vol. IV, and in Wan-
gerin’s translation.

Art. 23, p. 35, 1. 13 fr. bot. In the Latin texts and in Roger's and Boklen’s
translations this formula has a minus sign on the right hand side. The correction in
sign has been made in Abadie’s and Wangerin’s translations.

Art. 23, p. 35. The figure below represents the lines and angles mentioned in
this and the following articles :

Art. 24, p. 36. Derivation of formula [1].
Let #=p*+ ¢+ R,+ R,+ R,+ R, etc.

where R, is the aggregate of all the terms of the third degree in p and ¢, R, of all
the terms of the fourth degree, etc. Then by differentiating, squaring, and omitting
terms above the sixth degree, we obtain

(a(j)) tp +(al;) +(B§) +4p (5 p)+4ﬁa};

oR,0R oR, O,
+4pa—p5+4pa—]06+2 < 4+2

op dp op 8]0

and
o(r%) oR, oR, s
(ap) 4g+(9)+(9)+4 q+47
oR, , oR, _O0R,3R, _0R,0R,
+4gaq+4qag+289 By +28q TR
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Hence we have

(3(7'2)) (a(ﬁ) 4

— oty 0 3R, OR, oR, 2 R)\*
=1(p5p+ G —r) + 4(p % o 1 ) + 1 G
R, 0R, aROR, OR,0R,
Ty Tt o ey ey
R6 R, oR, oR, oR,0R, OR,0R
e B 1 i W P skt N
+5’ag E +4( p)+l( g)+£ op Op +%aq aq
_ oR,0R, 9R,0R,
8R+4(3R+I( 10)+1( )+4(4R+2 ap alqg_l_%ﬁaq
oR, oR, oR,0R, oR,OR
1 1 T 4 17089
+4(5 B+ 1 (p)+ (G )+gap T R e
since, according to a familiar theorem for homogeneous functions,
oR, 8R
P, +9—==2=3R,, ete.
ap g
By dividing unity by the square of the value of », given at the end of Art. 23, and
omitting terms above the fourth degree, we have

1
1= 5 =2/ + 2/ pg" +29°¢ —3/7¢" + 21" p’¢*+ 29 pg +24°¢

This, multiplied by the last equation but one of the preceding page, on rejecting terms
above the sixth degree, becomes

2
( _._)(_(_7_)—8f0p29,2+8f/])392 _12f02]0294+8]30]9294
R,
+8.9°]0293 __I_8fl/p42 _I_Zfo Z(d_p)
OR dR, oR,
teropd5, H89P¢ HEIP PG YR,
R

+ 8§ 7o 2__4,
Jpg op
Therefore, since from the fifth equation of Art. 24:

() () —en=(-3) (2.
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we have
8R+4(3R+I( )+‘( )+4(4R+a§aa]; %381;33861;4
+4(5Rer(; P)+1 az)ﬂaaﬁ aafj +2aa§ aa];

_8fop292+8flp392+89 p293+8f0pg_%_12f02 294+8fll 4 2
R, oR oR, IR,
+89 PP+ 8h PP +21°¢ —|-8’22 —32+8 —+8
' prgTif (p) F'res, f“zoqp .9}793]0
Whence, by the method of undetermined coefficients, we find
R,=0, R,=3rp'¢", R, =3%fp’¢"+49°0¢
Rs=(%f”—fgf”)]o‘*er%y’Psf+(%ﬁ°' =/ e
And therefore we have
[ A=p 3P T AP+ (S — ) P+ oo
s +i9°p q“r e
+ 31—~ s e
This method for deriving formula [1] is taken from Wangerin.
Art. 24, p. 36. Derivation of formula [2].
By taking one-half the reciprocal of the series for » given in Art. 23, p. 36, we

obtain

1
G-=3[A— ¢ —fpe—9° ¢ — P — g pg— (h° —f) ¢ — etc].

And by differentiating formula [1] with respect to p, we obtain

a(r*
=2 o+ 1/ pd 1P 2GS — )P
+ 1g° 3438 o 2 3
zd PY T59P9
+( h° — %) pg* + ete.].
Therefore, since

1 8(7'2)
rsiny = o op
we have, by multiplying together the two series above,
[2] rsing=p—}/p¢ — 1/ P'¢ — @S+ £5.7) p'g — ete.

! 02 8

—4+9°ps— %9'P'¢
—@r =5/ ee
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Art. 24, p. 87. Derivation of formula [3].
By differentiating [1] on page 57 with respect to ¢, we find
8(7'2)_2 + 2 fop2 1 £18 2 £11 — _4_f02) pt
ag 2Lt #P e 4P + G — &Yt
Ti9°P ¢+ B+ (G h°— /)P ete].

Therefore we have, since

0 2
7 CO8 ) = %%,
(3] reosy=g+3/°p'q + 11 p'q. + RS — £ g + ete.

Ti9°P T+ 290+ R — 1) P
Art. 24, p. 37. Derivation of formula [4].

Since 7 cos ¢ becomes equal to p for infinitely small values of p and g, the series
for 7 cos ¢ must begin with p. Hence we set

1) rcos ¢ =p +R,+R,+R,+ R+ ete.
Then, by differentiating, we obtain

0 (rcos ) oR, oR, OR, 0R,
(2) —-a—p———~1—|-ap+ap+ap+ap + ete.
d(rcos¢p) oR, oR, oR, 0R;
(3) 3¢ ——aq-l-aq—i—aq—l—aq—l-etc.
By dividing [2] p. 57 by » on page 36, we obtain
in
(4) — Y p— 41 p RS — G+ S — ot

S AV A ¢ Lok s VASVAE
Multiplying (2) by (4), we have

i oR,  oR, R, oR .
o) T2t S S S e — P
R oR
—4/°pd—4°p 9“’3];,2 —4/°p 923—;—%9’1@293
oR
__%f/pzqz _%f/pzqzﬁ__(%ko_%%foz)pf

oR
to°r¢  —Retpd G, —ete
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Multiplying (3) by [3] p. 58, we have

d(rcos¢) oR, 0oR, IR, i o
R, oR
+§f"pgagz+2f°p“’9 P40 M—2+et"
Since
- 5 3
"S;n‘l’. (Tacj(;s $) + 7 cos (m;s ¢) =17 cos ¢,

we have, by setting (1) equal to the sum of (5) and (6),
p+R,+R+R,+R,+ ete.

dR, , OR, 2R, oR
=P +P ap +1’0 ap +p a]) +P aj)ﬁ _(ﬁho—%%foz)pgi
R, R, R R,
4 — 4 f0 _4 o ____4 0 3 +
99 5/°pg fMa}, fMap qaq
R, R R
teg, TP e a]f tir ey,
R R,
—i°rs —E00dG, TPy,
R, R,
T S 2 s VAV S Y0 o B

R
+37° Mﬁ —3%9'p'¢ + ete,

from which we find
E=0,  E= 31095 R=w%P¢+419°pe,
By= e g 10+ G0 — F5 /") + (B f”—ﬁf“)p”qz
Therefore we have finally
[4] reos¢=p+3fpg+ 7/ P¢+ (s — K/ P T ete
T 39°r¢t SH9PVe
+ (3 b — 45/ pe"
Art. 24, p. 87. Derivation of formula [5].
Again, since r sin ¢ becomes equal to ¢ for infinitely small values of p and g,
we set
(1) rsin ¢ =g¢+R,+R,+R,+ B, + etc.
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Then we have by differentiation

0
@) (r;mgb) _I_BR +aR 0 R5+ eto.
g ap ap ap ap
G oR
3) (”asm‘i’) 1420 28 08 2 ) ote.
q 9g ~ °g ' ag ' 9¢
Multiplying (4) p. 58 by this (2), we obtain
rsiny 9 (rsin ¢) oR,  OR, R, R,
4 2+ + P —~3 F
4 — ap pp Pop T P5p trg, ey,

. R, .. LR oR,
—8frdg, —4rg 317—%9 pq 7—etc

Likewise from (3) and [3] p. 58, we obtain

d(rsing) oR oR, oR, 0R;

(5) rcosy. 3q q+gaqz+gag+qaq+qaq + @S — &SN
R,
+2f°p29+2f°pgqa—q+§f"179 54 Y s
+31SPe f;vq a + @A — 1SN
+3°0 + 1P ;+ etc.
Since
rsing 9 (rsin arsm )
n‘!‘_ (ap ¢)+ 7 cosy - ( d))—rsmq&,
by setting (1) equal to the sum of (4) and (5), we have
q+R +R,+R,+ B+ etc.
_ R, OR, IR, . R, 2R, , 2R,
9+P ap +Pap +r5, j, T3Py ‘e, TP, tegy + ete.
9R, OR, R, 2o avo. 2R Ry s o OB
+qaq T4 Ay +9 +39p9 srrds, 10 SR DAV A TAV A oy
2R
tirre = G, TP 292 2+(%f”— 5/ p'e

R R
t3rre G, TReteeS, TIPS T @A RSP
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from which we find
B,=0, R=—1%/p'¢ R——%f’p"’q—lfpzq”,
By=— /" — /)P ¢ 9P — G+ 0 P
Therefore, substituting these values in (1), we have
[5] rsin¢ =g =3/ PP — s e/ Py —ete.
gOPZQZ__ g/pagz
— (P
Art. 24, p. 38. Derivation of formula [6].
Differentiating » on page 36 with respect to ¢, we obtain

]
M 5= 2/ H 27 P g 21 g + et
39°¢* +39'pg® + ete.
‘ +4r°¢ + ete., ete.
and hence, multiplying this series by (4) on page 58, we find
i 0
(2) rS;n"b'%:zf"pg'I-Qf'pzq—F 2F" gt q + 8 g pr gt + ete.

T39°pg+ (=8 ) p g
For infinitely small values of », ¢ + ¢ = g, as is evident from the figure on page
55. Hence we set

U+ =5+ B+ B+ B+ B, + etc.

Then we shall have, by differentiation,

obt+4)_ 20E, R, :
(3) ap —8])+ p-l—ﬁ-!—etc
o(y+ @) _OR, aR Iy _4
@ 9o o o S e
Therefore, multiplying (4) on page 58 by (3), we find
rsing (Y + ) R, ©oR, OR, oR,
+ + + p—=—+ etc.
() p 3p 10], Pip Pa}, . Pop aRG
0
—4Srd G, e,
e L0 B
A ap
s ;01
—39°p¢

op’
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and, multiplying [3] on page 58 by (4), we find
+¢) oR, R, R
(6) 7 COS iy 5, T ete.
v Ty qq+ q+qaq IRTI
o R (I] a__}iz
oR
41 frpBg—1
3/ Pq 2q
oR,
i, ag
And since

rsing 9n | rsing Y+ ¢) (Y +
———n aq -+ = . 8}9 "|'7'OOSl[J‘ (lpag, (]S): ]

we shall have, by adding (2), (5), and (6),

oR . R
0=P3j—91+2f279+2f’]029 +2f”}739 _%90]093 ajo1
o, oR, oR,
o 2 ! 02 2
Y5y "‘Pa], +3g9°ps"  +34pg tog,
oR, oR : oR
oS S (VLR Ve VPR PR
o 208, oR, oR,
—4/°p7 ap +1’03p _I—%fWQaq
oR, oR oR
te3, —trres, tierdy)
oR, oR,
o O o e + ete.
PG, 1T, ete

From this equation we find
B=0, BE=—1pg B=—3/p79°pq
R==@GS" =%/ e—19 ¢ — =4/ p g
Therefore we have finally

[6] Wt d=5—Spe—3S PP — GBS — /) Py —ete.

o2y

—9°py— 29'P°q
— (k=% p ¢
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Art. 24, p. 88, 1. 19. The differential equation from which formula [7] follows
is derived in the following manner. In the figure on page 55, prolong AD to D,
making DD’ =dp, through D’ perpendicular to AD’ draw a geodesic line, which will
cut AB in B’. Finally, take D'B"”" =D B, so that BB" is perpendicular to B'D’.
‘Then, if by ABD we mean the area of the triangle 4 B D,

o8 ABD'—ABD _ BDD'B' . BDD'B' . DD
5y = lIm—— g —— =lim —— =lim — 75— lIm 5,

since the surface BDD'B"’ differs from BDD'B’ only by an infinitesimal of the
second order. And since

BDD' B
BDD’B”=dp.fndg, or lim ——57— ——fndq,

and since, further,

. DD op
I 5 =5
consequently
oS 810
or f” 4.

Therefore also

oS 8_70 EIY aq
Bp or ag “or fndg

or 0
Finally, from the values for £, 5% given at the beginning of Art. 24, p. 36, we have

0 l aq
31: ‘1”: ar =008 ¢,
so that we have

o8 siny sin
5w +ag cos = -fndq.

[Wangerin.]
Art. 24, p. 38. Derivation of formula [7].
For inﬁnitely small values of p and ¢, the area of the triangle A B (' becomes
equal to L pg. The series for this area, which is denoted by &S, must therefore begin
with 1 pg, or R,. Hence we put

S=R, + R,+R,+ R+ R+ etc.
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By differentiating, we obtain
38 _0oR, R oR
1 e —] 2+ 3 _____;4 6
1) 5 p ap+8p+8p+ap+tc’
@) aS:aRz+aRa+g£ 8R6+ ete.,

59 oq¢ g ag Tag ' ag

and therefore, by multiplying (4) on page 58 by (1), we obtain

(3)

rsing 98 9R, oR, 3R, R, R,
w o op Pop TPy TPy, Ty, g, Tel
. AR, . R, 3R,
—3f png;—gf re5, —4°pg 2p
R, R,
_%fIPZQZ_a_]j__st 2 Zap
0B, . . ,oR,
—%9°rs 5, Rrd 5,
R,
—@S" S S, ap
R,
_ ! 2 3_
A
aR,

— @1~

and multiplying [3] on page 58 by (2), we obtain

(4)

7 COS s - gS qaalzz -+ qaa]gga + qaa{; + qa;; + q%% + ete.
t3/p qaalz“r 3/°0'q 3133+ 2f°pzqa£
+377 a]}ﬂf' P
+ 39%92 +7f.9°]0292_3%
+ @S A&/ ?5%

R,

oR,
+( k0_14f02)}99 aq
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Integrating #» on page 36 with respect to ¢, we find
(5) Sndg=g+37° ¢+ 17 P+ P ete
+19°¢ + 19 pgt+ ete.
+ 1 4°¢° + ete. ete.
Multiplying (4) on page 58 by (5), we find
7 sin
(6) Sndg=pg—rpe =11 e — Q1" + 515 — cte.
—i9°rd —H9P¢
, — G 1 — 1/ p
Since
EIN o8
rs;n',b —p-l-?'cosnp Tsm\pfndq,
we obtain, by setting (6) equal to the sum of (3) and 4),
rq —rre —HBIrE @RS+ S P — ete
—%9° M — H9re
— (38— s
oR,  OR oR oR, O0R, oR, oR
= + + e+ + + 4 3
Pap Poap TPy Pop qaq pap 19°r ¢ By B
oR oR oR oR, OR, ) . oR
+9392+9393+93; —4/°pq ap_*—qaq —‘(%J‘"+8f2)1039271;2
oR oR, oR oR,
— 4 fo 4 2 fo 778 ) 4 ll_4 02
1rrdg, T fzoqaq 8ord%, TR AP,

R, R R, oR,
A e Y 3p2+ 3ror'e W- t9r'¢ 3,
oR, JR,
+37'p 9@—%’1) 7 a], U T 3q

oR,

oR, oR, i
—39°P0 %, 1f’]0395—( LI s ANV L ar v

2R, 2R, R
+49°P° —5;—29 PeG, @R R IPEGS

From this equation we find

B,=1%pg, E=0, R_——gf"zoq —35/°P°e

R=—%11r9—&9°P¢ /P’ —&9°rd,

R=—({h° =4SP ¢ —(—‘gif + A f"+ &/ P
- :;‘%9’1029* — (&S — S NP e —H 9P
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Therefore we have

[7] S=%pg—72/°rq — /P9 — G — /)P’ g — ete.
EReTA A 39209 — 9P
2 fl 293 _(1 ko_l_ 2fl/+ OfoZ)]oaqa
9Py —9P¢
— (/)P
Art. 25,p.39,L.17. 3p*+4¢*+4¢gqg + 4 ¢* is replaced by 3 p*+4 >+ 4 4%
This error appears in all the reprints and translations (except Wangerin’s).
Art. 25, p. 40, 1. 8. 3 p*—2¢*+ g¢ + 4 g4 is replaced by 3 p* —2 ¢ + g4
4+ 4 ¢’®. This correction is noted in all the translations, and in Liouville’s reprint.
Art. 25, p. 40. Derivation of formulee [8], [9], [10].

By priming the ¢’s in [7] we obtain at once a series for §’. Then, since
oc=8—48, we have
=tp@—)—H/P 0 —9) &SP @—d) —L9° P97
—1/°p @)t/ P )~ 9°p (¢ ¢
correct to terms of the sixth degree.
This expression may be written as follows :
=ip@—)A— 37 Pt +qeq +¢")
—se/ POt T+ Teg +7¢"7)
_2_1(790 (q__'_g,l) (3p2 _}_492 _}_49/2)),
or, after factoring,
1) o=4p0¢—)A—4¢—1/ Pl —39° DA%/ (P~ +ge¢ +¢7
— 30/ PP =8¢t Tqq +79")—59° Bp*qg+3p" —64+4¢°¢ +49¢'"+4¢%).
The last factor on the right in (1) can be written thus:

A—13e/° (A7) —18e/° Bp) — 13/ 20 9¢) —130/° Bp) —13e/'P(¢7)
T30/ 2¢) +130 /06 — 1/ P (B¢ T 145/ (29°) — 120f’]0 (4 7%
—155/° (B 9¢) — 135/ (699) —1559°9B3 ) —130/°(¢7) —1he9°d Bp)
—130/° B9") —13e/° B¢ F1E59°9 (6¢") —1ies (49 h—w" 7 (24)

— 155/ PBP) —1hv9° ¢ 69¢) — 1S p Bp°) — °q’(qq;)
+1—%’—of’p(692 —1509°9(B¢%) + 35/ p (24 — g°9’(49’ )
We know, further, that
1 on

b=—>- a—q‘="‘2f—699‘“(1275—2f2)92“et0-,
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f=r+ ' ptrpt ete,

g=9°+tg'p+g'p+ ete,

h=h°+Hp+ K p*+ ete.
Hence, substituting these values for f, g, and % in %, we have at B where k=g,
correct to terms of the third degree,

B==2/=2fp—69°¢—2/"p"—6g' pg—(12h° =2/ 4"
Likewise, remembering that ¢ becomes ¢’ at C, and that both p and ¢ vanish at A,
we have
YET2 =2 p— 6y =2/ =6y pg — (120° — 2/ ¢'%,
a=—2f°.
And since ¢ sin B =7 sin,
esinB=p(l =3/ ¢—1fpg"—49°¢ — etc.).
Now, if we substitute in (1) ¢ sin B, a, B, y for the series which they represent,
and a for ¢ —¢’, we obtain (still correct to terms of the sixth degree)
o=%acsnB(l+lya(dp*—2¢+ 3¢9+ 3¢?
T BB~ 069"+ 6g¢+347)
Troy B —24+ 99+ 497).
And if in this equation we replace p, ¢, ¢’ by ¢ sin B, ccos B, ¢ cos B — a, respect-
ively, we shall have
[8] oc=4%acsin B(1+ 35za(Ba*+4F— 9accosB)
+ 3sBB &+ 3¢ — 12 ac cos B)
T 3ry@a*+ 38— 9accos B)).

By writing for B, a, 8, ¢ in [8], 4, B, a, & respectively, we obtain at once
formula [9]. Likewise by writing for B, B, y, ¢ in [8], C, v, B, b respectively, we
obtain formula [10]. Formule [9] and [10] can, of course, also be derived by the
method used to derive [8]. :

Art. 26, p. 41, 1. 11. The right hand side of this equation should have the pos-
itive sign. All the editions prior to Wangerin’s have the incorrect sign.

Art. 26, p. 41. Derivation of formula [11].

We have
(1) rPtrt—(g—¢Y—2rcosd.r cosd’ —2rsin¢.r sin¢’

=+ F—a*—2bccos (¢ — )
=2 be (cos A* — cos 4),
since 8 + ¢ — &= 2 b¢ cos A* and cos (¢ — ¢’) = cos 4.
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By priming the ¢’s in formulee [1], [4], [6] we obtain at once series for +'?
7 cos ¢/, ' sin ¢/. Hence we have series for all the terms in the above expression,
and also for the terms in the expression:

(2) rsing.» cosd —rcosd . sing’ =besin 4,
namely,
(3) P=p 3PP (S — A P ete

+ ¢ +39°p ¢+ 297

+ @ r— NP

(4) /2_]9 + 2](0 /2+ lf]) 9,/2 + <2fll_ 4 foZ)p‘quZ_l_etc.

+q° 1P+ o

+ (2 ]& oy P foZ)pqu’

(5) —(g—9¢r=—¢+2q9¢—7¢"
(6) 2rcosp=2p + £/ p* + L3/ PP+ (&S — 18100 pPgP + ete.

+9°pd T E59 P
+ @r— e,
(7) reosd =p+3/pg*+ 2S¢+ (P f”— 750 P’ ¢ + ete.
+ $9°pg*+ L9 "
+ @2 — L5
(8) 2rsing=2¢ =}/ P =4SP g — (/" ¥/ Py ete.
—29°P e — K9P
— @A+ NP
(9) rsing =g =300 — 48P0 —(Jof” 5T P ete.
—19°P° 0 — o9

By adding (3), (4), and (5), we obtain
(10)7'2+7"2_(9_9’)2:2]92'*“%1]‘70]92(92""9%'{‘712]”}’3(92_"9’2 + @S L5/ p (¢ ¢7) Tete.
+ 249 T3Pt + 9P (1 17
G I
On multiplying (6) by (7), we obtain
(11) 2 rcos¢ .7 cos ¢
=2+ 4P @) P @ ) TGS RS P ) ete
TR ) s d @+ )
+ (%bo _ 14f02)]) (g4+914)
S VAN R
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and multiplying (8) by (9), we obtain
(12) 2rsing .7 sin ¢’

=299 —4/°p 0 — 3 P99 —@S" /)P g — ete.
—39°P9d (¢t ) =S99 (¢ +¢)

—@r + RSP @ )

Hence by adding (11) and (12), we have
(13) 2bccosd
=2+ 8P (TN T P G4 gy 8y )t (2482 ¢ =8 g¢) + ete.
+299'—4/°Peq T 397" QP+ 29%—¢*¢'—q¢")

— 5/ (14 + Mg + 184 + 13 ¢4 — 40 ¢4%¢")

TP (T8 +T79° =3¢ 349"

T3P B¢+ 3¢ —24q7)

TR 229 =" —q9)
Therefore we have, by subtracting (13) from (10),

2 be (cos A% — cos A)
=PRI 20 (0P = 29)F K g~ 29g) —ete
—39°P (@ — ) LS P 2497
T/ (T + T+ 1347 + 18 99 — 40 4*¢"%)
—Erp ¢+ P e
B A AV Al X G Vi
which we can write thus:
(14) 2be¢ (cos A* —cos d) =—2p*(¢ — ¢V G/° + §/'p+ 19° (¢ T ¢) + 1o/
T3P+ qg+ )+ g ple+ )
SRS T+ 2T99),

correct to terms of the seventh degree.
If we multiply (7) by [6] on page 37, we obtain
(15) rsin ¢ . 7 cos ¢’
=pgt3/°ped*t S P  CoS” — TSP g ete
—3/°r e T E9°pee? 9P 99"
—%/'pe @) ped”
19 — 89"
— (S — P e

— B+ P
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And multiplying (9) by formula [4] on page 37, we obtain

(16) 7 cos ¢ . 7' sin ¢’
=pd =3P —PY (S RSPt ete.
t3reed —19°r” — g

+ RSP — GRS P
T39°r¢y —R/P ¢S
T S e
+ 59 P
T @=L pde
Therefore we have, by subtracting (16) from (15),
(17) besind
=plg—NA—3/°P —&Sped — (&S ) " 1d
—3/°90 — P — (/" — S P
—39°99 ¢+ 9)— K9 ped ¢+ 9)
—19°r g+ 9) —Hg Pt )
— G+ 3PP+ g0 F 1)
— @ =) (T ed ()
+ %_fOZPZQ, q/)’
correct to terms of the seventh degree.
Let A* — A=, whence A*=A+ {, { being a magnitude of the second order.
Hence we have, expanding sin  and cos {, and rejecting powers of { above the second,

2

cos d*=cos 4. (1 —%5) —sin4.¢,

or

A
cos A* — cos A =— OOZ «{?—sind.{;

or, multiplying both members of this equation by 2be¢,
(18) 2bc(cos A* —cos Ay =—0bccos A.{*—2bcsind .

Further, let {=R,+ E,+ R,+etc., where the R’s have the same meaning as before.
If now we substitute in (18) for its various terms the series derived above, we shall
have, on rejecting terms above the sixth degree,

P+ e) B+ 2p(g—¢)A =L (PP + 2¢¢) (B,+B,+R,)
=2p (= ¢V @S T4 pt i@t )+ &SP I p( T )
T3+ gd + 7)) — o2+ T@+ T+ 2749)).
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Equating terms of like powers, and solving for R,, R,, R, we find
=ple—¢) 3/ B,=plg—¢)@ES'p+19°@+7)),
=rP@— G/ Pt gt )T (@ + 9 + o)
/(TP T+ Tg "+ 1297).
Therefore we have

45— A=plg=)GS T2+ kg° @+ ) + 3oy
Taegp(q+q) 10 ("t +q7)
— 55 SP(T P+ T8+ 1294 + 7¢'%)),
correct terms of the fifth degree.
This equation may be written as follows :

A*—A+azo(1—sf° P+t oG+ p+ 1o+ 9)
TSP T Sy p ()RR (Pt g+ ) — /2P 297+ Teg'+247%).
But, since
20=ap(l—3/° (Pt ¢+ q¢ + ¢+ ete),
the above equation becomes
A¥=A—o (=3 —4/'P—39° (¢t ¢) — /" P~ g r+q)
=320+ g T ) e fPAP T 4P+ g+ 44'Y),
or
A¥=A—o(— 2f°~ 2f° — 12/
=f'p — &SP
_12.9 79 —1%9°¢
__]-%_fllp2__]%_fllp2 __I__% IIpZ

! 7

— 9Py — 29y +19pl@+ )

—LZ2he g — 1300 g*+ LR (B — 299 1+ 347

+ 2 SeTARU SR U VAR Gl s TARCY S VAR X T A V) B
Therefore, if we substitute in this equation a, B, y for the series which they repre-
sent, we shall have

[11] A¥=Ad—oc@Gat HB+ &y T &P+ Espre+q)
+ 1B —2q9¢ +3¢D)+ L PAp— 119"+ 1d gy — 11 ¢'%)).
Art. 26, p. 41. Derivation of formula [12].
We form the expressions (¢ —¢')*+ 7 —#'*—2(¢g—¢')r cosy and (¢ —¢’) rsin .
Then, since

it 1

o

(g—q’)2+rz—r'2=a2+02— 0*= 2 ac cos B¥,
2(¢q—¢')rcosy=2accos B,
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we have
(g—=¢V+r»—r2—2(¢g—¢)rcosy=2ac(cos B¥ — cos B).
We have also
(¢ —¢) 7 siny = ac sin B.
Subtracting (4) on page 68 from [1] on page 36, and adding this difference to
(¢ —¢")% we obtain
L) (9—¢)"2+72—+2 or 2 accos B
=29(@@— )Vt 3P (=) T LS P (E— D) + G — &SP (@ — ) + et
+ _]2___90]92(93_9,/3) + %glp3 (93_q/3)
+ G he— )P (g — ).
If we multiply [3] on page 37 by 2 (¢ —¢'), we obtain
(2) 2(¢g—¢)rcosy, or 2 accos B
=29@—¢)+4/Peg—) I Peg—¢) &S — &Y pte (g—¢) + et
t39°p°¢ (¢ —¢) + £9 ¢ (¢ —¢)
+ @ =20 g —9)
Subtracting (2) from (1), we have
(3) 2 a¢ (cos B* — cos B)
=—2p(¢— V@GS LS p TGS =& P ete
+19°@2g+ )+ tgp2g+q)
TG — /B + 299 + ).
Multiplying [2] on page 36 by (¢4 —¢’), we obtain at once
(4) (¢g—¢)rsiny, or acsin B
=pl— VA= 37 ¢—17pg = Q"+ 5687 gt + ot
—19°¢ — 39'pd
— (3 4h° — S 9.
We now set B*¥ —B={, whence B*=RB + {, and therefore
cos B* = cos B cos { — sin B sin L.

This becomes, after expanding cos { and sin { and neglecting powers of { above the
second,

s B
cos B* — cos B=— CO; -P—sin B. L.

Multiplying both members of this equation by 2 ac¢, we obtain
(5) 2 ac(cos B* —cos B)=—accos B.*—2acsin B . (.
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Again, let ¢ = R,+R,+ R, + etc., where the R’s have the same .meam'ng as before.
Hence, replacing the terms in (5) by the proper series and neglecting terms above the

sixth degree, we have

(6) ¢(g—¢) B +2p(g— ) A= 3/ ) B RAR)
=2 (¢— ¢ @S+ 1S p + &S —&S)p

T19°2¢+ ) tE9p2et )
T @A =Bt 294+ ).
From this equation we find
B=plg—¢)-%/° B=pla—q¢)AS'Pt19°2g+7)),
B=p@—)GS " P+igpRe+g)+31r° B¢+ 299+ 4"
— /APt 16+ 99+ T ).
Therefore we have, correct to terms of the fifth degree,
Bf*=B=p(g—¢1G/ +4/'p T3P T39I p2e+ )
T19°@g+¢)+3°B P+ 299+ 47
— o/t 4P+ 162+ 99+ T¢'%),

or, after factoring the last factor on the right,
(M B*=B—iplg— VA=, (F+ @+ ed + D=3/ =4/ p—49° 29+ )

—#P 39 pRet )R B+ 299+ ")

+ 5/ (— 22+ 22 4+ 8¢9 +4 ¢'%).

The last factor on the right in (7) may be put in the form:

A

7o/ P’
P9P2g+q)
oglz_l_ %_/Zo (4q2+ 3 912_4991)
T30+ A 2P 8 1L g —8¢9).

Finally, substituting in (7) o, a, B, y for the expressions which they represent, we
obtain, still correct to terms of the fifth degree,
[12] B*=B~o (ot $B+ 7y~ /s

+ g p2gt ) T3 (tg —4gq +3¢")

S _glvaZ(2p2_|_ 8 92___ 8 qql__i_ 11 912)).
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Art. 26, p. 41.  Derivation of formula [13].
Here we form the expressions (¢ — ¢/)2F 22— 12— 2 (¢ — ¢/)#’ cos (w— /) and

(g—¢') 7' sin (w—y/) and expand them into series. Since
(g —¢)V+r*—r*=a*+ b*— =2 b cos O,

2(¢g—¢')r cos (m—/)=2abcos C,
we have
(g—¢V+r*—r—2(g—q¢) 7 cos (m—y/)=20ab (cos 0% — cos ().

We have also
(9 —¢") 7' sin (w — /) = absin C.
Subtracting (3) on page 68 from (4) on the same page, and adding the result to

(¢g—¢')% we find
(1) (g—¢) +v*—2 or 26k con 0%
—2¢'(q— ) =3P (=) 1P (P — D) — S — )PP ¢ — ete.
—39°P () — 290 (¢ —¢?)
A (% ko_l’%foz)pz (94_9,/4).

By priming the ¢’s in formula [3] on page 87, we get a series for ' cosy/, or for
—r'cos (m—4/). If we multiply this series for —7’ cos (w—/) by 2(¢ —¢’), we find
(2) —2(g—¢)r cos (m— ), or — 2abcos C
=2(¢ =V T 3/°p¢ +5fPq + @S — &SNP + ete.
+ %gop29l2+%g/p3912
+ (% ]ZO ___ﬁ_fo2)],)29l3)‘

And therefore, by adding (1) and (2), we obtain

(3) 2 ab(cos C*— cos )
— =2 (g— P G+ 3P + (5"~ # /%) p+ oo
t19°(gt24)+19'p(g+29)
T G =5 /) (¢ + 299 +3¢%).

By priming the ¢’s in [2] on page 36, we obtain a series for #» siny/, or for
Then, multiplying this series for s sin (m —4') by (¢ —¢'), we find

7' sin (m — /).
(4) (g—¢') 7' sin (m — '), or absin C
=p@—¢)A—4/°¢"— 1/ pd*— RS+ ES)p ¢ *— ete.
—%9°9° —%9'p9"?
— @2 —Fr0gY.

As before, let 0* —(C = {, whence C* =(C'+ [, and therefore
cos C*=cos ('cos { — sin C'sin {.
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Expanding cos { and sin { and neglecting powers of { above the second, this equation
becomes
cos C

cos 0% — cos O'=— {*—sin C. ¢,

or, after multiplying both members by 2 ¥,
(8) 2ab(cosC*—cos O)=—abcos . *—2absinC. (.

Again we put {=ZE,+R,+R,+ etc,, the R's having the same meaning as before.
Now, by substituting (2), (3), (4) in (5), and omitting terms above the sixth degree,
we obtain

9 @— B —2p(g—¢)A—%/°¢*)(R,+R,+R,)
=—2p(¢— V@GS + 1S p + &S &SNP
+419°(@+2¢)+Lgp(g+29)
+(Fh° — 5/ (@ + 299+ 3¢%),
from which we find
B=p(¢—¢q)-+/f° B=plg—¢)GSf p+1+9°@¢+2¢)),
R=p@@—¢)GS P+ L9 plg+2¢)+Lh°(*+ 299 + 3¢
— /AP TE+ 999 +16¢'7).

Therefore we have, correct to terms of the fifth degree,
(6) C*=0=plg—q¢ )G/ +1/'p T3Py (et 29)
Ti9°(@+2¢)+3° (¢ + 299+ 347)
— /@ T+ 999 +16477).
The last factor on the right in (6) may be written as the product of two factors, one
of which is (1 —%+/° (p*+ ¢*+g¢’+ ¢'%)), and the other,
2GS P 10T 20) H P g p g+ 24
T3P+ 3¢+ 299) —Fo AP+ 28+ 4gg' + 1147),
or, in another form,
—(—&S &S T
—&S'p —&p
—1%9°9 —¢9°¢
_T22_f/l])2_%_fllp2 _I__]Tlvfllp2
—%9pe ¢y T p@t29)
_%ho g2 '—%]ZO q/2 + %ko (392_499/ + 4:9/2)
Tl R 2P 1 =8 gg 8.
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Hence (6) becomes, on substituting o, a, 8, y for the expressions which they represent,
[13] C*=C—o(dat&HBtEy T 4/"p

TPt 2¢)+3h° B¢ — 499+ 497

— /2Pt 11g— 899+ 8¢"%).

Art. 26, p. 41. Derivation of formula [14].

This formula is derived at once by adding formulee [11], [12], [13]. But, as
Gauss suggests, it may also be derived from [6], p. 38. By priming the ¢’s in [6]
we obtain a series for (¢ + ¢'). Subtracting this series from [6], and noting that
¢—¢'+¢+a—y=A+B+C, we have, correct terms of the fifth degree,

(1) A+B+O0=a—plg—¢)(/°*+ 3/ p+ 3/ + }9'p(¢+9)
T9°g+g)tr(F+ed + 97
____(];;f02(p2_|_ 292_|_ 2g,gl+ 2912)).
The second term on the right in (1) may be written
+3ap Q=3P+t 9 T ) 2(— =R/ p =3 Egpe )
—9°(gt+ )~ (g +9¢ + ¢
T ),
of which the last factor may be thrown into the form :
(—3/°—3r°  —3F
—3/p —8fp
—89°¢ —39°¢
_%f’/pz __%_f//PZ __i_%f/lpz
—$9pg —89'pd Tyt
_%]ZOQZ _%2_},’09,/2_‘_ Zho (92 _I_ 9,12_ gql)
T30 T/ 9 99)
Hence, by substituting o, a, B, y for the expressions they represent, (1) becomes
[14] A+B+C=n+ocGet+ B+ Ly + Lf"p
T39plgt)+ @8 =3/ — 97+ %)
Art. 27, p. 42. Omitting terms above the second degree, we have
“2292_299/_{_912, 62=p2+g'2, 02:]02_'_92.
The expressions in the parentheses of the first set of formule for 4%, B¥, (*
in Art. 27 may be arranged in the following manner :

2p—¢ +49d— )=(C P+ FP A 20— 299+ 9,
P —2¢*+29¢+ =20 +¢)—PP+A)— @297+ )
(P +¢ F29¢=2¢)=(—@+¢)+2(+ A —(@"— 29+ ).
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Now substituting o2, %, ¢* for (*— 2¢4¢"+ ¢'%), (P*+ ¢'%), (p* + ¢*) respectively, and
changing the signs of both members of the last two of these equations, we have
@pt—¢ +he—¢?) =@ tei—2a)
—i{p* —2¢+t gy -+ g =@ +P—2W,
—(p* +¢ +2¢¢—2¢%)=(a*+0"— 2.
And replacing the expressions in the parentheses in the first set of formulse for
A%, B* C%* by their equivalents, we get the second set.

1
Art. 27, p. 42. fo=— SR’ S""=10, etc., may be obtained directly, without the

use of the general considerations of Arts. 25 and 26, in the following way. In the
case of the sphere

l 2 2 g’ ’ Z 2 l 2

2 4
7 = COS (%) =1—29—RZ+25—R4—etc.,

1 1
f="gp F=ygpe S=9=r"=g=0 [Wangerin.]

Art. 27, p. 42, 1. 16. This theorem of Legendre is found in the Mémoires (His-
toire) de I'’Academie Royale de Paris, 1787, p. 358, and also in his Trigonometry,
Appendix, § V. He states it as follows in his Trigonometry :

The very slightly curved spherical triongle, whose angles are A, B, C and whose sides
are a, b, ¢, always corresponds to a rectilinear triangle, whose sides a, b, ¢ are of the same
lengths, and whose opposite angles are A — Lte, B—Le, O— Le, e being the excess of the
sum of the angles in the given spherical triangle over two right angles.

Art. 28, p. 43, 1. 7. The sides of this triangle are Hohehagen-Brocken, Insel-
berg-Hohehagen, Brocken-Inselberg, and their lengths are about 107, 85, 69 kilometers
respectively, according to Wangerin.

Art. 29, p. 43. Derivation of the relation between ¢ and o*.

In Art. 28 we found the relation

A*=A— 402 a+B+ 7).
Therefore

sin A*=gin 4 cos (#50(2 a + B8+ 7)) —cos 4 sin (Zr0@at+B+7y),

which, after expanding cos (F; (2 a+ B+ 7)) and sin (50 (2a+B+y)) and reject-
ing powers of (i o(2 a +B+ 7)) above the first, becomes
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1) sin A* =sin A —cos 4 . (Fy 02 a+8+7)),

correct to terms of the fourth degree.

But, since o and o* differ only by terms above the second degree, we may replace
in (1) o by the value of o*, L bcsin A*. We thus obtain, with equal exactness,
(2) sin A=gsin A*(1+ 5 becos 4. (2a+ B+ 7).
Substituting this value for sin A in [9], p. 40, we have, correct to terms of the sixth
degree, the first formula for o given in Art. 29. Since 2bccos A%, or 8+ ¢*— &
differs from 2 b¢ cos A only by terms above the second degree, we may replace 2 e cos 4
in this formula for o by &*+c¢*—a’. Also o*=1bcsinA*. Hence, if we make
these substitutions in the first formula for o, we obtain the second formula for o
with the same exactness. In the case of a sphere, where a=fB8=1, the second
formula for o reduces to the third.

When the surface is spherical, (2) becomes

sin 4 = sin 4* (1 + g be cos A).
And replacing 2bccos A4 in this equation by (*+ ¢ — o), we have

sin 4= sin 4% (1 + 15 (B + ¢ — &),
or
sin A a
;ﬁ—ﬁ=(1+ E(bz+ 02‘—&2)).
And likewise we can find
gin B
sin B*
Multiplying together the last three equations and rejecting the terms containing o’
and o, we have

sin O

=1+ 5@+ =), —fm=0+15@+E—).

sind .sinB .sinC

sin A¥. sin B* . sin 0%

Finally, taking the square root of both members of this equation, we have, with the
same exactness,

1+ 75 (a2 + 8+ ) =

a sind .sinB .sinC
a'“l_f—ﬂ(az_*— bz+cz)=\, (sinA*.sinB*.sin 0*)'

The method here used to derive the last formula from the next to the last
formula of Art. 29 is taken from Wangerin.
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Although the real purpose of this work is the deduction of new theorems con-
cerning its subject, nevertheless we shall first develop what is already known, partly
for the sake of consistency and completeness, and partly because our method of treat-
ment is different from that which has been used heretofore. We shall even begin by
advancing certain properties concerning plane curves from the same principles.

1.

In order to compare in a convenient manner the different directions of straight
lines in a plane with each other, we imagine a circle with unit radius described
in the plane about an arbitrary centre. The position of the radius of this circle,
drawn parallel to a straight line given in advance, represents then the position of that
line. And the angle which two straight lines make with each other is measured by
the angle between the two radii representing them, or by the arc included between
their extremities. Of course, where precise definition is necessary, it is specified at
the outset, for every straight line, in what sense it is regarded as drawn. Without
such a distinction the direction of a straight line would always correspond to two
opposite radii.

2.

In the auxiliary circle we take an arbitrary radius as the first, or its terminal
point in the circumference as the origin, and determine the positive sense of measur-
ing the arcs from this point (whether from left to right or the contrary); in the
opposite direction the arcs are regarded then as negative. Thus every direction of a
straight line is expressed in degrees, etc., or also by a number which expresses them
in parts of the radius.
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Such lines as differ in direction by 360°, or by a multiple of 360°, have, there-
fore, precisely the same direction, and may, generally speaking, be regarded as the
same. However, in such cases where the manner of describing a variable angle is
taken into consideration, it may be necessary to distinguish carefully angles differing
by 360°.

If, for example, we have decided to measure the arcs from left to right, and if
to two straight lines /, // correspond the two directions L, I/, then I/— L is the angle
between those two straight lines. And it is easily seen that, since L' — L falls
between — 180° and + 180°, the positive or negative value indicates at once that /
lies on the right or the left of /, as seen from the point of intersection. This will
be determined generally by the sign of sin (L' — L).

If ad’ is a part of a curved line, and if to the tangents at @,a’ correspond
respectively the directions a, o/, by which letters shall be denoted also the corres-
ponding points on the auxiliary circles, and if 4, A’ be their distances along the arc
from the origin, then the magnitude of the arc aa’ or A’ —A is called the amplitude
of ad.

The comparison of the amplitude of the arc ad’ with its length gives us the
notion of curvature. Let / be any point on the arc a«/, and let N, A be the same
with reference to it that a, 4 and o, A’ are with reference to ¢ and o’. If now
aX or A— A be proportional to the part @/ of the arc, then we shall say that aa’ is
uniformly curved throughout its whole length, and we shall call

A—4A
al

the measure of curvature, or simply the curvature. We easily see that this happens
only when aa’ is actually the arc of a circle, and that then, according to our defini-

’ 1, .
tion, its curvature will be =+ 7 if 7 denotes the radius. Since we always regard r

as positive, the uppet or the lower sign will hold according as the centre lies to the
right or to the left of the arc wa’ (¢ being regarded as the initial point, «’ as the
end point, and the directions on the auxiliary circle being measured from left to
right). Changing one of these conditions changes the sign, changing two restores it
again.

On the contrary, if A—A be not proportional to @l then we call the arc non-
uniformly curved and the quotient

A—A4
al
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may then be called its mean curvature. Curvature, on the contrary, always presup-
poses that the point is determined, and is defined as the mean curvature of an element
at this point; it is therefore equal to

dA

Tal
We see, therefore, that arc, amplitude, and curvature sustain a similar relation to each
other as time, motion, and velocity, or as volume, mass, and density. The reciprocal
of the curvature, namely,

dal

d—A’
is called the radius of curvature at the point /. And, in keeping with the above
conventions, the curve at this point is called concave toward the right and convex
toward the left, if the value of the curvature or of the radius of curvature happens
to be positive; but, if it happens to be negative, the contrary is true.

3.

If we refer the position of a point in the plane to two perpendicular axes of
coordinates to which correspond the directions 0 and 90°, in such a manner that the
first coordinate represents the distance of the point from the second axis, measured in
the direction of the first axis; whereas the second coordinate represents the distance
from the first axis, measured in the direction of the second axis; if, further, the inde-
terminates #, y represent the coordinates of a point on the curved line, s the length
of the line measured from an arbitrary origin to this point, ¢ the direction of the
tangent at this point, and » the radius of curvature; then we shall have

dz=cos ¢ . ds,

dy=sin¢ . ds,
__ds
r=d&

If the nature of the curved line is defined by the equation V' = 0, where V" is a
function of z, y, and if we set
dV=pdz+qdy,
then on the curved line
pdz +qdy=0.
Hence
poos ¢+ ¢gsing=0,
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and therefore
tan ¢ = ——g-
We have also
cos ¢ .dp+sing.dg— (psind—gcosd)ddp=0.

If, therefore, we set, according to a well known theorem,

dp=Pdz + Qdy,

de=Qdz + Rdy,
then we have

(P cos® p+ 2 @ cos ¢psin ¢ + R sin’ @) ds = (psind— ¢ cos ) d ¢,

therefore
1 _ Pocos®¢ + 2 @cos psing +Rsin’¢
r  psing—gcos ’
or, since
- F9 =l .
co8 ¢ i V( 2__|_ qz)) Sln¢ i V«(pz + gg) A
L1 _Py—2Qpg+Rp
T TR
4.

The ambiguous sign in the last formula might at first seem out of place, but
upon closer consideration it is found to be quite in order. In fact, since this expres-
sion depends simply upon the partial differentials of V7, and since the function V itself
merely defines the nature of the curve without at the same time fixing the sense in
which it is supposed to be described, the question, whether the curve is convex
toward the right or left, must remain undetermined until the sense is determined by
some other means. The case is similar in the determination of ¢ by means of the
tangent, to single values of which correspond two angles differing by 180°. The
sense in which the curve is described can be specified in the following different ways.

I. By means of the sign of the change in #. If z increases, then cos ¢ must be
positive. Hence the upper signs will hold if ¢ has a negative value, and the lower
signs if ¢ has a positive value. When 2 decreases, the contrary is true.

II. By means of the sign of the change in y. If y increases, the upper signs
must be taken when p is positive, the lower when p is negative. The contrary is
true when y decreases.

III. By means of the sign of the value which the function 7 takes for points
not on the curve. Let 8%, 8y be the variations of #, y when we go out from the



NEW GENERAL INVESTIGATIONS OF CURVED SURFACES [1825] 85

curve toward the right, at right angles to the tangent, that is, in the direction
¢ +90°; and let the length of this normal be 8p. Then, evidently, we have

8z =23p . cos (¢ + 90°),
3y =38p.sin (¢ + 90°),
or
8z=—238p.sin¢,
8y =+ 8p.cos¢.
Since now, when 8 p is infinitely small,
dV=pdz—+qdy

= (—psing +gcosd)dp
=x V(P t+g)

and since on the curve itself V" vanishes, the upper signs will hold if V7, on passing
through the curve from left to right, changes from positive to negative, and the con-
trary. If we combine this with what is said at the end of Art. 2, it follows that the

curve is always convex toward that side on which ¥V receives the same sign as
Pg@—2Qpg+Ep.
For example, if the curve is a circle, and if we set
V=2+4y—a
then we have
p=2z,  ¢=2y,
P=2 Q=0, R =2,
P@F—2Qpe+Rp =84+ 8s2=8d
(7" + ¢)r=8d’,
r==ua
and the curve will be convex toward that side for which
&ty >
as it should be.

The side toward which the curve is convex, or, what is the same thing, the signs
in the above formulee, will remain unchanged by moving along the curve, so long as

L1
op
does not change its sign. Since V is a continuous function, such a change can take

place only when this ratio passes through the value zero. But this necessarily pre-
supposes that p and ¢ become zero at the same time. At such a point the radius
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of curvature becomes infinite or the curvature vanishes. Then, generally speaking,

since here
—psing + ¢ cos ¢
will change its sign, we have here a point of inflexion.

5.

The case where the nature of the curve is expressed by setting y equal to a
given function of #, namely, y =X, is included in the foregoing, if we set

V=X—y.
If we put
dX=X"dz, dX'=X"dz,
then we have
p=X', g=—1,
P=X", Q =0, R =0,
therefore
1 XU
T AT XE

Since ¢ is negative here, the upper sign holds for increasing values of z. We can
therefore say, briefly, that for a positive X" the curve is concave toward the same
side toward which the y-axis lies with reference to the z-axis; while for a negative
X" the curve is convex toward this side.

6.

If we regard #, y as functions of s, these formulee become still more elegant.
Let us set

_‘_Z_x._ 4 dx, p— 4
ds ¥ ds %>
dy dy'
gg_y’a a3 = g
Then we shall have
¥ = cos ¢, Y =sin ¢,
"—__S_hﬁ N=M-
T = r 9 Y " )

or
y=—ra’, 7=ry’,
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or also
1=g¢ (x/yu _y/ x//)’
so that
xl yll = yl x/l
represents the curvature, and
1
the radius of curvature.

7.

We shall now proceed to the consideration of curved surfaces. In order to repre-
sent the directions of straight lines in space considered in its three dimensions, we
imagine a sphere of unit radius described about an arbitrary centre. Accordingly, a
point on this sphere will represent the direction of all straight lines parallel to the
radius whose extremity is at this point. As the positions of all points in space
are determined by the perpendicular distances #, y, # from three mutually perpendicu-
lar planes, the directions of the three principal axes, which are normal to these
principal planes, shall be represented on the auxiliary sphere by the three points
(1), (2), (3). These points are, therefore, always 90° apart, and at once indicate the
sense in which the coordinates are supposed to increase. We shall here state several
well known theorems, of which constant use will be made.

1) The angle between two intersecting straight lines is measured by the arc [of
the great circle] between the points on the sphere which represent their directions.

2) The orientation of every plane can be represented on the sphere by means
of the great circle in which the sphere is cut by the plane through the centre parallel
to the first plane.

3) The angle between two planes is equal to the angle between the great cir-
cles which represent their orientations, and is therefore also measured by the angle
between the poles of the great circles.

4) If #,y,2; #,y, 2 are the coordinates of two points, » the distance between
them, and Z the point on the sphere which represents the direction of the straight
line drawn from the first point to the second, then

2= 2+ rcos(1)L,
y =y + rcos(2)L,
¢ =2+ rcos(3)L.

5) It follows immediately from this that we always have
cos?(1)L + cos*(2)L + cos’(3) L =1
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[and] also, if L’ is any other point on the sphere,
cos(1)L . cos(1) L’ + cos(2)L . cos(2)L' + cos(3)L . cos(3)L' = cos LL'.
We shall add here another theorem, which has appeared nowhere else, as far as
we know, and which can often be used with advantage.

Let L, L', L', L' be four points on the sphere, and A the angle which Z L
and I/ L' make at their point of intersection. [Then we have]

cosLL' .cos "L — cos LL" .cos /L' =sin LL'" . sin I/ L" . cos A.

The proof is easily obtained in the following way. Let

AL={, AL ={¢, AL'=1¢", AL =¢",
we have then
cos LL' =cost cost’ +sint{ sin? cos A4,
cos I L' = cos "’ cos #"" + sin ¢’ sin ¢""’ cos A4,
cos LL" =cost cost’ + sint sin?” cos 4,

cos L' L' = cost cost -+ siné sint’’ cos A.
Therefore

cos LL' cos L" L' — cos LL" cos L' L"
= cos A {cos? cos ¢ sin¢”’ sin#" + cos#’ cos?'” sin? sin ¢’

— cos ¢ cos ¢’ sin¢' sin#” — cos#' cos ' sin ¢ sin ¢’}
= cos A (cos ¢ sin¢"”" — cos ¢ sin¢) (cos ¢’ sin#” — cos ¢’ sin¢')
= cos A sin (¢ —¢) sin (" — ')
=cos A sin LL" sin I/ L".

Since each of the two great circles goes out from A in two opposite directions,
two supplementary angles are formed at this point. But it is seen from our analysis
that those branches must be chosen, which go in the same sense from Z toward L
and from L’ toward L.

Instead of the angle A, we can take also the distance of the pole of the great
circle L L' from the pole of the great circle L' L. However, since every great circle
has two poles, we see that we must join those about which the great circles run in
the same sense from Z toward L' and from L’ toward L', respectively.

The development of the special case, where one or both of the ares L L"”' and
L' L are 90°, we leave to the reader.

6) Another useful theorem is obtained from the following analysis. Let L, L/,
L" be three points upon the sphere and put
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cosL (1)=2, cosL (2)=y, cosL (3)=z,
cos I/ (1)=2a', cosL (2)=y', cosL' (3)=¢,
cos L"(1)= 2", cos L"(2)=y", cosL'(3)=2z".

We assume that the points are so arranged that they run around the triangle
included by them in the same sense as the points (1), (2), (3). Further, let A be
that pole of the great circle L’ L” which lies on the same side as Z. We then have,
from the above lemma, v

ye'—2& y'=sin I/ IL" . cos \(1),
da'—a 2 =sin I/ L. cos \(2),
¥y’ —y o =sin L' L' . cos \(3).

Therefore, if we multiply these equations by =z, y, z respectively, and add the pro-
ducts, we obtain

vy +ay'a+dyd —xy'd — 2y — 'y z=sin ' L". cos \ L,

wherefore, we can write also, according to well known principles of spherical trigo-
nometry,
sin /L' . sin L L' . sin L/

=gin L/L".sin LL' . sin L"

=gin /L. sin I/ L. sin L,
if L, L', L" denote the three angles of the spherical triangle. At the same time we
easily see that this value is one-sixth of the pyramid whose angular points are the
centre of the sphere and the three points L, L/, L' (and indeed positive, if etc.).

8.

The nature of a curved surface is defined by an equation between the coordinates
of its points, which we represent by

f (@, 9,2) =0.
Let the total differential of f (z, y, 2) be
Pdz+ Qdy + Rdz,

where P, @, R are functions of z, y, 2= We shall always distinguish two sides of the
surface, one of which we shall call the upper, and the other the lower. Generally
speaking, on passing through the surface the value of f changes its sign, so that, as
long as the continuity is not interrupted, the values are positive on one side and nega-
tive on the other.
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The direction of the normal to the surface toward that side which we regard as

the upper side is represented upon the auxiliary sphere by the point L. Let

cos L(1) =X, cos L(2) =7, cos L(3) = Z.
Also let ds denote an infinitely small line upon the surface; and, as its direction is
denoted by the point A on the sphere, let

cos M(1) =&, cos M(2) =1, cos A(3) = L.
We then have

dz = §ds, dy =mnds, dz = ({ds,

PE+Qn+RL=0,
and, since AL must be equal to 90°, we have also
XEéE+Yyn+Z7=0.
Since P, @, B, X, ¥, Z depend only on the position of the surface on which we take

the element, and since these equations hold for every direction of the element on the
surface, it is easily seen that P, ¢, B must be proportional to X, ¥, Z. Therefore

P=Xp, Q=XYp, B=Zy,

therefore

Therefore, since
X2+ Y +Zt=1,;
p=PX+QY+RZ
and
#2=_P2+ Q2+RZ,

p==v/(P*+ Q"+ R,

If we go out from the surface, in the direction of the normal, a distance equal to
the element &p, then we shall have

dz=Xébp, Sy =Y ép, 82=2Z38p

or

and

8f=Pdz+ @8y +Réz= pdp.
We see, therefore, how the sign of u depends on the change of sign of the value of
J in passing from the lower to the upper side.

9.

Let us cut the curved surface by a plane through the point to which our nota-
tion refers; then we obtain a plane curve of which ds is an element, in connection
with which we shall retain the above notation. We shall regard as the upper side of
the plane that one on which the normal to the curved surface lies. Upon this plane
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we erect a normal whose direction is expressed by the point € of the auxiliary
sphere. By moving along the curved line, A and L will therefore change their posi-
tions, while € remains constant, and AL and A& are always equal to 90°. Therefore
\ describes the great circle one of whose poles is . The element of this great circle

will be equal to %, if r denotes the radius of curvature of the curve. And again,

'if we denote the direction of this element upon the sphere by N, then A will evi-
dently lie in the same great circle and be 90° from A as well as from 2 If we

now set
cos M (1) =¢&/, cos N (2) =17/, cos\'(3) =7,
then we shall have

ds ds ds
df_—'f’77 d17=17’—7:-, dC:l’.?,

since, in fact, & 7, { are merely the coordinates of the point N referred to the centre
of the sphere.

Since by the solution of the equation f(#, y, z) =0 the coordinate z may be
expressed in the form of a function of 2, y, we shall, for greater simplicity, assume
that this has been done and that we have found

z=F(z,y).
We can then write as the equation of the surface
z2—F(z,9)=0,

S (@y,2) =2—F(z,y).
From this follows, if we set

dF (z,y)=tdx+udy,

P=—1, Q=—u, R=1,
where ¢, u are merely functions of # and y. We set also
dt =Tdxz + Udy, du=Udz+Vdy.
Therefore upon the whole surface we have
dz=1tdz +udy

L=t&E+ un.
Hence differentiation gives, on substituting the above values for d¢, dy, d{,
d
(O —t8—un) - =Edt+ndu
= (E2 T+ 2&qU+ 9*V)ds,

or

and therefore, on the curve,
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or
1 8T+ 26qU+ 'V

r —Eft—qutl
_Z(sz-}—anU-i- V)
P AR C RV
_Z(sz—l- anU-I-nZV)
- cos L\

10.

Before we further transform the expression just found, we will make a few
remarks about it.

A normal to a curve in its plane corresponds to two directions upon the sphere,
according as we draw it on the one or the other side of the curve. The one direc-
tion, toward which the curve is comcave, is denoted by M\’, the other by the opposite
point on the sphere. Both these points, like L and ¥, are 90° from A, and there-
fore lie in a great circle. And since ¥ is also 90° from A\, L = 90° — L)/, or
=L\ — 90°. Therefore

cos LN = = sin & L,

where sin £ is necessarily positive. Since r is regarded as positive in our analysis,
the sign of cos L\’ will be the same as that of

Z(ET+2EqU+ V).

And therefore a positive value of this last expression means that L\’ is less than
90°, or that the curve is concave toward the side on which lies the projection of the
normal to the surface upon the plane. A negative value, on the contrary, shows that
the curve is convex toward this side. Therefore, in general, we may set also

l_Z(sz—FZfﬂqU—l— 'r)ZV)
r sin @ L ?

if we regard the radius of curvature as positive in the first case, and negative in
the second. &L is here the angle which our cutting plane makes with the plane
tangent to the curved surface, and we see that in the different cutting planes passed
through the same point and the same tangent the radii of curvature are proportional
to the sine of the inclination. Because of this simple relation, we shall limit our-
selves hereafter to the case where this angle is a right angle, and where the cutting
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plane, therefore, is passed through the normal of the curved surface. Hence we have
for the radius of curvature the simple formula

1
;ZZ(sz-l- 2EqU+ 7).

11.

Since an infinite number of planes may be passed through this normal, it follows
that there may be infinitely many different values of the radius of curvature. In this
case 7, U, V, Z are regarded as constant, & v, { as variable. In order to make the
latter depend upon a single variable, we take two fixed points M, M’ 90° apart on the
great circle whose pole is Z. Let their coordinates referred to the centre of the sphere
be a, B, v; o/, B,9. We have then

cos AM(1) =cos AM . cos M(1)+ cos \M" . cos M'(1) + cos AL . cos L(1).
If we set

AM = ¢,
then we have

cos A M’ = sin ¢,
and the formula becomes
&= acos ¢ + o’ sin ¢,

n =P cos -+ sin ,
{=1ycosd+ 7 sin ¢.

and likewise

Therefore, if we set
A=(T+2aBU+BV)Z,
B=(adT+ (/B+ aB)U+BBV)Z,
C=?*T+24B8U+B*V)Z,
we shall have

|

=4 cos®¢p + 2 B cos ¢ sin ¢ + ('sin’¢

A —
=A_2i_0+ 3 000s2¢+Bsin2¢.

If we put

é%-g=Ecos20,

B=_FEsin 20,
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where we may assume that £ has the same sign as 5 then we have

%z%wﬂwn+ﬂamﬂ¢—®-

It is evident that ¢ denotes the angle between the cutting plane and another plane
through this normal and that tangent which corresponds to the direction M. Evidently,

therefore, L takes its greatest (absolute) value, or » its smallest, when ¢ = 6; and 1
r & -

its smallest absolute value, when ¢ = 6 + 90°. Therefore the greatest and the least
curvatures occur in two planes perpendicular to each other. Ience these extreme

values for % are
s+ o =J{(F77) +2}:

Their sum is A + ¢ and their product is 4 ' — B? or the product of the two extreme
radii of curvature is

1
T AC—BY

This product, which is of great importance, merits a more rigorous development.
In fact, from formulee above we find

AC—B=(aff — BV (TV—U*Z"
But from the third formula in [Theorem] 6, Art. 7, we easily infer that

af —Ba = £,
therefore

AC—B=Z*(TV—-U%.
Besides, from Art. 8,

Z== =l
TE VPR
1
TEVAFEF oY
therefore
TV —1r
AC=B'=rmreray

Just as to esch point on the curved surface corresponds a particular point L on
the auxiliary sphere, by means of the normal erected at this point and the radius of
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the auxiliary sphere parallel to the normal, so the aggregate of the points on the
auxiliary sphere, which correspond to all the points of a Zne on the curved surface,
forms a line which will correspond to the line on the curved surface. And, likewise,
to every finite figure on the curved surface will correspond a finite figure on the
auxiliary sphere, the area of which upon the latter shall be regarded as the measure
of the amplitude of the former. We shall either regard this area as a number, in
which case the square of the radius of the auxiliary sphere is the unit, or else
express it in degrees, etc., setting the area of the hemisphere equal to 360°.

The comparison of the area upon the curved surface with the corresponding
amplitude leads to the idea of what we call the measure of curvature of the sur-
face. If the former is proportional to the latter, the curvature is called uniform;
and the quotient, when we divide the amplitude by the surface, is called the measure
of curvature. This is the case when the curved surface is a sphere, and the measure
of curvature is then a fraction whose numerator is unity and whose denominator is
the square of the radius.

We shall regard the measure of curvature as positive, if the boundaries of the
figures upon the curved surface and upon the auxiliary sphere run in the same sense;
as negative, if the boundaries enclose the figures in contrary senses. If they are not
proportional, the surface is non-uniformily curved. And at each point there exists a
particular measure of curvature, which is obtained from the comparison of correspond-
ing infinitesimal parts upon the curved surface and the auxiliary sphere. Let do be
a surface element on the former, and d3 the corresponding element upon the auxiliary
sphere, then

az
do
will be the measure of curvature at this point.

In order to determine their boundaries, we first project both upon the zy-plane.
The magnitudes of these projections are Zdo, Zd3. The sign of Z will show whether
the boundaries run in the same sense or in contrary senses around the surfaces and
their projections. We will suppose that the figure is a triangle; the projection upon
the zy-plane has the coordinates

%Y 5 gt+da,gtdy; &+ o#, y+ 8.
Hence its double area will be
2Zdo=dz.8y—dy.dz.

To the projection of the corresponding element upon the sphere will correspond the
coordinates :
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X, Y,
0 X 0X oY
X-I———-dx-l— dy, Y—I——dx—l—a§ dy,

X
X+W-8x+5—y—'8y, Y-I——— Sx-i-—— 3y.

From this the double area of the element is found to be

2 7d5 = aa‘f dx-!————dy)( Sx+%'8y)

0 X oY

—(H‘Sﬁszsy)(‘a?d” 5 %)
0X oY 00X oY

— W._a_‘;—ﬁ-ﬁ)(dx.Sy—dy.Bx).

The measure of curvature is, therefore,
_9X oY o X 20Y

Since
X=—1t2Z, Y=—uJ,
A+e+er22=1,
we have
dX=—2Z*A+v"dt +Z%tu . du,
dY =+Z%u.di —Z° (14 *)du,
therefore
oX oY
a5 Z3— 1+ )T+ ¢tuU}, Fx—=Z3{tuT—(1 +&)U},
o X . oY
@=Z3{—(1+MZ)U+ tuV§, W—Z‘”‘{tu(] (1+tZ)V}‘,
and

0=Z(TV—U%((1+#) 1+ ) — )
=Z5(TV—U)(1+ 8+ o)
=ZH(TV—1")
TV
“TF ety

the very same expression which we have found at the end of the preceding article.
Therefore we see that
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“The measure of curvature is always expressed by means of a fraction whose
numerator is unity and whose denominator is the product of the maximum
and minimum radii of curvature in the planes passing through the normal.”

12.

We will now investigate the nature of shortest lines upon curved surfaces. The
nature of a curved line in space is determined, in general, in such a way that the
coordinates z, y, # of each point are regarded as functions of a single variable, which
we shall call w. The length of the curve, measured from an arbitrary origin to this
point, is then equal to

SN+ () + ()} - aw

If we allow the curve to change its position by an infinitely small variation, the varia-
tion of the whole length will then be

f 8o+ W g5yt 9 a5, U5, Mgy 00,
1D+ 69+ (52) ] \/{(%)Jr(g—i ()
dz 4y
— oz .d +8y.d
J{ @)+ (%)2+ (72) | VD GL+ (52}
+ 8z.d dw

dz\* (dy\* (4= 2}

\}{ ) * (@) + (72)

The expression under the integral sign must vanish in the case of a minimum, as we

know. Since the curved line lies upon a given curved surface whose equation is
Pdz+ Qdy +Rdz=0,

the equation between the variations 8z, 8y, o2
Pdz+ Qdy+Rd2=0

must also hold. From this, by means of well known principles, we easily conclude

that the differentials
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T T T O T

dz\* (dy\* 6 (dz\*
V{G) + G2+ 7.7;;)}
must be proportional to the quantities P, ), R respectively. If ds is an element of
the curve; M\ the point upon the auxiliary sphere, which represents the direction of
this element; L the point giving the direction of the normal as above; and & =, {;
X, Y, Z the coordinates of the points A, L referred to the centre of the auxiliary
sphere, then we have
dz=Eds, dy =nds, dz ={ds,

e+ -+ =1
Therefore we see that the above differentials will be equal to d§, dn, d{. And since
P, @, R are proportional to the quantities X, ¥, Z, the character of the shortest line
is such that

df_dn_ 2
X~7°7Z
13.

To every point of a curved line upon a curved surface there correspond two
points on the sphere, according to our point of view; namely, the point N, which
represents the direction of the linear element, and the point L, which represents the
direction of the normal to the surface. The two are evidently 90° apart. In our
former investigation (Art. 9), where [we] supposed the curved line to lie in a plane,
we had fwo other points upon the sphere; namely, €, which represents the direction
of the normal to the plane, and N, which represents the direction of the normal to
the element of the curve in the plane. In this case, therefore, € was a fixed point
and N\, N were always in a great circle whose pole was & In generalizing these
considerations, we shall retain the notation &, A/, but we must define the meaning of
these symbols from a more general point of view. When the curve s is described,
the points L, A also describe curved lines upon the auxiliary sphere, which, gener-
ally speaking, are no longer great circles. Parallel to the element of the second line,
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we draw a radius of the auxiliary sphere to the point A/, but instead of this point
we take the point opposite when A’ is more than 90° from Z. In the first case, we
regard the element at N as positive, and in the other as negative. Finally, let & be
the point on the auxiliary sphere, which is 90° from both N and )\, and which is so
taken that X, A/, & lie in the same order as (1), (2), (3).

The coordinates of the four points of the auxiliary sphere, referred to its centre,
are for

L X Y Z
A S I 4
Xl fl 7]’ C’
¥ a B .

Hence each of these 4 points describes a line upon the auxiliary sphere, whose elements
we shall express by d.L, d\, dN, d¥. We have, therefore,
dE=§dx,
dn=n'dX,
d{=1Ud\.
In an analogous way we now call
ar
ds
the measure of curvature of the curved line upon the curved surface, and its reciprocal

ds
dax
the radius of curvature. If we denote the latter by p, then
pdE=¢ds,
pdn=mn'ds,
pdl=1{ds.
If, therefore, our line be a shortest line, &, 7', {’ must be proportional to the
quantities X, ¥, Z. But, since at the same time
EIZ+ 7’12+£/2=X2+ YZ +Z2:1’
we have
'=xX, y==xY, [==Z
and since, further,
EX+ 9 Y+ Z=cos\NL
= XX+ +2Z%

= =1,
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and since we always choose the point A so that

N L < 90°,
then for the shortest line
NL=0,
or A’ and L must coincide. Therefore
pdé=Xds,
pdn=Yds,
pdl==2Zds,

and we have here, instead of 4 curved lines upon the auxiliary sphere, only 3 to con-
sider. Every element of the second line is therefore to be regarded as lying in the
great circle LX. And the positive or negative value of p refers to the concavity
or the convexity of the curve in the direction of the normal.

14.

We shall now investigate the spherical angle upon the auxiliary sphere, which
the great circle going from L toward A makes with that one going from L toward
one of the fixed points (1), (2), (8); e. g., toward (3). In order to have something
definite here, we shall consider the sense from Z(3) to L\ the same as that in which
(1), (2), and (3) lie. If we call this angle ¢, then it follows from the theorem of Art.
7 that

sin L(3) . sin L\ . sinp=Y & —Xn),
or, since L A = 90° and
sin L3)=v (X*+ Y?)=v (1 — Z?),

we have
: Y§—Xn

Smé =X 7y’

Furthermore,
sin L(3) . sin L\ . cos p = {,

or

cos ¢ = :

V(X*+ TP

and



NEW GENERAL INVESTIGATIONS OF CURVED SURFACES [1825]

Hence we have
dg— LYAE—IXD—(VE—Xn)dL+ELdP—nldX
TE—X0y T 0
The denominator of this expression is
=1 —2 XYV €n+X9p*+ *
——(XE+Fy) + (X + YY) ( +o) + [*
== L (1= [l — )+ EF
=] — B,

or
_fYaé—{Xdn+ (Xn—YE)dl—y{dX+ELdY
dé= 1—Z" ‘

We verify readily by expansion the identical equation
2W( X2+ Y +Z2+ Y Z(E+ 9+ {F)
=XE+Yn+Z0)(Zn+ YY)+ (XL—Z§)(Xn—TY§)

E(X*+T*+Z28)+XZ(E+ 7+ )
=(XE+ T +Z0)(XL+ZE) + (YE—Xn) (YT —Z).
We have, therefore,

and likewise

nl=—YZ+(X{—Z£)(Xn—TE),
£l=—XZ+ (YE—Xn)(YL—2Zn).
Substituting these values, we obtain
[YdE—{Xdy
1 — %2

Z
qu=T—;'7(YdX—XdY)+

Xn—Y¢
+ 1—2¢

Now
XdX+YdY+ZdZ=0,

EdX +ndY +{dZ =—XdE—Ydy—ZdL.
On substituting we obtain, instead of what stands in the parenthesis,
d{—Z(XdE+Y dny+Zdl).
Hence
Z dé

d¢=Tl7§(YdX—XdY)+W{CY—nX2Z+§XYZ§

__dn
1—2Z*

+dl(nX—EY).

X +nXYZ—EY°Z)

{4l — (XL—Z28)dX—(Y{—Zn)dT}.

101
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Since, further,
WX Z—€EXYZ=nXZ+2W 1 Z+(ZYZ
=0Z(1—2*+{YZ
n XY Z—EVZ=—§¢(XZ— (X PP—EV*Z
=—¢Z(1—-2%)— (X2,
our whole expression becomes

dp = T:Z?(YdX—XdY)

+(Y—nZ)dé+(EZ—{X)dn+ (nX—£Y)dL.

15.

The formula just found is true in general, whatever be the nature of the curve.
But if this be a shortest line, then it is clear that the last three terms destroy each
other, and consequently

Z
d¢:_T:7(XdY_ YdX)
But we see at once that

7
= (Xd¥Y— YdX)

is nothing but the area of the part of the auxiliary sphere, which is formed between
the element of the line L, the two great circles drawn through its extremities and

)
¢ 7 (3)
+
PR
(2) PP (1) () PF (7) (2) (7)
(3) -
£ @

(3), and the element thus intercepted on the great circle through (1) and (2). This
surface is considered positive, if L and (3) lie on the same side of (1) (2), and if the
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direction from P to P’ is the same as that from (2) to (1); negative, if the contrary
of one of these conditions hold; positive again, if the contrary of both conditions be
true. In other words, the surface is considered positive if we go around the circum-
ference of the figure LL'P’P in the same sense as (1) (2) (3); negative, if we go
in the contrary sense.

If we consider now a finite part of the line from L to L’ and denote by ¢, ¢’
the values of the angles at the two extremities, then we have

¢ =¢+ Area LL'P' P,

the sign of the area being taken as explained.

Now let us assume further that, from the origin upon the curved surface, infinitely
many other shortest lines go out, and denote by A that indefinite angle which the
first element, moving counter-clockwise, makes with the first element of the first line;
and through the other extremities of the different curved lines let a curved line be drawn,
concerning which, first of all, we leave it undecided whether it be a shortest line or
not. If we suppose also that those indefinite values, which

for the first line were ¢, ¢’, be denoted by , ¢/ for each of 2/
these lines, then ¢/ —1 is capable of being represented in
the same manner on the auxiliary sphere by the space &
LI P P. Since evidently y=¢ —A, the space &
LI P PLL=y—y—¢+¢ '
=y — ¢ +4 ,
=LI,LUL+LL PP P L

If the bounding line is also a shortest line, and, when prolonged, makes with
LI, LI, the angles B, B,; if, further, x, x, denote the same at the points Z/,1/,
that ¢ did at L in the line L L', then we have

x.=x+ Area L' L', P'| P/,
W —¢ +A=LL L' L+x—x;
but
¢’ =x +B,
¥ =xTB,
therefore

\

B—B+A=LL LIL.
The angles of the triangle L Z'L', evidently are
4, 180° —B, B,
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therefore their sum is
180° +L L' I/ L.

The form of the proof will require some modification and explanation, if the point
(3) falls within the triangle. But, in general, we conclude

“The sum of the three angles of a triangle, which is formed of shortest lines
upon an arbitrary curved surface, is equal to the sum of 180° and the area of
the triangle upon the anxiliary sphere, the boundary of which is formed by the
points L, corresponding to the points in the boundary of the original triangle,
and in such a manner that the area of the triangle may be regarded as positive
or negative according as it is inclosed by its boundary in the same sense as
the original figure or the contrary.”

Wherefore we easily conclude also that the sum of all the angles of a polygon
of n sides, which are shortest lines upon the curved surface, is [equal to] the sum
of (n—2) 180° + the area of the polygon upon the sphere etc.

16.

If one curved surface can be completely developed upon another surface, then all
lines upon the first surface will evidently retain their magnitudes after the develop-
ment upon the other surface; likewise the angles which are formed by the intersec-
tion of two lines. Evidently, therefore, such lines also as are shortest lines upon
one surface remain shortest lines after the development. Whence, if to any arbi-
trary polygon formed of shortest lines, while it is upon the first surface, there cor-
responds the figure of the zeniths upon the auxiliary sphere, the area of which is
A, and if, on the other hand, there corresponds to the same polygon, after its devel-
opment upon another surface, a figure of the zeniths upon the auxiliary sphere, the
area of which is A’, it follows at once that in every case

A=A4'.

Although this proof originally presupposes the boundaries of the figures to be short-
est lines, still it is easily seen that it holds generally, whatever the boundary may be.
For, in fact, if the theorem is independent of the number of sides, nothing will pre-
vent us from imagining for every polygon, of which some or all of its sides are not
shortest lines, another of infinitely many sides all of which are shortest lines.

Further, it is clear that every figure retains also its area after the transformation
by development.
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We shall here consider 4 figures :

1) an arbitrary figure upon the first surface,

2) the figure on the auxiliary sphere, which corresponds to the zeniths of the
previous figure,

3) the figure upon the second surface, which No. 1 forms by the development,

4) the figure upon the auxiliary sphere, which corresponds to the zeniths of
No. 3.

Therefore, according to what we have proved, 2 and 4 have equal areas, as also
1 and 3. Since we assume these figures infinitely small, the quotient obtained by
dividing 2 by 1 is the measure of curvature of the first curved surface at this point,
and likewise the quotient obtained by dwldmg 4 by 3, that of the second surface.
From thls follows the important theorem :
“In the transformation of surfaces by development the measure of curvature
at every point remains unchanged.”
This is true, therefore, of the product of the greatest and smallest radii of curvature.
In the case of the plane, the measure of curvature is evidently everywhere zero.
Whence follows therefore the important theorem :
“For all surfaces developable upon a plane the measure of curvature every-
where vanishes,”
or

Pz \* (Pz\(Pz
Gas) — (5) (‘37) =0
which criterion is elsewhere derived from other principles, though, as it seems to us,

not with the desired rigor. It is clear that in all such surfaces the zeniths of all
points can not fill out any space, and therefore they must all lie in a line.

17.

From a given point on a curved surface we shall let an infinite number of shortest
lines go out, which shall be distinguished from one another by the angle which their
first elements make with the first element of a definite shortest line. This angle we
shall call §. TFurther, let s be the length [measured from the given point] of a part
of such a shortest line, and let its extremity have the coordinates z, y, 2. Since 0
and s, therefore, belong to a perfectly definite point on the curved surface, we can
regard z, y, z as functions of 6 and s. The direction of the element of s corresponds
to the point A on the sphere, whose coordinates are & », {. Thus we shall have
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oz 0 0z
5*5;7 ’Y)-—asy ng

The extremities of all shortest lines of equal lengths s correspond to a curved
line whose length we may call #. We can evidently consider ¢ as a function of s and
0, and if the direction of the element of # corresponds upon the sphere to the point M\’
whose coordinates are 5’, v, ', we shall have

0w ot oy ot oz
18 Pyl o ol Py — ",
& ae EL KT AT T AT
Consequently
v dx Oy Ody 0z Ode

ot
/ ! ’ s 0
'+ L) 9=55"50 T35 90 T 35 36
This magnitude we shall denote by u, which itself, therefore, will be a function of # and s.
We find, then, if we differentiate with respect to s,

P 2 = B R

e S g . _|_l

os 0s* 00 ' o9s* o0 85 90 " 2 o0
_ P2 oz, Py 0y, P bz
BEERY. 252 00 " o8t 26

ox\®  (Jy ‘L
62 + G+ &)=
and therefore its differential is equal to zero.
But since all points [belonging] to one constant value of @ lie on a shortest line,

if we denote by L the zenith of the point to which s, & correspond and by X, ¥, Z
the coordinates of L, [from the last formule of Art. 13],

Fe_X  #y_¥Y  Fe_2Z
as*  p’ ass  p’ ast  p’
if p is the radius of curvature. We have, therefore,

Z)u az t

because

But
XE+Yy+Z{ =cos LN =0,
because, evidently, A’ lies on the great circle whose pole is L. Therefore we have
ou

TR
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or  independent of s, and therefore a function of # alone. But for s=0, it is evi-

ot
dent that £ =0, 50— 0, and therefore u =10. Whence we conclude that, in general,

w =0, or
cos AN = 0.
From this follows the beautiful theorem :
“If all lines drawn from a point on the curved surface are shortest lines of
equal lengths, they meet the line which joins their extremities everywhere at
right angles.”

We can show in a similar manner that, if upon the curved surface any curved
line whatever is given, and if we suppose drawn from every point of this line toward
the same side of it and at right angles to it only shortest lines of equal lengths, the
extremities of which are joined by a line, this line will be cut at right angles by
those lines in all its points. We need only let @ in the above development represent
the length of the giwen curved line from an arbitrary point, and then the above calcu-
lations retain their validity, except that « =0 for s =0 is now contained in the
hypothesis.

18.

The relations arising from these constructions deserve to be developed still more

ot
fully. We have, in the first place, if, for brevity, we write m for 36

ox oy 0z

(1) nga a-g'—"h g'—'é
(2) g—i;:mf’, 2—%=mn’, g—Z———mZ_:’,
(3) £ +q + =1,
(4) EIZ _|_7’/2_|_€/2 :1,
(5) EE' + '+ L' =0.
Furthermore,
(6) X? +¥: +7Z* =1,
(7 X¢éE+Yy +2zE =0,
(8) XE&+Yy+Z¢ =0,
and
X=1{qn"—nl,
[9] { F=gl'—LE,
Z=n&—§&;
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'=nZ—-(7,
[10] n'=(X—§£Z,
cl____ fy_
£=T{'— 2,
[11] { n=2Z¢ — X/,
{(=Xy—Y¢.
0 :
Likewise, aa_i’ a—;’; %g are proportional to X, ¥, Z, and if we set
0§

an oL
s X, ymrY Fi=r4

1
where » denotes the radius of curvature of the line s, then

0
p=Xz f+Y LB g
By differentiating (7) with respect to s, we obtain
aZ
A 5_as_+’7 95 e s
o’ 0o 4
E az ’ gi also are proportional to X, ¥, Z. In fact,
[from 10] the values of these quantlties are also [equal to]
04 oY oY 8X
LTI T Z’as f83 Eas —Mas?
therefore
o€’ oy’ YoV XoX 0Z
YE;—X s —¢ 0s T 0s )+ (¥ +X£)
XoX+YoY+ ZaZ
——¢( - )+ 22 (xe+ 70+ 20)
=0,
and likewise the others. We set, therefore,
€&’ on’ oL’
f = X, Yt F £ R

28
whence

10—““\/{ af’ s)+(%,)2}
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and also
o0&’ 0 ol’
p=X f+d’" +Z5 Z
Further [we obtain], from the result obtalned by dﬁferentmting (8),
BY 8Z

I _— fl e __I_ U + cl
But we can derive two other expressions for thls. We have

omg’ _2& [amn'_a_n om{ 9¢ ]
os  of as o os  af
therefore [because of (8)]

o€ 4
mp' X80+Y80+Z80’
[and therefore, from (7),]

2y
—mp' = 5 0+"7 20 +§ae
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After these preliminaries [using (2) and (4)] we shall now first put m in the form

ox oy 0z
— ! _Y s
m=E%9T 130T 5p
and differentiating with respect to s, we have™*
om 9z &  dy o' 9z 9l
os 00 os +80 28 +80 Er3
2 82 aZz
/
+5'as.aa+’7 88.80+€,83.80
=mp' (&' X+ »q'Y—I- {'7Z)

+§@5+ +gﬁ£

* 1t is better to differentiate m®. [In fact from (2) and (4)
oz\* (8 y)2 82)2
2 (Y% 29 i
" (a 0) *\Gel o)
om __ox Pz 3y Py &’z

s 20 aaaﬁﬁ aeas+aa 200s

—n &2ty Dt my 2]

therefore
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If we differentiate again with respect to s, and notice that

’*E 9(pX)
520 20 ° °tos

and that
XE+YyW+Z =0,
we have
& m 2X oY o ¢
Fra (5 an”’ ae+§'a6')+ ( +Y90+Zaa)
) 2

—P(f P aa“'aa Tmyp
20

——(¢ %)E{Jr"%JFC as)(f' o aa +C'af))

+(68X Sl R A

[But if the surface element

mdsdf

belonging to the point #, y, 2 be represented upon the auxiliary sphere of unit radius
by means of parallel normals, then there corresponds to it an area whose magnitude is

oY 2Z 9Y oZ 0ZoX 0ZoX 0 X 2Y 0X0oY
{X(E{W—Wa—s) (ﬁﬁ"ﬁa_s) ("5557—70—%) }dsdﬁ
Consequently, the measure of curvature at the point under consideration is equal to
1 m
"~ m as®
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NOTES.

The parts enclosed in brackets are additions of the editor of the German edition
or of the translators.

“The foregoing fragment, Neue allgemeine Untersuchungen iiber die krummen Flichen,
differs from the Disquisitiones not only in the more limited scope of the matter, but
also in the method of treatment and the arrangement of the theorems. There [paper
of 1827] Gauss assumes that the rectangular coordinates z, y, z of a point of the sur-
face can be expressed as functions of any two independent variables p and ¢, while
here [paper of 1825] he chooses as new variables the geodesic coordinates s and 6.
Here [paper of 1825] he begins by proving the theorem, that the sum of the three
angles of a triangle, which is formed by shortest lines upon an arbitrary curved surface,
differs from 180° by the area of the triangle, which corresponds to it in the represen-
tation by means of parallel normals upon the auxiliary sphere of unit radius. From
this, by means of simple geometrical considerations, he derives the fundamental theo-
rem, that “in the transformation of surfaces by bending, the measure of curvature at
every point remains unchanged.” But there [paper of 1827] he first shows, in Art.
11, that the measure of curvature can be expressed simply by means of the three
quantities £, F, @, and their derivatives with respect to p and ¢, from which follows
the theorem concerning the invariant property of the measure of curvature as a corol-
lary ; and only much later, in Art. 20, quite independently of this, does he prove the
theorem concerning the sum of the angles of a geodesic triangle.”

Remark by Stdckel, Gauss’s Works, vol. vim, p. 443.

Art. 8, p. 84, 1. 9. cos’¢, etc., is used here where the German text has cos ¢?
etc.

Art. 3, p. 84,1. 18. p% ete., is used here where the German text has pp, ete.

Art. 7, p. 89, 1. 13, 21. Since AL is less than 90°, cos AL is always positive
and, therefore, the algebraic sign of the expression for the volume of this pyramid
depends upon that of sin Z/L”. Hence it is positive, zero, or negative according as
the arc L' L” is less than, equal to, or greater than 180°.

Art. 7, p. 89, 1. 14-21. As is seen from the paper of 1827 (see page 6), Gauss
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corrected this statement. To be correct it should read: for which we can write also,
according to well known principles of spherical trigonometry,
sin LL' . sin I/ . sin I/ L' =sin I/ L' . sin L' . sin L' L=sin L" L . sin L . sin LI/,

if L, L', L' denote the three angles  of the spherical triangle, where L is the angle
measured from the arc LL" to LL’,and so for the other angles. At the same time
we easily see that this value is one-sixth of the pyramid whose angular points are
the centre of the sphere and the three points L, L/, L”; and this pyramid is positive
when the points L, L/, L' are arranged in the same order about this triangle as the
points (1), (2), (3) about the triangle (1) (2) (3).

Art. 8, p. 90, L. 7 fr. bot. In the German text V stands for f in this equation
and in the next line but one.

Art. 11, p. 93, 1. 8 fr. bot. In the German text, in the expression for B, (a8 + a ')
stands for (¢/B+ af).

Art. 11, p. 94, 1. 17. The vertices of the triangle are M, M, (3), whose coor-
dinates are a, B, v; o/, 8, 9; 0, 0, 1, respectively. The pole of the arc M M on
the same side as (3) is L, whose coordinates are X, ¥, Z. Now applying the formula
on page 89, line 10,

'y’ —y' & =sin I/ L' cos A(3),
to this triangle, we obtain
aB — Ba = sin MM cos L(3)
or, since
MM =90°, and cos L(3)= =2Z
we have
af —Bd==xZ

Art. 14, p. 100, 1. 19. Here X, ¥, Z; &, 9, {; 0, 0, 1 take the place of z, y,2;
2, y,2; o,y 2" of the top of page 89. Also (3), N take the place of L', L, and
¢ is the angle L in the note at the top of this page.

Art. 14, p. 101, 1. 2 fr. bot. In the German text {{X — 4 XY Z+ £ Y*Z| stands
for {{( X+ XYZ—EYPZL.

Art. 15, p. 102, 1. 13 and the following. Transforming to polar coordinates,
7, 0, ¥, by the substitutions (since on the auxiliary sphere r =1)

X=sinfsiny, FY=sinfcosy, Z= cosb,
d X =gin 0 cos y dyy + cos § sin 46, d Y =—gin 0 sin s dis + cos 6 cos Yy d 0,

A
(1) =1 (XdY—YdX) becomes cos 0 di.
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In the figures on page 102, PL and P’'L’ are arcs of great circles intersecting in
the point (3), and the element ZZ’, which is not necessarily the arc of a great circle,
corresponds to the element of the geodesic line on the curved surface. (2)PP'(1)
also is the arc of a great circle. Here P'P=dy, Z= cos = Altitude of the zone
of which LI’ P'P is a part. The area of a zone varies as the altitude of the zone.
Therefore, in the case under consideration,

Area of zone 7

2 -1
Also
Area LI’ PP _ dy
Areaofzone =~ 24

From these two equations,
(2) Area LL/'P'P=Zdy, or cos 0 d.
From (1) and (2)

Z
— iz (XdY—YdX)=Area LL'P'P.

Art. 15, p. 102. The point (3) in the figures on this page was added by the
translators.

Art. 15, p. 103, 1. 6-9. It has been shown that d¢=Area LL'P'P,=d A, say.
Then

¢ A
fap=faa,
¢ 0

or

¢’ — ¢ = A, the finite area L L' P'P.

Art. 15, p. 103, 1. 10 and the following. Let A, B’, B, be the vertices of a
geodesic triangle on the curved surface, and let the corresponding triangle on the
auxiliary sphere be L L’ L', L, whose sides are not necessarily arcs of great circles. Let
A, B', B, denote also the angles of the geodesic triangle. Tere B’ is the supple-
ment of the angle denoted by B on page 103. Let ¢ be the angle on the sphere
between the great circle arcs L\, L (3),%. ¢., $=(3).LN, A corresponding to the direc.
tion of the element at A on the geodesic line A B’, and let ¢’ =(3) L'\, N, correspond-
ing to the direction of the element at B’ on the line AB’. Similarly, let ¢ = (3 )L,
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¢ =(3) L' py, p, p, denoting the directions of the elements at

A, B,, respectively, on the line AB,. And let y=(3)L v, &
x.= (3) L/ v, v, v, denoting the directions of the elements at
B’, B,, respectively, on the line B’ B,. &
Then from the first formula on page 103, &
¢’ — ¢ = Area LL' P' P,

W — = Area LL' P P, X i
X, — x = Area L' I/, P, P", £ L
W—— (¢ —¢)—(x,—x) =Area LL'| P\ P— Area LL' P"P— Area L'/ P'| P,

or
1) (¢—9) + (x—¢)+ W —x,) =Area LL L' L.

Since A, p represent the directions of the linear elements at A on the geodesic
lines A B’, A B, respectively, the absolute value of the angle A on the surface is meas-
ured by the arc w\, or by the spherical angle wLN. But ¢ —y=(38)LA—(3)Lpu

=L\,
Therefore
N A=g—y
Similarly
180° — B =— (x— ),
B1: ‘P, - Xr

Therefore, from (1),
A+B'+ B,—180° = Area LL' I’ L.

Art. 15, p. 103, 1. 19. In the German text LL'P'P stands for LL' P’ P,
which represents the angle i/ — 4.

Art. 15, p. 104, 1. 12. This general theorem may be stated as follows:

The sum of all the angles of a polygon of n sides, which are shortest lines
upon the curved surface, is equal to the sum of (»—2)180° and the area of the
polygon upon the auxiliary sphere whose boundary is formed by the points L which
correspond to the points of the boundary of the given polygon, and in such a manner
that the area of this polygon may be regarded positive or negative according as it is
enclosed by its boundary in the same sense as the given figure or the contrary.

Art. 16, p. 104, 1. 12 fr. bot. The zemith of a point on the surface is the cor-
responding point on the auxiliary sphere. It is the spherical representation of the
point.

Art. 18, p. 110, 1. 10. The normal to the surface is here taken in the direction
opposite to that given by [9] page 107.



BIBLIOGRAPHY






BIBLIOGRAPHY.

This bibliography is limited to books, memoirs, etc., which use Gauss’s method and which treat, more or less
generally, one or more of the following subjects: curvilinear coordinates, geodesic and isometric lines, curvature of

surfaces, deformation of surfaces, orthogonal systems, and the general theory of surfaces.
beyond these limitations have been added because of their importance or historic interest.

Several papers which lie
For want of space, gener-

ally, papers on minimal surfaces, congruences, and other subjects not mentioned above have been excluded,
Generally, the numbers following the volume number give the pages on which the paper is found.
C. R. will be used as an abbreviation for Comptes Rendus hebdomadaires des séances de 1’Académie des

Sciences. Paris.

Adam, Paul. Sur les systdmes triples orthogonaux. Thesis.
80 pp. Paris, 1887.

Sur les surfaces isothermiques & lignes de courbure
planes dans un systéme ou dans les deux systémes.
Ann. de I'Ecole Normale, ser. 8, vol. 10, 319-358, 1893 ;
C. R., vol. 116, 1036-1039, 1898.

Sur les surfaces admettant pour lignes de courbure
deux séries de cercles géodésiques orthogonaux. Bull.
de la Soc. Math. de France, vol. 22, 110-115, 1894.

Mémoire sur la déformation des surfaces. Bull. de la
Soc. Math. de France, vol. 23, 219-240, 1895.

Sur la déformation des surfaces. Bull. de la Soc.
Math. de France, vol. 23, 106-111, 1895; C. R., vol.
121, 551-553, 1895,

Sur la déformation des surfaces avec conservation des
lignes de courbure. Bull. de la Soc. Math. de France,
vol. 28, 195-196, 1895.

Théoréme sur la déformation des surfaces de transla-
tion. Bull. de la Soc. Math. de France, vol. 23, 204-
209, 1895.

Sur un probléme de déformation.
Math. de France, vol. 24, 28-89, 1896.

Albeggiani, L. Linee geodetiche tracciate sopra taluni su-
perficie. Rend. del Circolo Mat. di Palermo, vol. 8, 80-
119, 1889.

All§, M. Zur Theorie des Gauss’schen Kriimmungsmaasses.
Sitzungsb. der Ksl. Akad. der Wissenschaften zu Wien,
vol. 74, 9-38, 1876.

Aoust, L. 8. X. B. Des coordonnées curvilignes se coupant
sous un angle quelconque. Journ. fir Math., vol. 58,
852-368, 1861.

Théorie géométrique des coordonnées curvilignes quel-

Bull. de la Soc.

conques. C. R., vol. 54, 461-463, 1862.
Sur la courbure des surfaces. C. R., vol. 67, 217-
219, 1863,

Aoust, L. S. X. B, Théorie des coordonnées curvilignes
quelconques. Annali di Mat., vol. 6, 65-87, 1864 ; ser.
2, vol. 2, 89-64, vol. 3, 55-69, 1868-69; ser. 2, vol.
5, 261-288, 1873.

August, T. TUeber Flichen mit gegebener Mittelpunkts-
fliche und iber Kriimmungsverwandschaft. Archiv
der Math. und Phys., vol, 68, 315-852, 1882.

Babinet. Sur la courbure des surfaces. C. R., vol. 49, 418-
424, 1859.

Bicklund, A. V. Om ytar med konstant negativ kroking.
Lunds Uniyv. &rsskrift, vol. 19, 1884.

Banal, R. Di una classe di superficie a tre dimensioni a
curvatura totale nulla. Atti del Reale Instituto Veneto,
ser. 7, vol. 6, 998-1004, 1895.

Beliankén, J. Principles of the theory of the development
of surfaces. Surfaces of constant curvature. (Russian).
Kief Univ. Reports, Nos. 1 and 8; and Kief, pp. 114
129, 1898,

Beltrami, Eugenio.
tura delle superficie,
1861.

Richerche di analisi applicata alla geometria. Gior-
nale di Mat., vol. 2, 267-282, 207-806, 331-339, 355-375,
1864 ; vol. 8,15-22, 33-41, 82-91, 228-240, 311-314, 1865.

Delle variabili complesse gopra una superficie qual-
unque. Annali di Mat., ser. 2, vol. 1, 829-366, 1867.

Sulla teorica generale dei parametri differenziali.
Mem. dell’Accad. di Bologna, ser. 2, vol. 8, 549-590,
1868.

Sulla teoria generale delle superficie. Aftti dell’ Ateneo
Veneto, vol. 5, 1869.

Zur Theorie des Kriimmungsmaasses.
nalen, vol. 1, 575-582, 1869.

Bertrand, J. Mémoire sur la théorie des surfaces.
de Math., vol. 9, 183-154, 1844,

Di alcune formole relative alla curva-
Annali di Mat., vol 4, 283-284,

Math. An-

Journ.



118

Betti, E. Sopra i sistemi di superficie isoterme e orthogo-
nali. Annali di Mat., ser. 2, vol. 8, 138-145, 1877.
Bianchi, Luigi. Sopra la deformazione di una classe di
superficie. Giornale di Mat., vol. 16, 267-269, 1878.

Ueber die Flichen mit constanter negativer Kriim-
mung. Math. Annalen, vol. 16, 577-582, 1880.

Sulle superficie a curvatura costante positiva. Giornale
di Mat., vol. 20, 287-292, 1882.

Sui sistemi tripli cicilici di superficie orthogonali.
Giornale di Mat., vol. 21, 2756-292, 1883 ; vol. 22, 333~
373, 1884.

Sopra i sistemi orthogonali di Weingarten. Atti della
Reale Accad. dei Lincei, ser. 4, vol. 1, 163-166, 243~
246, 1885; Amnnali di Mat., ser. 2, vol. 18, 177-234,
1885, and ser. 2, vol. 14, 115-13V, 1886.

Sopra una classe di sistemi tripli di superficie orthog-
onali, che contengono un sistema di elicoidi aventi a
comune l’asse ed il passo. Annali di Mat., ser. 2, vol.
13, 39-52, 1885.

Sopra i sistemi tripli di superficie orthogonali che con-
tengono un sistema di superficie pseudosferiche. Aftti
della Reale Accad. dei Lincei, ser. 4, vol. 2, 19-22,
1886.

Sulle forme differenziali quadratiche indefinite. Atti
della Reale Accad. dei Lincei, vol. 4,, 278, 1888 ; Mem.
della Reale Accad. dei Lincei, ser. 4, vol. 5, 5639-603,
1888.

Sopra alcune nuove classi di superficie e di sistemi
tripli orthogonali. Amnnali di Mat., ser. 2, vol. 18, 801~
358, 1890.

Sopra una nuova classe di superficie appartenenti a
sistemi tripli orthogonali. Atti della Reale Accad. dei
Lincei, ser. 4, vol. 6;, 435-488, 1890.

Sulle superficie i cui piani principali hanno costante
il rapporto delle distanze da un punto fisso. Atti
della Reale Accad. dei Lincei, ser. 5, vol. 3,, 77-84,
1894.

Sulla superficie a curvatura nulla negli spazi curva-
tura costante. Atti della Reale Accad.di Torino, vol.
80, 743-755, 1895.

Lezioni di geometria differenziale. vIII 4541 pp.
Pisa, 1894. Translation into German by Max Lukat,
Vorlesungen itber Differentialgeometrie. xvI - 659 pp.
Leipzig, 1896-99.

Sopra una classe di superficic collegate alle superficie
pseudosferiche. Atti della Reale Accad. dei Lincei, ser.
5, vol. &, 183-137, 1896.

Nuove richerche sulle superficie pseudosferiche.
nali di Mat., ser. 2, vol. 24, 347-386, 1896.

Sur deux classes de surfaces qui engendrent par un
mouvement hélicoidal une famille de Lamé. Ann.
Faculté des sci. de Toulouse, vol. 11 H, 1-8, 1897.

An-

BIBLIOGRAPHY

Bianchi, Luigi. Sopra le superficie a curvatura costante
positiva. Atti della Reale Accad. dei Lincei, ser. 5,
vol. 8, 223-228, 371-377, 484-489, 1899.

Sulla teoria delle transformazioni delle superficie a
eurvatura costante. Amnnali di Mat., ser. 8, vol. 3, 185~
298, 1899.

Blutel, BE. Sur les surfaces & lignes de courbure sphérique.
C. R., vol. 122, 301-303, 1896.

Bonnet, Ossian. Mémoire sur la théorie des surfaces isother-
mes orthogonales. Jour. de I'ficole Polyt., cahier 30,
vol. 18, 141-164, 1845.

Sur la théorie générale des surfaces. Journ. de1'feole
Polyt., cahier 32, vol. 19, 1-146, 1848 ; C. R., vol, 33,
89-92, 1851 ; vol. 87, 529-532, 1853.

Sur les lignes géodésiques. C. R., vol. 41, 32-35,
1855.

Sur quelques propriétés des lignes géodésiques. C. R.,
vol. 40, 1311-1318, 1855.

Mémoire sur les surfaces orthogonales.
54, 554-559, 655-659, 1862.

Démonstration du théoréme de Gauss relatif aux petits
triangles géodésiques situés sur une surface courbe quel-
conque. O, R., vol. 58, 183-188, 1864.

Mémoire sur la théorie des surfaces applicables sur
une surface donnée. Journ. de I’ficole Polyt., cahier
41, vol. 24, 209-230, 1866 ; cahier 42, vol. 25, 1-151,
1867.

Démonstration des propriétés fondamentales du sys-
téme de coordonnées polaires géodésiques. C. R., vol.
97, 1422-1424, 1883.

Beur, Edmond. Théorie de la déformation des surfaces.
Journ. de I'ficole Polyt., cahier 89, vol. 22, 1-148
1862.

Brill, A. Zur Theorie der geoditischen Linie und des
geodatischen Dreiecks. Abhandl. der Kgl. Gesell. der
‘Wissenschaften zu Miinchen, vol. 14, 111-140, 1883.

Briochi, Francesco. Sulla integrazione della equazione della
geodetica. Annali di Sci. Mat. e Fis., vol. 4, 133-185,
1858,

Sulla teoria delle coordinate curvilinee.
Mat., ser. 2, vol. 1, 1-22, 1867.

Brisse, C. Xxposition analytique de la théorie des surfaces.
Ann. de I'ficole Normale, ser. 2, vol. 8, 87-146, 1874 ;
Journ, de 1"fcole Polyt., cahier 53, 218-233, 1888.

Bukrejew, B. Surface elements of the surface of constant
curvature. (Russian). Kief Univ. Reports, No. 7,
4 pp., 1897.

Elements of the theory of surfaces. (Russian).
Uniy. Reports, Nos. 1, 9, and 12, 1897-99.

Burali-Forti, C. Sopra alcune questioni di geometria differ-
enziale. Rend del Circolo Mat. di Palermo, vol. 12,
111-182, 1898.

C. R., vol.

Annali di

Kief



BIBLIOGRAPHY

Burgatti, P. Sulla torsione geodetica delle linee tracciate
sopra una superficie. Rend. del Circolo Mat. di Pal-
ermo, vol. 10, 229-240, 1896.

Burnside, W. The lines of zero length on a surface as
curvilinear coordinates. Mess. of Math., ser. 2, vol. 19,
99-104, 1889.

Campbell, J. Transformations which leave the lengths of
arcs on surfaces unaltered. Proceed. London Math.
Soc., vol. 29, 249-264, 1898.

Carda, K. Zur Geometrie auf Flichen constanter Kriim-
mung. Sitzungsb. der Ksl. Akad. der Wissenschaften
zu Wien, vol. 107, 44-61, 1898.

Caronnet, Th. Sur les centres de courbure géodésiques.
C. R., vol. 115, 589-592, 1892.

Sur des couples de surfaces applicables. Bull. de la
Soc. Math. de France, vol. 21, 184-140, 1893,

Sur les surfaces 3lignes de courbure planes dans les deux
systémes et isothermes. C. R., vol. 116, 1240-1242, 1898.

Recherches sur les surfaces isothermiques et les sur-
faces dont rayons de courbure sont fonctions l'un de
D’autre. Thesis, 66 pp. Paris, 1894.

Casorati, Felice. Nuova definizione della curvatura delle
superficie e suo confronto con quella di Gauss. Reale
Istituto Lombardo di sci. e let., ser, 2, vol. 22, 385-846,
1889.

Mesure de la courbure des surfaces suivant 1'idée com-

mune. Ses rapports avec les mesures de courbure Gaus-
sienne et moyenne. Acta Matematica, vol. 14, 95-
110, 1890.

Catalan, E. Mémoire sur les surfaces dont les rayons de
courbure en chaque point sont égaux et de signes con-
traires. Journ, de 1’Hcole Polyt., cahier 87, vol, 21, 180~
168, 1858 ; C. R., vol. 41, 35-38, 274-276, 1019-1023, 1855.

Cayley, Arthur. On the Gaussian theory of surfaces. Pro-
ceed. London Math. Soc., vol. 12, 187-192, 1881.

On the geodesic curvature of a curve on a surface-
Proceed. London Math. Soe., vol. 12, 110-117, 1881.

On some formule of Codazzi and Weingarten in rela-
tion to the application of surfaces to each other. Pro-
ceed. London Math. Soc., vol. 24, 210-228, 1893.

Cesaro, E. Theoria intrinseca delle deformazioni infinites-
ime. Rend. dell’Accad. di Napoli, ser. 2, vol. 8, 149-
164, 1894.

Chelini, D. Sulle formole fondamentali risguardantila cur-
vatura delle superficie e delle linee. Anmnali di Sci.
Mat. e Pis., vol. 4, 837-396, 1853.

Della curvatura delle superficie, con metodo diretto ed
intuitivo. Rend. dell’Accad. di Bologna, 1868, 119;
Mem. dell’Accad. di Bologna, ser. 2, vol. 8, 27, 1868.

Teoria delle coordinate curvilinee nello spazio e nelle
superficie. Mem. dell’Accad. di Bologna, ser. 2, vol. §,
488-583, 1868.

119

Christoffel, Elwin. Allgemeine Theorie der geoditische
Dreiecke. Abhandl. der Kgl. Akad. der Wissenschaften
zu Berlin, 1868, 119-176.

Codazzi, Delfino. Sulla teorica delle coordinate curvilinee e
sull nogo de’centri di curvatura d’una superficie qual-
unque. Annali di Sci. Mat. e Fis., vol. 8, 129-165,
1857.

Sulle coordinate curvilinee d’una superficie e dello
spazio. Annali di Mat., ser. 2, vol. 1, 293-816 ; vol. 2,
101-119, 269-287 ; vol. 4, 10-24; vol. 5, 206-222; 1867~
1871.

Combescure, E. Sur les déterminants fonctionnels et les
coordonndes curvilignes. Ann. de 1’ficole Normale, ser.
1, vol. 4, 93-131, 1867.

Sur un point de la théorie des surfaces.
74, 1517-1520, 1872.

Cosserat, B. Sur les congruences des droites et sur la théorie
des surfaces. Ann. Faculté des sci. de Toulouse, vol.
7 N, 1-62, 1893.

Sur la déformation infinitésimale d’une surface flexible
et inextensible et sur les congruences de droites. Ann.
TFaculté des sci. de Toulouse, vol. 8 E, 1-46, 1894,

Sur les surfaces rapportées a leurs lignes de longeur
nulle. C. R., vol. 125, 1569-162, 1897.

Craig, T. Sur les surfaces & lignes de courbure isométriques.
C. R., vol. 128, 794-795, 1896,

Darboux, Gaston. Sur les surfaces orthogonales,
45 pp. Paris, 1866,

Sur une série de lignes analogues aux lignes géodés-
iques. Ann. de I’Ecole Normale, vol. 7, 175-180, 1870.

Mémoire sur la théorie des coordonnées curvilignes et
des systdmes orthogonaux. Ann. de "ficole Normale,
ser. 2, vol. 7, 101-150, 227-260, 275-348, 1878,

Sur les cercles géodésiques. C. R., vol. 96, 54-56,
1883.

Sur les surfaces dont la courbure totale est constante.
Sur les surfaces & courbure coostante. Sur I’équation
aux dérivées partielles des surfaces & courbure constante.
C. R., vol. 97, 848-850, 892-894, 946-949, 1883,

Sur la représentation sphérique des surfaces. C. R.,
vol. 68, 253-256, 1869 ; vol. 94, 120-122, 158-160, 1290-
1293, 1343-1345, 1882; vol. 96, 366-368, 1883 ; Ann,
de I’Ecole Normale, ser. 8, vol. 5, 79-96, 1888.

Leqons sur la théorie générale des surfaces et les appli-
cations géométriques du calcul infinitésimale. 4 vols.
Paris, 1887-1896.

Sur les surfaces dont la courbure totale est constante.
Ann. de I'icole Normale, ser. 8, vol. 7, 9-18, 1890.

Sur une classe remarkable de courbes et de surfaces
algebriques. Second edition. Paris, 1896.

Legons sur les systémes orthogonaux et les coordonnées

curvilignes. Vol. 1. Paris, 1898,

C. R., vol.

Thesis,


http://CeBa.ro

120

Darboux, Gaston. Sur les transformations des surfaces & cour-
bure totale constante. C. R., vol. 128, 953-958, 1899.

Sur les surfaces & courbure constante positive. C.R.,
vol. 128, 1018-1024, 1899.

Demartres, &. Sur les surfaces réglées dont 1’element linéaire
est réductible & la forme de Liouville. C. R., vol. 110,
329-330, 1890.

Demoulin, A. Sur la correspondence par orthogonalité des
éléments. C. R., vol. 116, 682-685, 1893.

Sur une propriété caractéristique de I’element linéaire
des surfaces de révolution. Bull. de la Soc. Math. de
France, vol. 22, 47-49, 1894.

Note sur la détermination des couples de surfaces
applicables telles que la distance de deux points cor-
respondants soit constante. Bull. de la Soc. Math. de
France, vol. 28, 71-75, 1895,

de Salvert, see (de) Salvert.

de Tannenberg, see (de) Tannenberg.

Dickson, Benjamin, On the general equations of geodesic
lines and lines of curvature on surfaces. Camb. and
Dub. Math. Journal, vol. 5, 166-171, 1850.

Dini, Ulisse. Sull’equazione differenzialle delle superficie
applicabili su di unasuperficie data. Giornale di Mat.,
vol. 2, 282-288, 1864.

Sulla teoria delle superficie.
3, 65-81, 1865.

Ricerche sopra la teorica delle superficie,
Soc. Italiana dei XL. Firenze, 1869.

Sopra alcune formole generali della teoria delle super-
ficie e loro applicazioni. Annali di Mat., ser. 2, vol. 4,
175-206, 1870.

van Dorsten, R. Theorie der Kromming von lijnen op
gebogen oppervlakken. Diss. Leiden. Brill. 66 pp. 1885.

Egorow, D. On the general theory of the correspondence of
surfaces. (Russian.) Math. Collections, pub. by Math.
Soe. of Moscow, vol. 19, 86-107, 1896.

Enneper, A. Bemerkungen zur allgemeinen Theorie der
Flichen. Nuachr. der Kgl. Gesell. der Wissenschaften

zu Gottingen, 1878, 785-804.

Ueber ein geometrisches Problem. Nachr. der Kgl.
Gesell. der Wissenschaften zu Gottingen, 1874, 474-485,

Untersuchungen tiber orthogonale Flichensysteme,
Math. Annalen, vol. 7, 456-480, 1874.

Bemerkungen tber die Biegung einiger Fléchen.
Nachr. der Kgl. Gesell. der Wissenschaften zu Got-
tingen, 1875, 129-162.

Bemerkungen tber einige Flichen mit constantem
Kriimmungsmaass. Nachr. der Kgl. Gesell. der Wis-
senschaften zu Géttingen, 1876, 597-619.

Ueber die Flichen mit einem system sphirischer
Kriimmungslinien. Journ. fiir Math., vol. 94, 329-841,
1888.

Giornale di Mat., vol.

Atti della

BIBLIOGRAPHY

Enneper, A. Bemerkungen iiber einige Transformationen
von Fléchen. Math. Annalen, vol. 21, 267-298, 1883.

Ermakoff, W. On geodesic lines. (Russian.) Math. Col-
lections, pub. by Math. Soc. of Moscow, vol. 15, 516-
680, 1890.

von Hscherich, &. Die Geometrie auf den Flichen con-
stanter negativer Kriimmung. Sitzungsb. der Ksl.
Akad. der Wissenschaften zu Wien, vol. 69, part II,
497-526, 1874.

Ableitung des allgemeinen Ausdruckes fiir das Kriim-
mungsmaass der Flichen. Archiv fiir Math. und
Phys., vol. 57, 385-392, 1875.

Fibbi, C. Sulle superficie che contengono un sistema di
geodetiche a torsione costante. Annali della Reale
Scuola Norm. di Pisa, vol. 5, 79-164, 1888,

Firth, W. On the measure of curvature of a surface referred
to polar coordinates. Oxford, Camb., and Dub, Mess.,
vol. 5, 66-76, 1869.

Fouché, M. Sur les systémes des surfaces triplement orthog-
onales ol les surfaces d’une méme famille admettent la
méme représentation sphérique de leurs lignes de cour-
bure. C. R., vol. 126, 210-213, 1898.

Frattini, G. Alcune formole spettanti alla teoria infinitesi-
male delle superficie. Giornale di Mat., vol. 13, 161-
167, 1875.

Un esempio sulla teoria delle coordinate curvilinee
applicata al calcolo integrale. Giornale di Mat., vol. 15,
1-27, 1877,

Frobenius, G. TUeber die in der Theorie der Flichen auftre-
tenden Differentialparameter. Journ. fiir Math., vol.
110, 1-36, 1892.

Gauss, K. F. Allgemeine Auflosung der Aufgabe: Die
Theile einer gegebenen Fliche auf einer anderen gege-
benen Flidche so abzubilden, dass die Abbildung dem
Abgebildeten in den kleinsten Theilen #hnlich wird.
Astronomische Abhandlungen, vol. 3, edited by H. C.
Schumacher, Altona, 1825, The same, Gauss’s Works,
vol. 4, 189-216, 1880; Ostwald’s Klassiker, No. 55,
edited by A. Wangerin, 57-81, 1894.

Geiger, C. F. Sur la théorie des systémes triples orthogonaux.
Bibliothéque universelle, Archives des sciences, ser., 4,
vol. 6, 363-364, 1898.

Zur Theorie der tripelorthogonalen Flichensysteme.
Vierteljahrschrift der Naturf. Gesell. in Zurich, vol. 48,
317-826, 1898.

Germain, Sophie. Mémoire sur la courbure des surfaces,
Journ. fiir Math., vol. 7, 1-29, 1881.

Gilbert, P, Sur l’emploi des cosinus directeurs de la nor-
male dans la théorie de la courbure des surfaces. Ann.
de la Soc. sci. de Bruxelles, vol. 18 B, 1-24, 1894.

Genty, BE. Sur les surfaces & courbure totale constante.
Bull. de la Soc. Math. de France, vol, 22, 106-109, 1894,



BIBLIOGRAPHY

Genty, B. Sur la déformation infinitésimale de surfaces.
Ann. dela Faculté des sci. de Toulouse, vol. 9 E, 1-11,
1895.

Goursat, E. Sur les systémes orthogonaux.
121, 883-884, 1895.

Sur les équations d’une surface rapportée a ses lignes
de longueur nulle. Bull. de la Soc. Math. de France,
vol. 26, 83-84, 1898.

Grassmann, H. Anwendung der Ausdehnungslehre auf die
allgemeine Theorie der Raumecurven und krummen
Flachen. Diss. Halle, 1893,

Guichard, C. Surfaces rapportées a leur lignes asympto-
tiques et congruences rapportées & leurs dévéloppables.
Ann. de I’ficole Normale, ser. 8, vol, 6, 333-348, 1889.

Recherches sur les surfaces & courbure totale constante
et certaines surfaces qui s’y rattachent. Ann. de I'Hcole
Normale, ser. 8, vol. 7, 2838-264, 1890.

Sur les surfaces qui possédent un réseau de géodésiques
conjuguées. C. R., vol. 110, 995-997, 1890.

Sur la déformation des surfaces. Journ. de Math,,
ser. b, vol. 2, 123-215, 1896.

Sur les surfaces & courbure totale constante. C. R.,
vol. 126, 1556-1558, 1616-1618, 1898.

Sur les systémes orthogonaux et les systémes cycliques.
Ann. de 'Ecole Normale, ser. 3, vol. 14, 467-516, 1897 ;
vol. 15, 179-227, 1898.

Guldberg, Alf. Om Bestemmelsen af de geodaetiske Linier
paa visse specielle Flader. Nyt Tidsskrift for Math.
Kjobenhavn, vol. 6 B, 1-6, 1895.

Hadamard, J. Sur les lignes géodésiques des surfaces spirales
et les équations différentielles qui s’y rapportent. Procés
verbeaux de la Soc. des sci. de Bordeaux, 1895-96, 55-58.

Sur les lignes géodésiques des surfaces & courbures
opposées. C. R., vol. 124, 1603-1505, 1897.

Les surfaces 4 courbures opposées et leurs lignes
géodésiques. Journ. de Math., ser. 5, vol. 4, 27-78, 1898.

Haenig, Conrad. Ueber Hansen’s Methode, ein geodatisches
Dreieck auf die Kugel oder in die Ebene zu ibertragen.
Diss., 86 pp., Leipzig, 1888.

Hangen, P. A. Geodsfische Untersuchungen Abhandl. der
Kgl. Gesell. der 'Wissenschaften zu Leipsig, vol. 18,
1865 ; vol. 9, 1-184, 1868.

Hathaway, A. Orthogonal surfaces.
1896, 85-86.

Hatzidakis, J. N. TUeber einige Eigenschaften der F'lichen
mit constantem Kriimmungsmaass. Journ. fiir Math.,
vol. 88, 68-78, 1880.

TUeber die Curven, welche sich so bewegen konnen,
dass sie stets geodétische Linien der von ihnen erzeugten
Flichen bleiben, Journ. fir Math., vol. 95, 120-189,
1888.

C. R., vol.

Proc. Indiana Acad.,

121

Hatzidakis, J. N. Biegung mit Erhaltung der Hauptkriim-
mungsradien. Journ. fir Math., vol. 117, 42-56,
1897.

Hilbert, D. Ueber Flichen von constanter Gaussscher Kriim-
mung. Trans. Amer. Math. Society, vol. 2, 87-99,
1901.

Hirst, T. Sur la courbure d’une série de surfaces et de
lignes. Amnnmali di Mat., vol. 2, 95-112, 148-167, 1859.

Hoppe, R. Zum Problem des dreifach orthogonalen Fldch-
ensystems. Archiv fir Math. und Phys., vol. 55, 362
391, 1878 ; vol. 66, 153-168, 1874 ; vol. 67, 89-107, 255—
2717, 866-885, 1875 ; vol, 58, 87-48, 1875.

Principien der Flichentheorie. Archiv fiir Math. und
Phys., vol. 59, 225-823, 1876 ; Leipzig, Koch, 179 pp.
1876,

Geometrische Deutung der Fundamentalgrdssen zwei-
ter Ordnung der Flichentheorie. Archiv fiir Math. und
Phys., vol. 60, 65-71, 1876.

Nachtrdge zur Curven- und Flichentheorie.
fir Math. und Phys., vol. 60, 376-404, 1877.

Ueber die kfirzesten Linien auf den Mittelpunkts-
flichen. Archiv fiir Math. und Phys., vol. 63, 81-93,
1879.

Untersuchungen iiber kiirzeste Linien.
Math. und Phys., vol. 64, 60-74, 1879.

Ueber die Bedingung, welcher eine Flichenschaar
gentigen muss, um einen dreifach orthogonalen system
anzugehdren. Archiv fiir Math. und Phys., vol. 63,
285-294, 1879.

Nachtrag zur Flachentheorie.
Phys., vol. 68, 439-440, 1882.

Ueber die sphérische Darstellung der asymptotischen
Linien einer Fliche. Archiv fiir Math. und Phys., ser.
2, vol. 10, 443-446, 1891,

Eine neue Beziehung zwischen den Kriimmungen von
Curven und Ilichen. Archiv fiir Math. und Phys.,
ser, 2, vol. 16, 112, 1898,

Jacobi, C. G. J. Demonstratio et amplificatio nova theo-
rematis Gaussiani de quadratura integra frianguli in
data superficie e lineis brevissimis formati. Journ. fiir
Math., vol. 16, 344-350, 18837. )

Jamet, V. Sur la théorie des lignes géodésiques.
Annales, vol. 8, 117-128, 1897.

Joachimsthal, F. Demonstrationes theorematum ad super-
ficies curvas spectantium. Journ. fiir Math., vol. 80,
347-850, 1846.

Anwendung der Differential- und Integralrechnung
auf die allgemeine Theorie der Flichen und Linien
doppelter Krimmung. Leipzig, Teubner, first ed.,
1872 ; second ed., 1881; third ed., x - 308 pp., revised
by L. Natani, 1890.

Archiv

Archiv fir

Archiv fir Math. und

Marseille



122

Knoblauch, Johannes. Einleitung in die allegemeine Theo-
rie der krummen Flichen. ILeipzig, Teubner, viir 4
267 pp., 1888,

Ueber Fundamentalgréssen in der Flichentheorie.
Journ. fiir Math., vol, 103, 25-39, 1888.

Ueber die geometrische Bedeutung der flichentheore-
tischen Fundamentalgleichungen. Acta Mathematica,
vol. 15, 249-257, 1891.

Konigs, G. Résumé d’un mémoire sur les lignes géodésiques.
Ann. Faculté des sci. de Toulouse, vol. 6 P, 1-34, 1892.

Une théoréme de géométrie infinitesimale, C. R., vol.
116, 569, 1893.

Mémoire sur les lignes géodésiques. Mém. présentés
par savants 4 1’Acad. des sci. de 'Inst. de France, vol.
381, No. 6, 318 pp., 1894.

Kommerell, V. Beitrige zur Gauss’schen Flichentheorie.
Diss., 111 - 46 pp., Titbingen, 1890.

Eine neue Formel fiir die mittlere Kriimmung und
das Krimmungsmaass einer Fliche. Zeitschrift fiir
Math. und Phys., vol. 41, 123-126, 1896.

Kottfritzsch, Th. Zur Frage tber isotherme Coordinaten-

systeme. Zeitschrift ftir Math. und Phys., vol. 19, 265—
270, 1874.

Kummer, BE. E. Allgemeine Theorie der geradlinigen
Strahlensysteme. Journ. fiir Math., vol. 57, 189-230,
1860.

Laguerre. Sur les formules fondamentales de la théorie des
surfaces. Nouv. Ann. de Math., ser. 2, vol. 11, 60-66,
1872.

Lamarle, E. Exposé géométrique du calcul differential et
integral. Chaps. x-xrr. Mém. couronnés et autr.
mém. publ. par1’Acad, Royale de Belgique, vol. 15, 418~
605, 1863.

Lamé, Gabriel. Mémoire sur les coordonnées curvilignes.
Journ. de Math., vol. 5, 818-347, 1840.

Legons sur les coordonnées curvilignes. Paris, 1859.

Lecornu, L. Sur I’équilibre des surfaces flexibles et inex-
tensibles. Journ. de I'Ecole Polyt., cahier 48, vol.
29, 1-109, 1880.

Legoux, A. Sur lintegration de I'équation d s?=E du? -}
2Fdudv++ Gdvt Ann. de la Faculté des sci. de
Toulouse, vol. 3 F, 1-2, 1889.

Lévy, L. Sur les systémes de surfaces triplement orthog-
onaux. Mém. couronnés et mém. des sav. publiés par
1’ Acad. Royale de Belgique, vol. 54, 92 pp., 1896.

Lévy, Maurice. Sur une transformation des coordonnées
curvilignes orthogonales et sur les coordonnées curvi-
lignes comprenant une famille quelconque de surfaces du
second ordre. Thesis, 33 pp., Paris, 1867.

Mémoire sur les coordonnées curvilignes orthogonales.
Journ. de 'Ecole Polyt., cahier 43, vol. 26, 157-200,
1870.

BIBLIOGRAPITY

Lévy, Maurice. Surune application industrielle du théoréme
de Gauss relatif & la courbure des surfaces. C. R., vol.
86, 111-113, 1878.

Lie, Sophus. TUeber Flichen, deren Kriimmungsradien durch
eine Relation verkniipft gind. Archiv for Math. og
Nat., Christiania, vol. 4, 507-512, 1879.

Zur Theorie der Flichen constanter Kriimmung,
Archiv for Math. og Nat., Christiania, vol. 4, 845-354,
355-366, 1879; vol. 5, 282-306, 328-858, 518-541, 1881.

Untersuchungen tber geodétische Curven. Math.
Annalen, vol. 20, 357-454, 1882.

Zur Geometrie einer Monge’schen Gleichung. Ber-
ichte der Kgl. Gesell. der Wissenschaften zu Leipzig,
vol. 50, 1-2, 1898.

von Lilienthal, Reinhold. Allgemeine Higenschaften von
Flichen, deren Coordinaten sich durch reellen Teile
dreier analytischer Functionen einer complexen Verin-
derlichen darstellen lassen. dJourn. fiur Math., vol. 98,
181-147, 1885.

Untersuchungen zur allgemeinen Theorie der krum-
men Oberflichen und geradlinigen Strahlensysteme.
Bonn, E. Weber, 112 pp., 1886.

Zur Theorie der Kriimmungsmittelpunktsfiichen.
Math. Annalen, vol. 30, 1-14, 1887.

Ucber die Krimmung der Curvenschaaren. Math.
Annalen, vol. 82, 545-565, 1888.
Zur Krimmungstheorie der Fldchen. Journ. fiir

Math., vol. 104, 341-347, 1889.

Zur Theorie des Krimmungsmaasses der Ilichen.
Acta Mathematica, vol. 16, 143-152, 1892.

Ueber geoditische Kriimmung, Math. Annalen,
vol. 42, 5056-525, 1893.

Ueber die Bedingung, unter der eine Flichenschaar
einem dreifach orthogonalen Flichensystem angehort.
Math. Annalen, vol. 44, 449-457, 1894.

Lipschitz, Rudolf. Beitrag zur Theorie der Kriimmung.
Journ. fir Math., vol. 81, 230-242, 1876.

Untersuchungen tiber die Bestimmung von Oberflichen
mit vorgeschriebenen, die Krimmungsverhiltnisse
betreffenden Eigenschaften. Sitzungsb. der Kgl. Akad.
der Wissenschaften zu Berlin, 1882, 1077-1087; 1883,
169-188.

Untersuchungen tber die Bestimmung von Ober-
flichen mit vorgeschriebenem Ausdruck des Linear-
elements. Sitzungsb. der Kgl. Akad. der Wissenschaften
zu Berlin, 1883, 541-560.

Zur Theorie der krummen Oberflichen.
ematica, vol. 10, 181-136, 1887.

Liouville, Joseph. Sur un théoréme de M. Gauss con-
cernant le produit des deux rayons de courbure princi-
paux en chaque point d’une surface. Journ. de Math.,
vol. 12, 291-804, 1847,

Acta Math-



BIBLIOGRAPHY

Liouville, Joseph. Sur la théorie générale des surfaces.
Journ. de Math., vol. 16, 130-132, 1851.

Notes on Monge’s Applications, see Monge.

Liouville, R. Sur le caractére auquel se reconnait 1'équa-
tion differentielle d’un systéme géodésique. C. R., vol.
108, 495-496, 1889.

Sur les représentations géodésiques des surfaces. C.R.,
vol. 108, 835-387, 1889.

Loria, G. Sulla teoria della curvatura delle superficie.
Rivista di Mat. Torino, vol. 2, 84-95, 1892.

Il passato ed il presente d. pr. Teorie geometriche.
2nd ed., 346 pp. Turin, 1896.

Liroth, J. Verallgemeinerung des Problems der kiirzesten
Linien. Zeitschrift fiir Math. und Phys., vol. 18, 156-
160, 1868.

Mahler, E. TUeber allgemeine Flichentheorie.
Math. and Phys., vol. 67, 96-97, 1881.

Die TFundamentalsitze der allgemeinen Flichen-
theorie. Vienna; Heft. I, 1880; Heft. I, 1881.

Mangeot, S. Sur les éléments de la courbure des courbes et
surfaces, Ann. de I'Ecole Normale, ser. 8, vol. 10, 87—
89, 1893.

von Mangoldt, H. TUeber diejenigen Punkte auf positiv
gekriimmten Fldchen, welche die Eigenschaft haben,
dass die von ihnen ausgehenden geoditischen Linien nie
aufhoren, kiirzeste Linien zu sein. Journ. fiir Math.,
vol. 91, 23-53, 1881.

Ueber die Klassification der Flichen nach der Ver-
schiebbarkeit ihrer geoditischen Dreiecke. Journ. fdr
Math., vol. 94, 21-40, 1883.

Maxwell, J. Clerk. On the Transformation of Surfaces by
Bending. Trans. of Camb. Philos. Soc., vol. 9, 445
470, 1856.

Minding, Ferdinand. TUeber die Biegung gewisser Flichen.
Journ. fiir Math., vol. 18, 297-802, 365-368, 1838.

‘Wie sich entscheiden l4sst, ob zwel gegebene krumme
Flichen auf einander abwickelbar sind oder nicht;
nebst Bemerkungen iiber die Flédchen von verinder-
lichen Kriimmungsmaasse. Journ. fiir Math., vol. 19,
370-387, 1839.

Beitrige zur Theorie der kiirzesten Linien auf krum-
men Flichen, Journ. fiir Math., vol. 20, 323-327, 1840.

Ueber einen besondern Fall bei der Abwickelung
krummer Flichen. Journ. fir Math., vol. 20, 171-172,
1840.

Ueber die mittlere Krimmung der Fldichen.
de I’Acad. Imp. de St. Petersburg, vol, 20, 1875.

Zur Theorie der Curven kiirzesten Umrings, bei
gegebenem Flicheninhalt, auf krummen Flichen,
Journ. fir Math., vol, 86, 279-289, 1879.

Mlodzieiowski, B. Sur la déformation des surfaces.
de sci. Math., ser. 2, vol. 15, 97-101, 1891.

Axchiv fir

Bull.

Bull.

123

Monge, Gaspard. Applications de 1’ Analyse ala Géométrie ;
revue, corrigée et annotée par J. Liouville. Paris;
fifth ed., 1850.

Motoda, T. Note to J. Knoblauch’s paper, ¢“ Ueber Funda-
mentalgrossen in der Flichentheorie’” in Journ. fir
Math., vol. 103. Journ. of the Phil. Soc. in Tokio,
3 pp., 1889.

Moutard, T. F. Lignes de courbure d'une classe de surfaces
du quatridme ordre. C. R., vol. 59, 243, 1864.

Note sur la transformation par rayons vecteurs recip-
roques. Nouv. Ann. de Math. ser. 2, vol. 3, 306-309,
1864.

Sur les surface anallagmatique du quatriéme ordre.
Nouv. Ann, de Math. Ser. 2, vol. 3, 536-539, 1864.

Sur la déformation des surfaces. Bull. de la Soc.
Philomatique, p. 45, 1869.

1 a?z

Surla construction des équations dela forme — - ———
z dzdy

=N\ (2, ¥), qui admettent une intégrale générale explicite.
Journ. de 'ficole Polyt., cahier 45, vol. 28, 1-11, 1878.

Nannei, BE. Le superficie ipercicliche. Rend. dell’Accad.
di Napoli, ser. 2, vol. 2, 119-121, 1888 ; Giornale di
Mat., vol. 26, 201-233, 1888.

Naccari, G. Deduzione delle principali formule relative
alla curvatura della superficie in generale e dello sferoide
in particolare con applicazione al meridiano di Venezia.
L’Ateneo Veneto, ser. 17, vol. 1, 287-249, 1898 ; vol.
2, 133-161, 1893.

Padova, B. Sopra un teorema di geometria differenziale.
Reale Ist. Lombardo di sci. e let., vol. 28, 840-844, 1890.

Sulla teoria generale delle superficie. Mem. della R.
Accad. dell’ Ist. di Bologna, ser. 4, vol. 10, 745-772,
1890.

Pellet, A. Mém. sur la théorie des surfaces et des courbes.
Ann, de 1"flcole Normale, ser. 8, vol. 14, 287-310, 1897.

Sur les surfaces de Weingarten. C. R., vol. 125, 601—
602, 1897.

Sur les systémes de surfaces orthogonales et isothermes.
C. R., vol. 124, 552-554, 1897.

Sur les surfaces ayant méme représentation sphérique.
C. R., vol. 124, 1291-1294, 1897.

Sur les surfaces isometriques.
1339, 1897.

Sur la théorie des surfaces. Bull, de la Soc. Math. de
France, vol. 26, 138-159, 1898; C. R., vol. 124, 451-
452, 789-741, 1897 ; Thesis, Paris, 1878,

Sur les surfaces applicables sur une surface de revolu-
tion. C. R., vol. 125, 1159-1160, 1897; vol. 126, 892-
394, 1898.

Peter, A. Die Flachen, deren Haupttangentencurven lin-
earen Complexen angehoren. Archiv for Math. og
Nat., Christiania, vol. 17, No. 8, 1-91, 1895.

C. R., vol. 124, 1337-



124

Petot, A. Sur les surfaces dont 1’élément lineaire est reduc-
tible a la forme ds?’=F(U+ V) (du?4-d+?). C.R.,
vol. 110, 330-333, 1890.

Picard, Emile. Surfaces applicables. Traité d’Analyse,
vol. 1, chap. 15, 420-457; first ed., 1891 ; sccond ed.,
1901.

Pirondini, G. Studi geometrici relativi specialmente alle
superficie gobbe. Giornale di Mat., vol. 23, 288-331,
1885.

Teorema relativo alle linee di curvatura delle super-
ficie e sue applicazioni. Annali di Mat., ser. 2, vol. 16,
61-84, 1888 ; vol. 21, 33-46, 1893.

Plicker, Julius. Ueber die Krimmung einer belichigen
Fliche in einem gegebenen Puncte. Journ. fiir Math.,
vol. 8, 824-336, 1828.

Poincaré, H. Rapport sur un Mémoire de M. Hadamard,
intitulé: Sur les lignes géodésiques des surfaces & cour-
bures opposées. C. R., vol. 125, 589-591, 1897.

Probst, F. TUeber Flichen mit isogonalen systemen von
geoditischen Kreisen. Inaug.-diss. 46 pp., Wiirzburg,
1893.

Raffy, L. Sur certaines surfaces, dont les rayons de cour-
bure sont liés par une relation. Bull. de la Soc. Math.
de France, vol. 19, 158-169, 1891.

Determination des éléments linéaires doublement har-
moniques. Journ. de Math,, ser. 4, vol. 10, 331-390,
1894.

Quelques proprietes des surfaces harmoniques. Ann.
de la Faculté des sci. de Toulouse, vol. 9 C, 1-44, 1895.

Sur les spirales harmoniques. Ann. de 1'fcole Nor-
male, ser. 3, vol. 12, 145-196, 1895.

Surfaces rapportées & un réseau comjugué azimutal.
Bull. de 1a Soc. Math. de France, vol. 24, 51-56, 1896.

Leqgons sur les applications géométriques de 1’analyse,
Paris, v1- 251 pp., 1897.

Contribution & la théorie des surfaces dont les rayons
de courbure sont liés par une relation. Bull. de la Soc.
Math. de France, vol. 25, 147-172, 1897.

Sur les formules fondamentales de la théorie des sur-
faces. Bull. de la Soc. Math. de France, vol. 25, 1-3,
1897.

Détermination d’une surface par ses deux formes quad-
ratiques fondamentales. C. R., vol. 126, 1852-1854,
1898.

Razziboni, Amilcare.
ficie su di un’ altra al modo di Gauss,
vol. 27, 274-302, 1889.

Delle superficie sulle quali due serie di geodetiche
formano un sistema conjugato. Mem. della R. Accad.
dell’Ist. di Bologna, ser. 4, vol. 9, 765-776, 1889.

Reina, V. Sulle linee conjugate di una superficie. Atti
della Reale Accad. dei Lincei, ser. 4, vol. 6;, 166-165,
203-209, 1890.

Sulla rappresentazzione di una super-
Giornali di Mat.,

BIBLIOGRAPHY

Reina, V. Di alcune formale relative alla teoria delle super
ficie. Atti della Reale Accad. dei Lincei, ser. 4, vol. 6,
108-110, 176, 1890.

Resal, H. Exposition de la théorie des surfaces. 1 vol.,
x1ir 4 171 pp. Paris, 1891. Bull. des sci. Math., ser.
2, vol. 15, 226-227, 1891; Journ. de Math. spéciale &
Dusage des candidats aux Ticole Polyt., ser. 8, vol. 5,
165-166, 1891.

Ribaucour, A. Sur la théorie de I’application des surfaces
l'une sur ’autre. L’Inst. Journ. universel des sci. et
des soc. sav. en France, sect. I, vol. 87, 871-382, 1869.

Sur les surfaces orthogonales. IL’Inst. Journ. uni-
versel des sci. et des soc. sav. en France, sect. I, vol. 87,
29-80, 1869.

Sur la déformation des surfaces. IL’Inst. Journ. uni-
versel des sci. et des soc. sav. en France, sect I, vol. 87,
389, 1869 ; C. R., vol. 70, 330, 1870.

Sur la théorie des surfaces. IL’Inst. Journ. universel
des sci. et des soc. sav. en France, sect. I, vol. 38, 60-
61, 141-142, 236-237, 1870.

Sur la représentation sphérique des surfaces.
vol. 75, 538-536, 1872.

Sur les courbes enveloppes de cercles et sur les sur-
faces enveloppes de sphdres, Nouvelle Correspondance
Math., vol. 5, 2567-268, 805-315, 337-343, 385-393, 417~
426, 1879 ; vol. 6, 1-7, 1880.

Mémoire sur la théorie générale des surfaces courbes.
Journ. de Math., ser. 4, vol. 7, 5-108, 219-270, 1891.
Ricei, @. Dei sistemi di coordinate atti a ridurre la expres-
sione del quadrato dell’ elemento lineaire di una super-
ficie alla forma ds?=(U+V) (du?4 dv?). Atti della

Reale Accad. dei Lincei, ser. 5, vol. 2;, 73-81, 1893.

A proposito di una memoria sulle linee geodetiche del
sig. G. Konigs. Attidella Reale Accad. dei Lincei, ser.
5, vol. 2,, 146-148, 338-339, 1893.

Sulla teoria delle linee geodetiche e dei sistemi isotermi
di Liouville. Atti del Reale Ist. Veneto, ser 7, vol. 5,
643-681, 1894.

Della equazione fondamentale di Weingarten nella
teoria delle superficie applicabili. Aftti del Reale Inst.
Veneto, ger. 7, vol. 8, 1230-1288, 1897.

Lezioni sulla teoria delle superficie.
Verona, 1898.

Rothe, R. TUntersuchung tiber die Theorie der isothermen
Flachen. Diss., 42 pp. Berlin, 1897.

Rothig, O. Zur Theorie der Flichen. Journ. fir Math.,
vol. 85, 250-263, 1878.

Ruffini, . Di alcune proprietd della rappresentazione
sferica del Gauss. Mem. dell’Accad. Reale di sci.
dell’Ist. di Bologna, ser. 4, vol. 8, 661-680, 1887.

C. R,

viix 4 416 pp.

Ruoss, H. Zur Theorie des Gauss’schen Krimmungs-
maases. Zeitschrift fiir Math. und Phys., vol. 37, 878~
881, 1892.



BIBLIOGRAPHY

Saint Loup. Sur les propriétés des lignes géodésiques.
Thesis, 83-96, Paris, 1857.

Salmon, George. Analytische Geometrie des Raumes. Re-
vised by Wilhelm Fielder. Vol. II, nxxir-696;
Leipzig, 1880.

de Salvert, F. Mémoire sur la théorie de la courbure des
surfaces. Ann. de la Soc. sci. de Bruxelles, vol. 5 B,
291-473, 1881 ; Paris, Gauthier-villars, 1881.

Mémoire sur l’emploi des coordonnées curvilignes
dans les problémes de Mécanique et les lignes géodésiques
des surfaces isothermes. Ann. de la Soc. sci. de Brux-
elles, vol. 11 B, 1-138, 1887. Paris, 1887.

Mémoire sur la recherche la plus générale d’un sys-
tdme orthogonal triplement isotherme. Ann. de la Soc.
sci. de Bruxelles, vol. 13 B, 117-260, 1889 ; vol. 14 B,
121-283, 1890; vol. 156 B, 201-394, 1891; vol. 16 B,
273-366, 1892 ; vol. 17 B, 103-272, 1898 ; vol. 18 B, 61—
64, 1894.

Théorie nouvelle du systéme orthogonal triplement
isotherme et son application aux coordonnées curvilignes.
2 vols., Paris, 1894.

Scheffers, G. Anwendung der Differential- und Integral-
rechung auf Geometrie. Vol. I, x 4 860 pp., Leipzig,
Veit & Co., 1901.

Schering, B. Erweiterung des Gauss’schen Fundamental-
satzes fur Dreiecke in stetig gekrimmten Flichen.
Nachr. der Kgl. Gesell. der Wissenschaften zu Got-
tingen, 1867, 389-391 ; 1868, 389-391.

Serret, Paul. Sur la courbure des surfaces.
543-546, 18717.

Servais, C. Sur la courbure dans les surfaces. Bull. de
I’Acad. Royale de Belgique, ser. 8, vol. 24, 467-474,
1892.

Quelques formules sur la courbure des surfaces. Bull.
de I’Acad. Royale de Belgique, ser. 8, vol. 27, 896-904,
1894.

Simonides, J. Ueber die Krimmung der Flichen. Zeit-
schrift zur Pflege der Math. und Phys., vol. 9, 267, 1880.

Stackel, Paul, Zur Theorie des Gauss’schen Kriimmungs-
maasses. Journ, fiir Math., vol. 111, 205-206, 1893;
Berichte der Kgl. Gesell. der Wissenschaften zu Leipzig,
vol. 45, 163-169, 170-172, 1893.

Bemerkungen zur Geschichte der geodétischen Linien.
Berichte der Kgl. Gesell. der Wissenschaften zu Leipzig,
vol. 45, 444-467, 1893.

Sur la déformation des surfaces.
680, 1896.

Biegungen und conjugirte Systeme.
vol. 49, 255-310, 1897.

Beitriige zur Flichentheorie. Berichte der Kgl. Gesell.
der Wissenschaften zu Leipzig, vol. 48, 478-504, 1896 ;
vol. 50, 3-20, 1898.

C. R., vol, 84,

C. R., vol. 128, 677~

Math. Annalen,

125

Stahl und Kommerell. Die Grundformeln der allgemeinen
Flichentheorie. vI-- 114 pp., Leipzig, 1898,

Staude, O. TUeber das Vorzeichen der geoditischen Krim-
mung. Dorpat Naturf. Ges. Ber., 1895, 72-83..

Stecker, H. F. On the determination of surfaces capable of
conformal representation upon the plane in such a man-
ner that geodetic lines are represented by algebraic
curves. Trans. Amer. Math. Society, vol. 2, 152-165,
1901.

Stouff, X. Sur la valeur de la courbure totale d’une sur-
face aux points d’une aréte de rebroussement. Ann. de
IHicole Normale, ser. 8, vol. 9, 91-100, 1892.

Sturm, Rudolf. Ein Analogon zu Gauss’ Satz von der Kriim-
mung der Flichen. Math. Annalen, vol. 21, 879-384,
1888.

Stuyvaert, M. Sur la courbure des lignes et des surfaces
Mém, couronnés et autr. mém. publ. par 1’Acad. Royale
de Belgique, vol. 55, 19 pp., 1898. '

de Tannenberg, W. Lecons sur les applications géomét-
riques du calcul differentiel. 192 pp. Paris, A. Her-
mann, 1899.

van Dorsten, see (van) Dorsten.

von Escherich, see (von) Escherich.

von Lilienthal, see (von) Lilienthal.

von Mangoldt, see (von) Mangoldt.

Vivanti, G. Ueber diejenigen Bertihrungstransformationen,
welche das Verhdltniss der Krimmungsmaasse irgend
zwel sich berithrender Flichen im Bertihrungspunkte
unverindert lassen. Zeitschrift fiir Math. und Phys.,
vol. 87, 1-7, 1892.

Sulle superficie a curvatura media costante. Reale
Ist. Lombardo di sci. e let. Milano. Ser. 2, vol. 28, 8563—
364, 1895.

Voss, A. TUeber ein neues Princip der Abbildung krummer
Oberflichen. Math. Annalen, vol. 19, 1-26, 1882.

Ueber diejenigen Flichen, auf denen zwei Scharen
geodatischer Linien ein conjugirtes System bilden.
Sitzungsb. der Kgl. Bayer. Akad. der 'Wissenschaften
zu Minchen, vol. 18, 95-102, 1888.

Zur Theorie der Kriimmung der Flichen.
Annalen, vol. 39, 179-256, 1891.

Ueber die Fundamentalgleichungen der Flichen-
theorie. Sitzungb. der Kgl. Bayer Akad. der Wissen-
schaften zu Miinchen, vol. 22, 247-278, 1892,

Ueber isometrische Flichen. Math. Annalen, vol.
46, 97-132, 1895.

Ueber infinitesimale Flachendeformationen. dJahresb.
der Deutschen Math. Vereinigung, vol. 4, 182-137,
1897.

Zur Theorie der infinitesimalen Biegungsdeformationen
einer Fldche. Sitzungsb. der Kgl. Akad. der Wissen-
schaften zu Miinchen, vol. 27, 229-301, 1897.

Math.






CORRIGENDA ET ADDENDA.

Art. 11, p. 20, L. 6. The fourth Z should be F.

Axt. 18, p. 27, 1. 7. For v (EG—F*?).dp.d0 read 2 v (EG—F*) . dg . do.
The original and the Latin reprints lack the factor 2; the correction is made in all
the translations.

Art. 19, p. 28, 1. 10. For g read g.

Art. 22, p. 34, 1. 5, left side; Art. 24, p. 36, 1. 5, third equation; Art. 24,
p. 38, 1. 4. The original and Liouville’s reprint have ¢ for p.

Note on Art. 23, p. 65, 1. 2 fr. bot. For p read g¢.
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