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Abstract

Magnetic resonance imaging (MRI) is a major imaging modality widely used in medical

practice. Compared to other medical imaging techniques, MRI has several advantages

such as non-invasiveness, high tissue contrast, additional information, etc. While most

other imaging techniques directly generate medical images, a special characteristic of

MRI is that raw data are acquired in the k-space, an extension of the Fourier space,

which represents spatial frequency information. Therefore, reconstruction algorithms

are needed to convert collected raw data to human-readable images of the scanned

region.

Quantitative MRI refers to MRI techniques that map meaningful properties of

tissues. Amongst other tissue-specific parameters, we are particularly interested in

those related to relaxation, i.e., the process of protons returning to the original state

from an excited state. There are two relaxation mechanisms in MRI, namely transverse

relaxation and longitudinal relaxation, concerned with the transverse and longitudinal

components of net magnetization of protons, respectively.

This thesis consists of three parts. Firstly, we introduce hardware and fundamental

principles of MRI. In the second part, we define three tissue-specific parameters related

to relaxation—T1 (for longitudinal relaxation), T2 (for transverse relaxation) and

T2* (for reduced transverse relaxation). In particular, we focus on T1 and present

several commonly used T1 mapping methods for calculating T1 values, such as the

dual-flip-angle (DFA) method. The last part of the thesis serves as a tutorial that

introduces several basic steps that reconstruct an image from acquired raw data.
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Chapter 1

MRI Fundamentals

1.1 Biomedical Imaging Modalities

There are four major biomedical imaging modalities—radiographic imaging, nuclear

medicine, ultrasound and magnetic resonance imaging (MRI). In this section, we briefly

introduce principles and characteristics of these modalities. Radiographic imaging,

including X-ray and computed tomography (CT), transmits X-rays through the body

and detects the X-rays on the other side of the patient. Nuclear imaging, to which

planar scintigraphy, single-photon emission computerized tomography (SPECT) and

positron emission tomography (PET) belong, injects radiotracers in the bloodstream

of the body and detects gamma rays emitted from the radiotracers within the body.

The third category, ultrasound, sends ultrasonic waves towards the body and then

receives the reflected ultrasonic waves from the body. Lastly, MRI causes spin systems

to precess with the patient in a strong magnetic filed, transmits radio frequency energy

to the body, and receives radio frequency energy induced in the body.

The electromagnetic spectrum of different biomedical imaging modalities is shown

in Figure 1-1. Among all imaging modalities, ultrasound has the lowest frequency

of about 104 Hz, slightly higher than the highest frequency that a person can hear.

MRI uses radio frequency, which is about 100 MHz. Optical imaging uses infrared

and visible light. With higher frequency levels, X-ray and gamma ray are typically
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Figure 1-1. The electromagnetic spectrum for different biomedical imaging modalities.

used in CT and nuclear imaging, respectively.

Biomedical modalities can be categorized according to different criteria. X-rays, CT,

SPECT and PET cause some level of radiation exposure to the patient, but they are

still considered non-invasive. Ultrasound and MRI, on the other hand, are completely

non-invasive. In terms of forms of imaging, CT, SPECT, PET, ultrasound and MRI

belong to tomographic imaging, whereas X-rays and planar scintigraphy are projection

imaging techniques. Moreover, SPECT, PET, diffusion-weighted imaging (DWI),

perfusion-weighted imaging (PWI), and functional MRI provide information beyond

anatomical information, such as physiological information, metabolic information, and

functional information of the patient.

MRI has several advantages over other imaging modalities. As mentioned before,

MRI is completely non-invasive and thus prevents radiation exposure of the patient.

Secondly, it belongs to tomographic imaging, intrinsically providing additional infor-

mation than projection imaging methods. Moreover, MRI provides relatively high

spatial resolution and high soft tissue contrast. Another unique characteristic of MRI

is the capability of scanning the subject along any direction. In this thesis, we review

preliminary knowledge required for MRI techniques and then transition to two main

areas of MRI—T1 mapping and image reconstruction.
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1.2 MRI Hardware

In order to better understand how MRI works, we split the acronym “MRI” into three

parts: magnetism, resonance and imaging. The magnetism part indicates the fact that

the main magnet generates a strong magnetic field when a subject is inside the MRI

scanner. The resonance part reflects the process of transmitting radio frequency (RF)

energy to the subject by an RF coil, turning off the transmitter, and then receiving

RF signals emitted by the subject using another RF coil (or sometimes the same RF

coil). The imaging part means spatially modulating the magnetic field strength to

distinguish signals from different locations using gradient coils.

There are three major hardware components of MRI, corresponding to the three

aforementioned parts: a magnet, radio frequency transmitter and receiver (RF coils),

and three set of gradient coils (along the x-, y- and z-directions, respectively). Specifi-

cally, the outer layer of an MRI scanner is the main magnet, with the three gradient

coils placed inside the magenet, and with the RF coils being the inner core.

The magnet is typically superconducting, generating a magnetic field. The Tesla

is typically used as the unit of the magnetic field strength in MRI, with 1 Tesla =

10,000 Gauss. The strength of the Earth’s magnetic field ranges from 0.25 to 0.65

Gauss, and is about 0.5 Gauss in average. Hence the magnetic strength of a 1T MRI

scanner is about 20,000 times that of the Earth. Particles inside the patient precess

at a frequency proportional to the magnetic field strength due to the existence of the

superconducting magnet. This frequency is called the resonance frequency.

The radio frequency transmitter and receiver, obviously, transmit and receive RF

and induced signals, respectively. Protons that have the same precession frequency as

the frequency in the RF transmitter receive energy and get excited. This phenomenon

is called magnetic resonance and explained in detail in Section 1.3.

The three sets of gradient coils modulate the original magnetic filed spatically to
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Figure 1-2. A proton behave like a tiny magnet.

provide spatial information for imaging. Without lost of generality, we assume that

the magnetic field is always along the z-axis throughout this thesis. The gradient

coils merely cause variations of the original field (along the z-direction) in different

xy-positions but do not generate fields along the x- or y-direction. Therefore, the

precession frequency ω of protons is a function of the spatial location. In contrast to

other imaging modalities (e.g., CT, X-ray, SPECT, PET, Ultrasound, optical imaging),

positional information of detectors (e.g., the RF coils in MRI) is not used to get spatial

information in MRI except for parallel imaging.

1.3 Magnetic Resonance Phenomenon

1.3.1 Signal Source of MRI

A nucleus with an odd atomic number serves as a candidate for the signal source in

MRI. In general, more than 99% of MRI scanners use protons (hydrogens, 1H) as

the signal source [1–3]. Because 70% of our body consists of water, a molecule of

which has two hydrogen atoms, there are abundant signal sources in our body for

MRI. There are also many other nuclei that can be used for MRI such as 13C, 19F,
23Na, 17O, 31P [1, 2, 4].

The movement of a net charge within a closed loop is called spin, which generates an

angular momentum Φ. The angular momentum generates a magnetic dipole moment
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µ oriented orthogonal to the plane of the moving charge [5]. A proton in this situation

behaves like a tiny magnet [2, 4] as shown in Figure 1-2. The spin angular momentum

and the magnetic moment are related through a proportionality constant γ given by

µ = γ · ϕ. (1.1)

The constant γ is called the gyromagnetic ratio, which is 106 radians/sec/Tesla for

a proton. Conventionally, often γ/(2π) is used. Recall that Φ and µ are vector

quantities. MR signals are generated by manipulations of this magnetic moment µ

through “magnetic resonance”.

1.3.2 Protons in Magnetic Field

Without an external magnetic field, all proton spins in our body are aligned randomly,

as shown in Figure 1-3. However, when protons are placed in a strong magnetic field,

two aspects of the magnetic moments can be observed:

1. The magnetic moments tend to be aligned parallel or anti-parallel to the external

magnetic field (denoted by B0), as shown in Figure 1-4.

2. The magnetic moments are induced to rotate around the axis of the magnetic

field. This phenomenon is called precession. In other words, protons now spin

and precess around the same axis, namely the external magnetic field direction.

Whether the magnetic moment of a proton is parallel or anti-parallel to B0 depends

on its energy. A proton whose magnetic moment is parallel to the field is in a low

energy state whereas one with anti-parallel magnetic moment is in a high energy

state, as shown in Figure 1-5. The number of protons parallel or anti-parallel to B0

are approximately equal, so most of them cancel out each other in the net effect.

However, the number of protons parallel to the field is slightly higher than the number

of anti-parallel protons. This phenomenon is called spin excess, which is essential for

generating MR signals.
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Figure 1-3. Protons are aligned randomly when there is no external magnetic field.

Figure 1-4. Magnetic moments tend to be aligned parallel or anti-parallel to the external
magnetic field B0.
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Figure 1-5. Protons in high energy states and in low energy states.

The precession of a proton is similar to that of a gyroscope. Without an external

magnetic field, a proton is analogous to a vertically-oriented gyroscope spinning without

wobbling. However, once the axis is tipped off, gravity causes the spinning gyroscope

to wobble, similarly to the precession phenomenon when an external field exists. The

wobbling, also known as precession has its own frequency, which is indepdendent of

the spinning frequency.

The individual dipole moment of a proton is too small to detect. Instead, we

consider the net effect of all dipoles. Each proton’s magnetization can be regarded as a

vector. Net magnetization of a precessing proton can be found using vector summation

[1, 2]. Now we decompose a vector into a longitudinal component and a transverse

component, only the latter of which can be used to generate MR signals. For the

longitudinal component, the majority of parallel and anti-parallel protons cancel out

each other, whereas few additional parallel protons called spin excess remain. As

for the transverse component, the phases of protons are random, so the vector sum

equals zero. Overall, net magnetization M is along the longitudinal direction (i.e., the

z-direction), the same direction as the exteral field B0.

Similar to the relation between the spin angular momentum and the magnetic

moment in Equation (1.1), the precession angular speed ω0 is proportional to the
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exteral field B0 with the proportional constant gyromagnetic radio γ, given by

ω0 = γ · B0, (1.2)

Typically both sides of the equation are divided by 2π, transforming the angular speed

to the corresponding regular frequency in Hertz, given by

f0 = γ

2π
· B0. (1.3)

Equation (1.3) is called the Lamor equation and f0 is called the Larmor frequency,

which is usually assumed to be a constant for a given spin system. In 1T MRI,

f0 = 42.58 MHz [1–3, 6].

1.3.3 RF for Causing Magnetic Resonance

In this section, we introduce the magnetic resonance phenomenon from two different

points of view—microscopic quantum mechanics and net magnetization. First, we

explain the microscopic quantum mechanical interpretation. When the RF energy

(often denoted as B1; note that B0 is the main magnetic field) with the same frequency

as the precession frequency (the Larmor frerquency) applied to the transmitter RF

coil, some protons absord energy and jump from a low energy state (parallel) to a

high energy state (anti-parallel), as shown in Figure 1-6.

The other way to understand magnetic resonance is from the concept of net

magnetization. Before we delve into the concept, we first introduce a new coordiante

system, the rotating reference frame, for visualizaing magnetization dynamics. The

net magetization itself precesses at the Larmor frequency. If we use the traditional

laboratory reference frame, the precessing axis of the magnetic vector will constantly

change, as shown in Figure 1-7. The rotating reference frame, however, precesses at

the Larmor frequency so the net magetization is stationary. The rotating reference
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Figure 1-6. The proton states after applying the RF energy.

frame is expressed in Equation (1.4) and shown in Figure 1-8.

x′ = x · cos(ω0t) − y · sin(ω0t),
y′ = x · sin(ω0t) + y · cos(ω0t),
z′ = z.

(1.4)

Now we are ready to introduce the magnetic resonance phenomenon. Figure 1-9

shows the entire process in the rotating reference frame. (If the laboratory frame were

used instead, the trajectory would be in a spiral form as shown in Figure 1-10). The

first subplot in Figure 1-9 illustrates spin excess. When we apply an RF pulse in

the x′y′-transverse plane at the frequency of the precession frequency, the RF pulse

decreases the overall net magnetization in the longitudinal direction Mz because these

spins parallel to the field are changed to the anti-parallel state. The net transverse

magnetization Mxy, which can be detected and measured by MRI scanners, starts

to emerge (i.e., becomes in-phase), as shown in the second subplot in Figure 1-9.

Specifically, when an RF pulse is applied along the x′-direction, the net magetization

is pushed down toward the y′-axis accoring to the right-hand rule. If we apply an RF

pulse continuously until the longitudinal component completely disappear, then the

transverse component gets maximized. This RF pulse is called the 90◦ RF pulse, since
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Figure 1-7. The laboratory reference frame, in which magnetic moment is rotating.

Figure 1-8. The rotation reference frame, which is itself rotating.

Figure 1-9. An illustration of the entire process of magnetic resonance.
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Figure 1-10. The trajectory of magnetic vectors in the laboratory reference frame.

the original longitudinal magnetization is flipped by 90◦ and hence completely toward

the transverse plane. When we stop applying the RF pulse to the transmistter RF

coil, we can detect an exponentially-decaying sinusoidal signal in the receiver RF coil,

called free induction decay (FID), as shown in the third subplot of Figure 1-9. Because

Mxy is produced by multiple magnetic dipoles, differences in the microenvironment

alter the speed at which these dipoles precess. Since some dipoles precess faster than

others, they appear to spread apart in a process called dephasing. As these dipoles

spread, they slowly begin to counteract with each other, reducing the net measurable

Mxy [5]. The net magnetization eventually returns to the original state. This process

is called relaxation, as shown in the final subplot of Figure 1-9.

If the duration of the 90◦ RF pulse is doubled, the net magnetization M is flipped

to the (−z)-direction. This RF pulse is called the 180◦ RF pulse. If the RF energy

B1 were apply along the z-direction, it would merely change the precession speed yet

not cause magnetic resonance. Therefore it is important to place RF coils so that
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the RF fields generated by the RF coils are perpendicular to B0. If the frequency of

the RF pulse does not match the Larmor frequency, then no measurable signal in the

transverse plane is produced.

The final flip angle, the angle between the z′-axis (the original net magetization

location) and the eventual net magnetization location, and the phase of the net

magetization M depend on both the amplitude and the duration of the RF pulse B1

[2, 6], given in the following equation:

B1(t) =
{︄

Be
1(t)e−j(w0t−θ) in the laboratory frame,

Be
1(t)ejθ in the rotating frame,

(1.5)

where Be
1 denotes the envelope of B1.

If we apply the RF pulse along the x′-direction, the precession of the net megetiza-

tion M around the x′-axis can be described by the Larmor equation ω1 = γB1(t). In

addition, the intergral of ω1 over time provides the flip angle α given by

α = γ
∫︂ τ

0
Be

1(t)dt,

where τ is the duration of the RF energy B1(t). The RF pulse is also known as the α

pulse.
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Chapter 2

T1 Mapping Simulation

2.1 Main Tissue Parameters

As mentioned in Section 1.3.3, applying an RF pulse (with α ̸= π) generates the

transverse magnetization that can be detected as an exponentially-decaying sinusoidal

signal (i.e., free induction decay) in an RF coil, as shown in Figure 2-1. Then the

magnetization returns back to the original state, and this process is called relaxation.

There are two relaxation mechanisms, transverse relaxation (also known as T2 relax-

ation or spin-spin relaxation) and longitudinal relaxation (also known as T1 relaxation

or spin-lattice relaxation). In this section, we introduce three main tissue parameters:

T1, T2, T2*.

Little information could be obtained if the response to RF pulses of protons were

independent of its surrounding environment. Fortunately, the response of protons

is indeed affected by its neighboring macromolecules and elements. Therefore, MR

signals are produced by these multiple tissue-specific parameters [7, 8].

2.1.1 T1: Spin-Lattice Relaxation Time

The T1 relaxation time, or the spin-lattice relaxation time, measures how quickly the

longitudinal component of the net magnetization Mz returns to its original state (or

a percentage of the equilibrium) [1, 4, 6, 9–12], as shown in Figure 2-2. The energy
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Figure 2-1. The free induction decay.

absorbed from the RF pulse during the excitation exchanges between protons and

their surrounding environment in relaxation [8]. Returning from a high energy state

to a low energy state emits energy to the surrounding neclei called the lattice, which

serve as an energy reservoir.

2.1.2 T2: Spin-Spin Relaxation Time

The T2 relaxation time, also known as the spin-spin relaxation time, measures the

time required for the transverse net magnetization Mxy to decay to a percentage of the

initial magnitude strength, usually 1/e or 37%, due to the progressive dephasing of

spinning dipoles after excitation. The so-called “spin-spin” interaction is one of several

mechanisms that contribute to T2 relaxation. As we mentioned in T1 relaxation, when

protons interact with their surrounding fluctuating magnetic fields, if such interaction

affects one of the spins contributing to Mxy, both the transverse and the longitudinal

components of its angular momentum will be randomly changed, so the progressive

loss of phase relations with other spins will lead to the occurrence of T2 relaxation.

Hence, T2 is partially dependent on T1 effects [4, 8, 10, 12]. In other words, any

process causing T1 relaxation also results in T2 relaxation. In typical circumstances,

the magnitude order of T2 is smaller than that of T1.
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2.1.3 T2*: Reduced Transverse Relaxation Time

In reality, measured MR signals decay faster than the natural T2 decay because of

magnetic field inhomogeneities [8, 13, 14]. The reduced T2, also known as T2*, is a

derived tissue parameter that reflects this phenomenon. In addition to non-uniform

external fields, there is one more possibility that results in field inhomogeneities—

neighboring fields from adjacent tissues, commonly seen at interfaces of tissues [3, 4,

6, 13, 14], which also lead to the early dephasing of individual magnetic dipoles [15].

T2* is smaller than T2 as shown in Figure 2-3 and can be determined by the following

equation
1

T ∗
2

= 1
T2

+ 1
T ′

2
, (2.1)

where T2′ is the decay associated with magnetic field inhomogeneities.

T2′ relaxation is reversible by applying the 180◦ pulse, whereas T2 relaxation (i.e.,

the transverse relaxation) is irreversible. We explain the reason using an analogy.

We first discuss the T2′ case. A group of students begins running from a starting

line at the same time with possibly different speeds. The precession speeds are

analogous to the students’ speeds, related to the magnetic field strength according

to the Larmor Equation (1.2). Due to magnetic field inhomogeneities, the precession

speed is different for each proton. After a period of time, the students are at differnet

locations, analogous to the fact that protons are dephased. If students are asked to

return to the starting line using the same speeds as they come, they will arrive at

the starting line at the same time. Analogously, if we apply a 180◦ RF pulse, the

protons become in phase again, so T2′ relaxation procedure is reversible. Now let us

consider the T2 scenario. If these students interact with each other randomly, they

may arrive at slightly different positions compared to the T2′ situation. In this case,

if we ask them to return, they may not arrive at the starting line at the same time

due to random interactions. In other words, the interactions in the forward trip and
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Figure 2-2. An illustration of T1 value and the T1 relaxation.

Figure 2-3. The comparison between the T2* decay and the T2 decay.

the backward trip may not be the same. The dephasing due to random interactions

among the students is similar to T2 relaxation, which is irreversible.

The relaxation time constants T1 and T2 are tissue-specific and serve as sources of

MR image contrasts, depending only on B0 but not on scan parameters. T2* and T2′

are also tissue-specific but may depend on scan parameters. In subsequent sections,

we focus on T1 relaxation and the classic T1 mapping methods.

2.2 Bloch Equation

In his 1946 paper Nuclear Induction, Bloch [10] showed a set of equations explaining

the origin and the properties of nuclear magnetic resonance (NMR) signals. In this

section, in order to better understand T1 relaxation, we derive the T1 decay formula

from the basic Bloch equation; i.e., given dMz(t)
dt

= M0−Mz(t)
T1

, we derive the solution of

Mz(t). The M0 is the equilibrium magnetization. By the general solution to a first
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order non-homogeneous linear ordinary differential equation (derived in Appendix A),

given
dy

dt
= P (t)y + Q(t),

we have that

y = e
∫︁

P (t)dt
(︃∫︂

Q(t)e−
∫︁

P (t)dtdt + C
)︃

. (2.2)

In our case,

y = Mz(t), P (t) = − 1
T1

, Q(t) = M0

T1
,

Therefore,

y = Mz(t) = e
∫︁

− 1
T1

dt
(︃∫︂ M0

T1
e

−
∫︁

− 1
T1

dt
dt + C

)︃
,

= e
− t

T1

(︃∫︂ M0

T1
e

t
T1 dt + C

)︃
,

= e
− t

T1
(︂
M0e

t
T 1 + C

)︂
,

= M0 + Ce
− t

T1 .

We substitute the initial condition Mz(0) into this general solution to derive the

constant C:

Mz(0) = M0 + C.

Therefore,

C = Mz(0) − M0. (2.3)

The final solution is given by

Mz(t) = M0 + (Mz(t) − M0)e− t
T1 . (2.4)

Now we express Equation (2.4) in the matrix form M(t) = AM(0) + b.
⎡⎢⎣Mx(t)

My(t)
Mz(t)

⎤⎥⎦ =

⎡⎢⎣1 0 0
0 1 0
0 0 e

− t
T1

⎤⎥⎦
⎡⎢⎣Mx(0)

My(0)
Mz(0)

⎤⎥⎦+

⎡⎢⎣ 0
0

M0(1 − e
− t

T1 )

⎤⎥⎦ . (2.5)
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Therefore,

A =

⎡⎢⎣1 0 0
0 1 0
0 0 e

− t
T1

⎤⎥⎦ , B =

⎡⎢⎣ 0
0

M0(1 − e
− t

T1 )

⎤⎥⎦ . (2.6)

Similarly, the T2 decay formula is given by

Mxy(t) = Mxy(0)e− t
T2 , or Mxy(t) = Mxy(0)e− t

T ∗
2 . (2.7)

2.3 T1 Mapping Methods

Five T1 mapping methods are introduced in this section, including saturation recov-

ery (SR), inversion recovery (IR), Look-Locker (LL), driven-equilibrium single-pulse

observation of T1 (DESPOT1) and dual-flip-angle (DFA).

For saturation recovery, a 90◦ pulse is given initially, which gives Mz(0) = 0.

Therefore, Equation (2.4) becomes

Mz(t) = M0(1 − e
− t

T1 ), (2.8)

where M0 is the equilibrium magnetization (equivalently, initial magnetization).

For inversion recovery, a 180◦ pulse is given initially, which gives Mz(0) = −M0.

Therefore, Equation (2.4) becomes

Mz(t) = M0(1 − e
− t

T1 ) − M0e
− t

T1 = M0(1 − 2e
− t

T1 ). (2.9)

For Look-Locker, the longitudinal magnetization is described by

Mz(t) = Mss − (Mss + M0)e
− t

T ∗
1 , (2.10)

where Mss is the longitudinal magnetization in the steady state, and T ∗
1 is the longi-

tudinal magnetization relaxation time. Assuming that the transverse magnetization

decay is ignorable (i.e., T2 ≪ TR), then 1
T ∗

1
can be expressed by

1
T ∗

1
= 1

T1
− ln(cos θ)

TR , (2.11)
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where θ is the applied flip angle (FA) and TR is the time interval between two

successive data acuquisition. At the steady state, Mss is a function of M0, TR, T1, θ,

given by

Mss = M0(1 − e
− TR

T1 )
1 − e

− TR
T1 cos θ

(2.12)

For DESPOT1, the steady state signal is similar to (2.12). Now we consider the

transverse signal instead:

Mss = M0(1 − E1) sin θ

1 − E1 cos θ
, (2.13)

where E1 = e
− T R

T1 .

Keeping the TR constant and increasing the flip angle θ generate a curve char-

acterized by T1. All the data can be expressed in the linear form Y = mX + b

Mss

sin θ
= E1

Mss

tan θ
+ M0(1 − E1), (2.14)

from which the slope m, and the y-intercept b can be estimated by linear regression.

Therefore, T1 and M0 can be extracted by

T1 = − TR

ln(m) , (2.15)

M0 = b

1 − m
. (2.16)

In the next section, the DFA method is discussed in detail.

2.4 Characterizing the Accuracy and the Precision
of the T1 Mapping with Dual Flip Angle Method
Using the Monte Carlo Simulation

2.4.1 Introduction

Fast T1 mapping is a desired MRI technique for the longitudinal or cross-sectional

characterization of lesion structures. Inversion recovery (IR) is considered as the
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gold standard for T1 measurements. The associated long acquisition time hinders its

practical use, especially for applications that require 3D high spatial resolution and

broad volume coverage. The dual-flip-angle (DFA) method [16, 17] is proposed as a

rapid alternative, as it is based on the steady state signal and hence long waiting time

is not required. Although this method is known to be sensitive to flip angle errors [18]

and incomplete spoiling of transverse magnetization [19], approaches can be taken

to mitigate these issues. As the DFA technique is simple for both data acquisition

and T1 estimation, knowledge of its accuracy and precision at different signal-to-noise

ratio (SNR) levels is desired to allow it to be more widely accepted. In this section,

DFA is compared with IR using numerical Monte Carlo simulations under influences

of various noise levels.

2.4.2 Method

From the previous study on the DFA method [17], the transverse signal intensity S

is a function of the longitudinal relaxation time T1, the repetition time TR, the flip

angle α, and the equilibrium longitudinal magnetization M0:

S = M0(1 − e−T R/T1)sin(α)
1 − e−T R/T1cos(α) . (2.17)

Instead of rearranging the formula into a linear form and calculating the fitted T1 and

M0 by the y-intercept and slope, respectively, the approximate parameter method [20]

is used in this simulation:

T1 = 2TR(S1/α1 − S2/α2)
S2α2 − S1α1

, (2.18)

M0 = S1S2(α2/α1 − α1/α2)
S2α2 − S1α1

. (2.19)

Here, we assume that M0 = 100, TR = 25ms, and two flip angles, 6◦ and 20◦ are used.

All numerical simulations are implemented in MATLAB 2020B. The Monte Carlo

simulation is applied in order to consider noise in the calculations of T1 and M0. In
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our implementation, 10,000 values of random noise are generated by the Gaussian

distribution with a mean of 0 and a standard deviation of M0 divided by the SNR,

the SNR is increased from 80 to 800 with an increment of 80, and T1 values are set

from 600 ms to 2000 ms with an increment of 100 ms.

For IR, we use five inversion delays, 100 ms, 500 ms, 1200 ms, 2500 ms, 4000 ms

and a post-acuquisition delay of 2000 ms. The M0 value and the T1 range are the

same as in DFA, but the SNR is changed from 10 to 100 with an increment of 10.

The Levenberg–Marquardt algorithm [21] is commonly used for solving non-linear

least squares problems. Two important indicators, the accuracy and the precision,

are calculated by the mean of relative error and by the coefficient of variation std
mean ,

respectively, where std is the standard deviation.

2.4.3 Results

Figure 2-4 shows the mean of relative errors and the coefficient of variation of two

estimated parameters T1 and M0, using IR under different noise levels and T1 values.

The contour lines indicate the 5% and 10% values. Figure 2-5 shows the same indicators

with the DFA method. For each fitting, a higher SNR guarantees higher accuracy and

precision.

Under the same SNR range, the IR-derived values of T1 and M0 have a low precision

than accuracy, whereas the DFA-derived values of T1 and M0 admit approximate equal

precision and accuracy. For SNR higher than 50, the accuracy and the precision of

T1 and M0 with IR are both under 5% for most T1 values. Such an SNR threshold

for DFA is 240. Since the image acquisition time for IR used in this simulation is

about 64 times that of the DFA method with the same image resolution, IR needs to

be compared to DFA in a way that the SNR in IR is multiplied by 8 for equivalent

SNR efficiency in DFA. Thus the DFA method is more efficient to achieve the same

accuracy and precision than the IR method.
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Figure 2-4. Simulation results of T1 and M0 estimation using IR. The mean of relative
errors (indicating accuracy) and the coefficient of variation (indicating precision) of 10,000
repetitions as a function of the SNR using the Monte Carlo simulation.
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Figure 2-5. Simulation results of T1 and M0 estimation using the DFA method. Compared
to Figure 2-4, it clearly shows that DFA has better performance and higher efficiency.
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2.4.4 Conclusion

Our Monte Carlo simulation compared IR and DFA in a range of T1 values with

different noise levels, and revealed that DFA has higher SNR efficiency for achieving

the same level of accuracy and precision.
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Chapter 3

Image Reconstruction

3.1 Introduction

Because MRI raw data are acquired in the k-space instead of the image space, image

reconstruction is required for magnetic resonance imaging. Traditionally, MR images

are reconstructed by simply applying inverse 2D or 3D fast Fourier transform (FFT).

However, the situation is much more complicated in reality; for example, the scan time

should be taken into consideration. As a result, several classic fast parallel imaging

reconstruction algorithms are invented, including sensitivity encoding (SENSE) and

generalized autocalibrating partial parallel acquisition (GRAPPA). This chapter is a

tutorial that includes several reconstruction tasks to enhance the understanding of

basic knowledge in this field. All the tasks are implemented in MATLAB 2020b. A

set of 2D fully-sampled k-space raw data (whose dimension is 200 × 200) acquired

with 8 MR coils is used in all the tasks.

3.2 Reconstruction Tasks

3.2.1 Reconstructing a 2D Image From Multi-Channel K-
Space Data

Before we delve into the details, we first introduce the concepts of parallel imaging

and sensitivity mapping. MR imaging uses multiple receiver coils to collect data. The
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spatial information of the MR signal is localized by known placement and sensitivity

of the receiver coils. In general, any number of coils, for example eight in our case, can

be arranged around an object volume and then used in parallel to image the entire

volume. Each coil will be very sensitive to the portion of the object which is near to

the coil, and much less sensitive to the portion farther away. Each individual coil is

capable of creating an MR image of the entire object. The formula is as follows,

Î(r⃗) = Ii(r⃗)/Si(r⃗), (3.1)

where r⃗ denotes an arbitrary position in the image, Ii(r⃗) represents the image acquired

from an individual coil i, Si(r⃗) denotes the sensitivity map from the same coil, and

Î(r⃗) is the estimated original image using this method.

The quality of the image acquired using a single coil is low. The portion farther

from the coil has a lower SNR than the portion nearer the coil. Fortunately, these

individual images can be combined using coil sensitivity maps to produce an improved

image, given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1(r⃗) × I(r⃗) = I1(r⃗),
S2(r⃗) × I(r⃗) = I2(r⃗),

· · ·
S8(r⃗) × I(r⃗) = I8(r⃗).

(3.2)

The sensitivity maps provide the spatial information by looking at the relative intensity

of each coil. Because the number of equations is greater than that of the variables

(e,g, row number m = 8, column number n = 1 and m > n), the least squares fitting

method is used to solve this problem. If we represent the system of equations in the

matrix form Ax = B, then

A =

⎡⎢⎢⎢⎣
S1(r⃗)
S2(r⃗)
· · ·

S8(r⃗)

⎤⎥⎥⎥⎦ , x = I(r⃗), B =

⎡⎢⎢⎢⎣
I1(r⃗)
I2(r⃗)
· · ·

I8(r⃗)

⎤⎥⎥⎥⎦ .

The general solution to the least-square-fitting is given by multiplying both sides of

the equation by the conjugate transpose of A, i.e. AHAx = AHb. Hence,

x = (AHA)−1
AHb, (3.3)
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where (AHA)−1
AH is called the pseudo-inverse of A. In our case,

AH =
[︂
S1(r⃗) S2(r⃗) · · · S8(r⃗)

]︂
,

AHA = S1(r⃗)S1(r⃗) + S2(r⃗)S2(r⃗) + · · · + S8(r⃗)S8(r⃗),

(AHA)−1 = 1
S1(r⃗)S1(r⃗) + S2(r⃗)S2(r⃗) + · · · + S8(r⃗)S8(r⃗)

.

Therefore,

x = (AHA)−1
AHb = S1(r⃗)I1(r⃗) + S2(r⃗)I2(r⃗) + · · · + S8(r⃗)I8(r⃗)

S1(r⃗)S1(r⃗) + S2(r⃗)S2(r⃗) + · · · + S8(r⃗)S8(r⃗)

= S1(r⃗)I1(r⃗) + S2(r⃗)I2(r⃗) + · · · + S8(r⃗)I8(r⃗)
|S1(r⃗)|2 + |S2(r⃗)|2 + · · · + |S8(r⃗)|2 . (3.4)

Without loss of generality, we scale the values of all sensitivity maps simultaneously.

Hence, we can easily normalize the denominator of Equation (3.4) to be 1. Therefore,

the final equation is given by

I(r⃗) = S1(r⃗)I1(r⃗) + S2(r⃗)I2(r⃗) + · · · + S8(r⃗)I8(r⃗). (3.5)

Now we have combined all the images from all the receiver coils to reconstruct the

original image by using sensitivity maps. Then we would like to reconstruct the image

without knowing the sensitivity map. Rearranging the Equation (3.1), we get

Si(r⃗) = Ii(r⃗)
I(r⃗) , (3.6)

Si(r⃗) =
(︄

Ii(r⃗)
I(r⃗)

)︄
= Ii(r⃗)

I(r⃗)
. (3.7)

Substituting the (3.7) into (3.5), we get

I(r⃗) = I1(r⃗)
I(r⃗)

I1(r⃗) + I2(r⃗)
I(r⃗)

I2(r⃗) + · · · + I8(r⃗)
I(r⃗)

I8(r⃗). (3.8)

Multiplying both sides of the equation by I(r⃗), we get

I(r⃗)I(r⃗) = I1(r⃗)I1(r⃗) + I2(r⃗)I2(r⃗) + · · · + I8(r⃗)I8(r⃗),

|I(r⃗)|2 = |I1(r⃗)|2 + |I2(r⃗)|2 + · · · + |I8(r⃗)|2,

I(r⃗) =
√︂

|I1(r⃗)|2 + · · · + |I8(r⃗)|2|. (3.9)
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Therefore, without knowing the sensitivity maps, we can calculate the original image

by combining all the 8 coils.

In the first task, we reconstruct a 2D MR image from the multi-channel k-space

data in order to be familiar with several MATLAB functions frequently used in

images reconstruction, including ifftshift, ifft2 and fftshift. First, the function

ifftshift is applied to the first and second dimensions of the raw data. Secondly, we

apply the iff2 function to transform the k-space data to the image space. Then, we

calculate the square root of the sum of the squares (SSOS) to combine 8 coils, given

in (3.9).

Finally, the fftshift function is applied to shift the zero-frequency component to

the center of the spectrum. The reason is that if we use MATLAB to perform the

fast fourier transform, the “center” of the spectrum (representing the zero frequency

component) is the first and the last elements in the array, and the “end” of the

spectrum (representing the highest frequency components) is located at the center of

the array. The final result is given in Figure 3-1. The images acquired from each MR

coil are also provided in Figure 3-2.

The sensitivity maps, given in Figure 3-3, can also be calculated by combining

Equations (3.6) and (3.9),

Ŝi(r⃗) = Ii(r⃗)
Î(r⃗)

= Ii(r⃗)√︂
|Î1(r⃗)|2 + |Î2(r⃗)|2 + · · · + |Î8(r⃗)|2

. (3.10)

The symbol x̂ indicates that the variable x is estimated by calculation. We never

know what the true original image looks like, since all images we get are reconstructed

by numerical calculations. The spatial positions of the 8 coils are illustrated in Figure

3-4.
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Figure 3-1. The reconstructed 2D MR image from the 8-channel k-space data.

Figure 3-2. The images from each MR coil before the combination.
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Figure 3-3. The calculated sensitivity map from each coil.

Figure 3-4. The spatial positions of the 8 coils.
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Figure 3-5. Equally spaced k-sapce undersampling images.

Figure 3-6. Subsampling images.

3.2.2 Equally Spaced K-Space Undersampling

Before learning about specific fast parallel imaging algorithms, it is essential to

understand the concept of aliasing and basic undersampling techniques. In this task,

five images are generated by equally sampling every other column (R=2), every

third columns (R=3), every fourth columns (R=4) and every five columns (R=5)

of the k-space’s data. The result is given in Figure 3-5. Note that the signals are

indistinguishable after undersampling.

In order to distinguish the undersampling and subsampling techniques, four images

are generated by subsampling, given in Figure 3-6. The image size is reduced from

200 × 200 to 200 × 100 for R=2, to 200 × 67 for R=3, to 200 × 50 for R=4 and to

200 × 40 for R=5.
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Figure 3-7. We truncate the image to 128 × 128 (resp. 64 × 64 and 32 × 32) pixels.

3.2.3 Image Resolution and K-Space FOV

3.2.3.1 Truncation and Interpolation

In Figure 3-7, we truncate the images from 200×200 pixels to 128×128, 64×64and32×

32 pixels, respectively.

In Figure 3-8, instead of truncation, we keep the image size to be 200 × 200. We

modify the image as follows. The central 128 × 128 (resp. 64 × 64 and 32 × 32) entries

remain the same. However, the outer k-space entries are set to 0. If we want to resize

the images from Figure 3-7 to 3-8, we need to apply image interpolation algorithms.

Interpolation is a process to estimate unknown values according to surrounding known

values. Image interpolation works in two directions, and tries to achieve a best

approximation of a pixel’s color and intensity based on the values of its neighboring

pixels.

There are two categories of common interpolation algorithms: adaptive and non-

adaptive. Adaptive methods incorporate the information of what is interpolated,

e.g. sharp edges or smooth textures, whereas non-adaptive methods treat all pixels

equally. Non-adaptive algorithms include nearest-neighbor, bilinear, bicubic, spline,

sinc, Lanczos and others. The number of adjacent pixels used during interpolation

varies from 0 to 256 (or more) depending on complexity. A larger number of adjacent

pixels gives a higher accuracy but, on the other hand, requires much longer processing

time.
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Figure 3-8. Instead of truncation, we keep the image resolution unchanged (200 × 200).
The central 128 × 128 (resp. 64 × 64 and 32 × 32) entries remain the same but the outer
k-space is set to 0.

Figure 3-9. The central entries 128 × 128 (resp. 64 × 64 and 32 × 32) of k-space is set
to 0 and the outer k-space remains unchanged.
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Let us consider another situation: setting the central 128 × 128 (resp. 64 × 64 and

32×32) entries of the k-space to 0 and keeping the outer k-space unchanged. The results

are given in Figure 3-9. Comparing this figure to Figure 3-8, we conclude that the low

spatial frequency information is stored in the central k-space and the corresponding

entries contain general intensity differences, i.e., the contrast information. Conversely,

the outer k-space stores high spatial frequency information. The corresponding entries

contain edge structures.

3.2.3.2 2D Hanning Window Design

In this section, we explain the design of the 2D Hanning filter to reduce ringing

artifacts. In Figure 3-8, we keep the image size unchanged, the central 128 × 128

(resp. 64 × 64 and 32 × 32) entries remains the same and the outer k-space entries

set to 0. If we zoom in on the 128 × 128 case, we can see some “echoes” near the

edges, illustrated by red arrows in Figure 3-11. These are called ringing artifacts. In

general, the cause of ringing artifacts is the ripple in the sinc function. In terms of

the frequency domain, the signal passing a low-pass filter or a bandlimit filter is the

main reason of ringing artifacts. (Recall that the sinc function is the impulse response

for an ideal low-pass filter.) The overall results after applying the filter are given in

Figure 3-10.

The 2D Hanning window, also know as the 2D Hanning filter, is one of the most

commonly used filter. This filter has a bell shape curve. We take 32 × 32 case as

an example to demonstrate the design in Figure 3-13. We choose the weight to be

4. The black square in this figure represents the matrix corresponding to the image,

with dimension 200 × 200. Each entry in this matrix can be seen as a “point”. Hence,

the entries inside the blue circle correspond to the 32 × 32 submatrix that keeps the

original values. The annulus between the red and blue circles corresponds to the

transition part of this bell shape filter. In Figure 3-8, the value of an entry equals 0
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outside the 32 × 32 submatrix and the original value inside the submatrix. Therefore,

there is a large gap, from nonzero to zero on the boundary of the 32 × 32 matrix. The

filter is designed to resolve this issue by smoothing the value differences in order to

reduce ringing artifacts.

Let x′ = x ∗ f(d), where x is the value of an entry inside the 200 × 200 matrix,

x′ is the corresponding value after applying the filter, f denotes the filter function,

and d is the distance between the point and the central point (100, 100). Every point

inside the 200 × 200 matrix can be categorized into one of the following three cases:

1. If the point is inside the red circle (i.e., d ≤ 12), then

f = 1.

2. If the point is outside the red circle but inside the blue circle (i.e., 12 < d < 16),

then

f = cos2(θ),

where θ is calculated by a linear function (by scaling the distance in the range

[12, 16] to a radian in [0, π/2]).

3. If the point is outside the blue circle (i.e., d ≥ 16), then

f = 0.

Entries are considered in the “transition stage” if they belong to the second case (i.e.,

used to fill the large gap between the nonzero values and the zeros). The result of

the 128 × 128 case by adding the Hanning filter is shown in Figure 3-12. Comparing

the areas indicated by the red arrows with those in Figure 3-11, it is obvious that the

ringing artifacts have been remarkably reduced.

35



Figure 3-10. A 2D hanning window is added to the Figure 3-8.

Figure 3-11. Zooming in on the 128 × 128 case from Figure 3-8 (i.e., without the 2D
hanning filter).
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Figure 3-12. Zooming in on the 128 × 128 case from Figure 3-10 (i.e., with adding the
2D hamming filter).
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Figure 3-13. An illustration of the 2D hanning filter.
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Appendix A

General Solution to a First Order
Non-Homogeneous Linear
Ordinary Differential Equation

Theorem A.1. Given
dy

dx
= P (x)y + Q(x), (A.1)

the general solution is

y = e
∫︁

P (x)dx
(︃∫︂

Q(x)e−
∫︁

P (x)dxdx + C
)︃

.

Proof. Consider the special case where dy
dx

= P (x)y First, it is easy to get dy
y

= P (x)dx.

Hence,

ln y =
∫︂

P (x)dx + C0, (A.2)

y = C1e
∫︁

P (x)dx. (A.3)

If we change C1 from constant to a function related to x, i.e., C(x), then

y = C(x)e
∫︁

P (x)dx. (A.4)

Differentiating Equation (A.3), we get

dy

dx
= dC(x)

dx
e
∫︁

P (x)dx + C(x)P (x)e
∫︁

P (x)dx. (A.5)
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Substituting (A.4) and (A.5) into (A.1) gives

dC(x)
dx

e
∫︁

P (x)dx + C(x)P (x)e
∫︁

P (x)dx = P (x)C(x)e
∫︁

P (x)dx + Q(x).

Then,
dC(x)

dx
= Q(x)e−

∫︁
P (x)dx,

Therefore,

C(x) =
∫︂

Q(x)e−
∫︁

P (x)dx + C (A.6)

Substituting (A.6) into (A.4) gives

y = e
∫︁

P (x)dx
(︃∫︂

Q(x)e−
∫︁

P (x)dxdx + C
)︃

.
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