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Abstract 

 

DFT+Cluster Expansion+Monte Carlo (DFT-CE-MC) process of studying thermodynamic 

properties of lattice structure is of great use in materials design for a variety of applications. 

Among these applications, rational design of alloy surface for catalyst usage is a promising field 

with great importance. Unlike the traditional experimental approach, the DFT-CE-MC process 

provides a foundation for a “virtual laboratory” in which all surface structures can be studies 

computationally with little aids of experimental data. This kind of “virtual laboratory” will save a 

lot of effort in experimental tries and thus speed up the design of high catalyst structures. 

In details, thermodynamic stable ground states of surface alloy under different conditions and 

the relationship between atomic structure, formation enthalpy, chemical potential and catalyst 

properties can be gathered through this process. With these information, structures optimizing 

catalyst properties could be proposed and a detailed analyze of influential factors of catalyst 

properties is available. 

However, a problem is raised if considering the composition mismatch between surface and 

bulk region. Since the lattice of surface region should always match that of bulk region, the 

lattice parameter of the surface, and hence the interactions among near-surface atoms, varies 

with the composition of the underlying bulk material.  

Collecting the training data of surface structures with varies underlying bulk composition 

through DFT demands a large amount of calculation, and should be wasteful when the strain-

energy relationship can be predicted accurately through known model, such as quadratic rule.  
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Here, in this thesis, we demonstrate that quadratic rule model can be included in cluster 

expansion framework, especially for Bayesian cluster expansion approach, so that surfaces 

under a variety of strains can be used to train a single cluster expansion that predicts properties 

as a function of atomic order and surface strain. We implemented this idea on Bayesian cluster 

expansion and tested our method in Au-Pt and Ni-Pt alloy surface with oxygen adsorption. The 

result shows the validity of the idea and suggests a great potential of this method in application 

of catalyst research. 

We will firstly introduce the basic concepts of DFT-CE-MC process, and then briefly review the 

cluster expansion approach and its recent development. After that, we will introduce the lattice 

parameter dependent cluster expansion and the validity test of this newly developed method. 

Finally, we will go through some of the possible applications of this method. 
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1. Introduction to DFT-CE-MC technique 

 

We use a number of computational methods to study surface alloy structure, with the ultimate 

goal of building our knowledge of this thermodynamic systems all from first principle. Thanks to 

the steady growing computer power and improvement in numerical algorithm, first principle 

methods, such as Density functional theory (DFT) which aims at solving many electron 

𝑠𝑐ℎ𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation in a single electron way [1, 2], are currently applicable method in 

evaluating formation energies of alloy structures. However, accurate DFT computations are still 

relatively expensive and the scale are typically restricted to structures containing less than 100 

atoms . While to compute thermodynamic quantities for typical Monte Carlo simulation, 

Hamiltonian of supercells with ～103to 106 atoms are required, inaccessible by direct DFT 

calculations. Thus, cluster expansion method are used to bridge the gap between needs of 

Monte Carlo and supply from DFT through constructing Hamiltonian of large structures from 

information gathered through small size DFT calculation(training sets). 

1.1 Density functional theory 

 

As an easy approach to first principle method, DFT has been widely used for calculations in 

solid-state physics since 1970s. The name density functional theory came from the Hohenberg-

Kohn theorem where it makes an assumption that physical properties of solid with periodic 

symmetry is a functional of electron density of the system. By accepting this, it is possible to 

transform a many body 𝑆𝑐ℎ𝑟𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation into a single body equation, thus makes it great 

easier to solve complex  𝑆𝑐ℎ𝑟𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation and a calculation of massive electronic system 
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becomes possible. For this solving process, the only parameters needed to be fit is the 

exchange-correlation functional which corresponds to the interaction between electrons. 

Conventionally, LDA or GGA approximation [1, 3] can be used to simulate this interaction 

accurately and thus the total solving process is based on solid theories. As an easy access to 

first principle method, DFT finds increasingly broad application in the chemical and materials 

science. For example, for the needs of this study, formation energy of given atomic structure 

was calculated through DFT. Under 40 years development, DFT has become a mature technique 

with many commercial software developed to implement it, such as the Vienna Ab initio 

Simulation Package(VASP), SIESTA [4, 5, 6, 7]. 

 

Below we provide a brief outline of DFT, whose details can be easily found in various literature.  

For a given structure consisting of N ions and M electrons: 

𝑆(𝑖𝑜𝑛1, 𝑖𝑜𝑛2, … 𝑖𝑜𝑛𝑁 , 𝑒1, 𝑒2, … 𝑒𝑀)  ( 1 ) 

 

the time independent  𝑆𝑐ℎ𝑟𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation is  

𝐻̂𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) = 𝐸𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) ( 2 ) 

 

With Ĥ = −
1

2
∑ 𝛻2M
i − ∑ ∑

ZI

|ri−RI|
M
i

N
I + ∑

1

|ri−rj|

M
i<j  ( 3 ) 

Where the first term on the right is the kinetic energy of electrons, second term is the ion-

electron attraction, and the third term is the electron-electron repulsion. 𝑅𝐼 and 𝑟𝑖 are 

coordinates of ions and electrons respectively, 𝑍𝐼 is the number of positive charges in an ion. 
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Following the Hohenburg and Kohn theorem, we get the electron density 𝜌(𝑟) uniquely 

determines ground states 𝐻̂ and thus the ground state energy of the structure is a functional of 

electron density alone: 

𝐸[𝜌(𝑟)] = 𝑇[𝜌(𝑟)] +
1

2
∫∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′ − ∑ ∫

2𝐼

|𝑟−𝑅𝐼|
𝜌(𝑟)𝑑𝑟𝑁

𝐼 + 𝐸𝑥𝑐[𝜌(𝑟)]  ( 4 ) 

Where first three functional are kinetic energy of non-interacting electron gas, the classical 

Coulombic electron-electron interactions energy due to ion-electron interaction which are all 

known exactly. The last term 𝐸𝑥𝑐[𝜌(𝑟)] is the so called exchange-correlation functional, 

represent the interaction contribution to the energy, whose exact form is unknown. 

Different technique could be applied to deal with exchange correlation term. The first 

technique used widely is local density approximation (LDA), which assume 𝐸𝑥𝑐[𝜌(𝑟)] is a 

function of the local electron density 

Exc[ρ(r)] ≈ ∫ drρ(r)ϵxc[ρ(r)] ( 5 ) 

 

where 𝜖𝑥𝑐[𝜌(𝑟)] is the exchange and correlation energy density of a small region of local 

electron gas, which we assume can be viewed as homogeneous. Another option which based 

on LDA is generalized gradient approximation (GGA), which is to assume the 𝜖𝑥𝑐[𝜌(𝑟)] can be 

trucated within first order in its Tayler expansion 

𝐸𝑥𝑐[𝜌(𝑟)] ≈ ∫ 𝑑𝑟𝜌(𝑟)𝜖𝑥𝑐[𝜌(𝑟), 𝛻𝜌(𝑟)] ( 6 ) 

 

knowing the expression of 𝐸𝑥𝑐[𝜌(𝑟)], we then are able to solve the equation into 
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[−
1

2
𝛻2 + ∫

ρ(r′)

|r−r′|
dr′ − ∑

ZI

|r−RI|
N
I +

δExc[ρ(r)]

δρ(r)
] ϕi = ϵiϕi ( 7 ) 

 

Simplified into 

hkŝϕi = ϵiϕi, hkŝ = −
1

2
𝛻2 + ∫

ρ(r′)

|r−r′|
dr′ − ∑

ZI

|r−RI|
N
I +

δExc[ρ(r)]

δρ(r)
 ( 8 ) 

 

Where 𝜙𝑖  is the orbitals of non-interacting particles and 𝜌(𝑟) = ∑ |𝜙𝑖(𝑟)|
2

𝑖  

Equation above shows the process to transform a many body 𝑠𝑐ℎ𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation into 

solution of several single body equations. 

Still, there is a problem that our Kohn-Sham operator ℎ𝑘𝑠̂ is actually the function of molecular 

orbitals 

hkŝ
(n)
= hkŝ[{ϕi

(n)}] ( 9 ) 

 

and a analytical solution of [equation number] becomes inaccessible. However, using a self-

consistent procedure, it is numerically solvable. 

The self-consistent procedure can be described as following plot: 
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Practically, different basis in representing  the electronic states is used in different 

implementation and correspondingly have different advantage and disadvantage. For example, 

the VASP [6, 5, 4] use a plane wave basis which assume the orbital is plan wave orthogonal 

between one another . This treatment is especially suitable for lattice structures where electron 

orbital can be safely treated as plane wave in periodic potentials. On the contrary, SIESTA [7] 

used a local orbital basis, which is more suitable for large molecules. 

1.2 Monte Carlo Simulation 

 

Yes, finish! 

Check self-consistent 

Initial guess of {𝜙𝑖
(𝑛)} 

Construct Kohn-Sham operator 

ℎ𝑘𝑠̂
(𝑛)
= ℎ𝑘𝑠̂[{𝜙𝑖

(𝑛)}] 

Solve 𝑠𝑐ℎ𝑜̈𝑑𝑖𝑛𝑔𝑒𝑟 equation 

and obtain {𝜙𝑖
(𝑛+1)} 

No, pass {𝜙𝑖
(𝑛+1)} 

Ooooobtained 

 

Set  {𝜙𝑖
(𝑛)} → {𝜙𝑖

(𝑛+1)}  

Set 𝑛 → 𝑛 + 1 

result 
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Knowing the expression of Hamiltonian of a system, the convention approach to study the 

thermodynamic average quantities in equilibrium is Monte Carlo simulation, which can be 

simply understood as a massive stochastic sampling method. Based on statistical mechanical 

knowledge, we know the thermodynamically average value is given by  

< 𝐴 >=
∑ 𝐴(𝜎⃗⃗ )𝑒𝑥𝑝⁡(−𝛽𝐻(𝜎⃗⃗ ))𝜎⃗⃗ 

∑ 𝑒𝑥𝑝⁡(−𝛽𝐻(𝜎⃗⃗ ))𝜎⃗⃗ 
 ( 10 ) 

 

Where the denominator⁡∑ exp⁡(−𝛽𝐻(𝜎 ))𝜎⃗⃗  is the partition function of the system, 𝜎  represent 

the structure which contains N sites, 𝛽 = 1/𝑘𝐵𝑇 is the inverse temperature. 

As the configuration number 𝑀(𝜎 ) = 𝑛𝑀 (where 𝑛 is the number of possible elements can be 

decorated on a site) increase exponentially with the increase of the cluster size M, it is actually 

impossible to mapping over all possible configurations in order to realize a true thermodynamic 

average as in eq. 10. A possible approach is to sample important configurations that have the 

major probability of occurrence. This idea then results in the Metropolis algorithm. 

The basic idea of metropolis algorithm is to generate random state according to normalized 

Boltzman factor 𝑝(𝑥) =
1

𝑧
exp⁡(−𝐻(𝑥)/𝑘𝐵𝑇), so that a simple sampling of this random 

sequence will become an importance sampling we need and thus represent thermodynamic 

average. In practical, a sequence of random walk step is generated (Markov Chain [8]) instead 

of generating independent states according to their probability of occurrence. For realizing the 

effect that each step represents a random state occurring with a probability of 𝑝(𝑥), a 

transition probability 𝑇𝑖𝑗 for the current state moving to a new state is defined and detailed 
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balance which ensure that such a process can be equilibrated by a reverse process for the 

demand of thermodynamic equilibrium is satisfied. 

In details, a Markov chain is a sequence of random states {𝑥𝑖}, for which the value 𝑥𝑖+1 

depends only on the previous value 𝑥𝑖. Let us assume the probability of the state moving from 

𝑥𝑖  to 𝑥𝑖+1 is 

T(xi → xi+1) = α(xi → xi+1)acc(xi → xi+1) ( 11 ) 

 

where 𝛼(𝑥𝑖 → 𝑥𝑖+1) is the probability of selecting a new state 𝑥𝑖+1 from all possible neighbor 

states of 𝑥𝑖  for next move. 𝑎𝑐𝑐(𝑥𝑖 → 𝑥𝑖+1) is the probability of accepting this new state 𝑥𝑖+1. 

Then to realize detailed balance: 

P(xi)T(xi → xi+1) = P(xi+1)T(xi+1 → xi) ( 12 ) 

Which means the flow of states from 𝑥𝑖  to 𝑥𝑖+1 exactly cancle the flow from 𝑥𝑖+1 to 𝑥𝑖, which 

realize equilibrium. 

We have:  

P(xi)α(xi → xi+1)acc(xi → xi+1) = P(xi+1)α(xi+1 → xi)acc(xi+1 → xi) ( 13 ) 

 

if we just randomly select new state from the nearby states then 

α(xi → xi+1) = α(xi+1 → xi) ( 14 ) 

 

We have: 
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acc(xi→xi+1)

acc(xi+1→xi)
=
P(xi+1)

P(xi)
 ( 15 ) 

 

The metropolis algorithm makes the explicit choice that if 
𝑃(𝑥𝑖+1)

𝑃(𝑥𝑖)
> 1, then always accept the 

new states. Then it follows: 

acc(xi → xi+1) =
P(xi+1)

P(xi)
= f(x) = {

𝑒𝑥𝑝⁡(
−(Exi+1−Exi)

kBT
), Exi+1 > Exi

1, Exi+1 ≤ Exi

 ( 16 ) 

 

Following such process, we can realize the thermodynamic average through a rather simple 

accepting rule without any cost of generality. A code implementing basic Monte Carlo 

simulation is quite simple that within handful of lines: 

FTotal= 0 

For(step=0 to NumOfStep){ 

Pick a trial move 

Compute the change in energy for the trial move(DE) 

If(DE<0 or randf()<exp(-DE/kT))  

then accept the move 

Else reject the move 

FTotal=NumTotal+FCurrentConfiguration 

} 

FAverage=FTotal/NumOfStep 
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The power of metropolis algorithm is that with this simple step, it is possible to undertake 

massive steps of run and with such large number of trials: 

1. The average will reach thermodynamic average 

2. After the Monte Carlo system reaches equilibrium, the new accepted states will become 

the thermodynamic real states which would much likely to be found in a real system, unlike 

the initial arbitrary guess states which may not be thermodynamically favored. 

Bearing such a fact, it is possible to pick up some states during equilibrium runs for detailed 

analyze, and simulated annealing process can be applied for finding ground states where every 

energy step is a Monte Carlo step. 

2. A brief review of cluster expansion method and its recent development 

 

2.1 cluster expansion method 

 

As we have mentioned before, there is a big gap between the scale of the Hamiltonian needs 

for Monte Carlo simulation and the scale of the Hamiltonian provided by DFT. A direct choice is 

to produce a large scale Hamiltonian using the information collected from DFT Hamiltonian. 

Cluster expansion method is an implementation of such choice [9]. While its foundation is laid 

on solid theory of statistical mechanism as an approximate technique for the treatment of 

cooperative phenomenal in periodic system which give very accurate results outside the critical 

region, it can also be viewed as a machine learning process since it learns from DFT Hamiltonian 

to get correct ECIs(effective cluster interaction). 
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Theoretically, the basic idea of cluster expansion method is that the extensive properties of 

periodic systems(like lattice structure) is a linear combination of cluster functions, where 

cluster functions are tenser product of site basis belonging to a single cluster. 

F(s ) = ∑ Vb⃗⃗ ∏ 𝛩bj(Si)ib⃗⃗  ( 17 ) 

 

In details, we assign variable to single sites according to their decorated elements and then 

define site basis to be orthogonal polynomials of site variables assigned to each site, a tensor 

product of site basis mapping over all the sites in a cluster(a collection of sites which have 

interaction between one another) then forms a cluster function  

𝛷b⃗⃗ (S⃗
 ) = ∏ 𝛩bj(Si)i  ( 18 ) 

 

and a linear combination of all possible cluster functions can estimate the extensive properties 

of lattice structure accurately when the system is outside of critical region. The process is firstly 

proposed by J.M. Sanchez et al [9] where they used discrete Chebyshev polynomials as site 

basis. Later, it became standard procedure for constructing cluster expansion. 

Practically, once we have constructed cluster functions through known decorated lattice 

structure, and get the coefficients of the linear combinations (𝑉𝑏⃗  in eq.), also known as ECIs. We 

can predict the extensive properties accurately. The ECIs are unknown parameters for the 

system and not available for an exact expression. Conventionally, a least square fit for several 

structures with their known value of extensive properties is undertaken to get the ECIs. The 

process is known as training process, and these structures are training set. The expression of 
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least-square fit can be written as 𝑉⃗ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 , where X is known as input matrix where 

each line contains the value of cluster functions belonging to the same structure and each 

column contains the value of cluster functions belonging to the same cluster [10]. While the 

number of all possible clusters in a structure expand exponentially with the number of site, 

𝑁 = 𝑀!. and since for least square fitting, the number of training structure should not be 

smaller the number of cluster functions of choice, for a non-truncated cluster expansion, the 

training set will be extremely large where practically inaccessible. That is to say, we should 

truncate the choice of clusters and try to achieve accuracy within limited number of clusters. 

Fortunately, since clusters with larger number of sites and larger distance between sites tend to 

have smaller ECIs and the curve drops quickly that ECIs for clusters larger than certain size could 

be ignored, a sufficient accuracy can be achieved by keeping only clusters that are relatively 

compact.  

The choice of clusters and training structures is an important topic in truncated cluster 

expansion procedure. Many different techniques have been developed in order to optimize the 

training system. Before long, this process much relies on the researchers’ personal physical 

intuitions, however, the automated algorithm proposed by Axel van de Walle et al [11] has 

overcome this problem and became widely used approach for cluster expansion. In this 

algorithm, the concepts of cross-validation and variance minimization is applied so that 

removing arbitrary parameters from the computation and guaranteed that the results obtained 

are truly derived from the underlying first principle calculation. 

Cross-validation: 
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Although the well-known mean square error is a choice of the estimation of the goodness of a 

fitting. There are specific needs for cluster expansion fitting process: a well estimation of how 

the terms of clusters influence the fitting results. In details, if too few terms are kept in CE, 

predict result will be imprecise, however, on the other hand, if too many terms are kept, given 

fixed number of training set, the problem of overfitting may appear. The score of the fitting 

thus should represent the compromise between these two unwanted effects. Mean Square 

Error fails in this aspect, since even if overfitting happens, the MSE value still can be very small. 

van de Walle et al [11] rediscovered a formal solution to this problem: the cross-validation 

score. 

The cross validation score is defined as: 

(CV)2 = n−1∑ (Ei − E(i))
2n

i=1  ( 19 ) 

Where 𝐸𝑖 is the calculated energy of structure i, 𝐸(𝑖) is the predicted value of the energy of 

structure i obtained from a least square fit to the n-1 other structural energies. In contrast to 

MSE, the CV score is not monotonically decreasing, instead, as the number of clusters included 

increase, it firstly decreases because of an increasing number of degree of freedom, but then 

increase because of an increase in the noise of the DFT energies. 

Cross-validation score is a reliable measurement of the goodness of fitting, and the problem of 

selecting clusters according to one’s physical intuitions then become an problem of selecting 

clusters to minimize the CV scores, thus allow minimizing algorithm such as simulated annealing 

method to take place. 

Variance reduction: 



13 
 

As Alex van de Walle et al states [11], the prediction error of a cluster expansion fit can be 

separated into two components: the bais and the variance. 

Here the bias is the accumulate result of the bias of ECIs caused by fit of each training structure 

and the variance is caused by fluctuations around the mean ECIs of each ECIs fitted by each 

training structure. Although we can not know the bias without the knowledge of the energies of 

training structures, we can estimate variance with only the information of input Matrix X. 

The variance can be represented in a form of covariance matrix of the ECIs through least square 

fitting theory: 

M = (XTX)−1e2 ( 20 ) 

 

Where 𝑒2 is the mean square error of the fit. 

Then the variance of predicted energy can be written as: 

Var[Ei] = xiMxi
T ( 21 ) 

 

Where 𝐸𝑖 is the predict energy of structure i, 𝑥𝑖  is the ith row of input matrix X which 

represents structure i. 

We average this quantity over all structures in training set, then comes the predictive power of 

the cluster expansion: 

E [Var[Ei]] ∝ ∫ uTMudu
||u||=1

= Tr(M) ( 22 ) 
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For details of this conduction, see [11]. Here an assumption was made that the cluster functions 

𝑥𝑖  of every possible structures are distributed isotropicaly in a sphere, so that the density 

function 𝑓(||𝑢||) of the randomly picked structures in phase space is spherically symmetric. 

Thus we can get the expected variance of the energies predicted from a cluster expansion. This 

expression is then used to provide guidance for training structure selection. Since the least 

square fitting procedure minimizes MSE 𝑒2, indicating that adding new point to the fit yields no 

first order change in 𝑒2. A direct consideration is finding new structure i which maximizes the 

reduction r of the trace of (𝑋𝑇𝑋)−1: 

r = Tr((XTX)−1) − Tr ((XTX + Xi
TXi)

−1
) ( 23 ) 

The maximum variance reduction ∆𝑉𝑚𝑎𝑥 is then reached when 𝑋𝑖
𝑇 is the longest possible 

column vector 𝑣 parallel to the eigenvector of 𝑋𝑇𝑋 associated with the smallest eigenvalue: 

∆Vmax = Tr((X
TX)−1 − (XTX + Xi

TXi)
−1
) ( 24 ) 

 

This condition turned out to be an eigenvalue problem 

(XTX)−2v = λv ( 25 ) 

 

Solving this for the largest eigenvalue of (𝑋𝑇𝑋)−2, we can find the new structure 𝑣 which 

minimize the variance of cluster expansion fitting. 

Axel van de Walle’s process provides an analytic way of select clusters and training structures 

out of physical intuitions of researchers, and laid the foundation of widely accessible of CE 
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method to large number of researchers. However, this is no ending of the development of this 

method. Next, we will explore other developments based on this foundation. 

2.2 Bayesian cluster expansion 

 

As we indicated in previous section, Axel van de Walle et al [11] proposed an process which can 

automatically select clusters and training structures without help of physical intuitions of 

researchers. However, a question raised that if there is a general physical intuition which can 

help automatically selecting training structure and clusters thus speed up the process of Alex et 

al. The answer is yes.  

Actually, early in 1992, Lakes David B. et al [12] have showed this possibility in his proposal of 

reciprocal cluster expansion which can automatically give weight to occurrence probabilities of 

clusters according to their size (number of atoms and distance between sites). This turns out to 

be the early embryo of Bayesian cluster expansion. 

The Bayesian cluster expansion, proposed by Tim Mueller et al [13], based on the idea that 

physical intuition of choosing clusters can provide great help in optimize cluster selection 

process, and this idea became possible through a Bayesian approach, which transform a 

problem of minimizing prediction error of ECIs into a problem of maximizing the distribution of 

ECIs given training data using Bayes’ theorem. 

The physical intuitions considered in Bayesian cluster expansion mainly comes in form of 3 

types: 

1. Properties prediction should be close to those predicted by theoretical or empirical 
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models. 

2. The greater the number of sites of a cluster and the greater the distance between sites, 

the smaller the ECIs should be. 

3. Similar cluster functions should have similar ECIs. 

These 3 physical intuitions then result in 3 treatment. For intuition 1, we can transform our 

target function of property value (like energy value) into a predict error of theoretical or 

empirical models. For example, we expected energy of binary alloy should be 𝐸𝑒𝑥𝑝𝑒𝑐𝑡 = 𝐶𝐴𝐸𝐴 +

𝐶𝐵𝐸𝐵. where 𝐸𝐴 𝐸𝐵 is the chemical potential of pure A and B, 𝐶𝐴 𝐶𝐵 is the composition of A and 

B. Then instead of studying energy of alloy 𝐸, we can study the error between energy 𝐸 and our 

expected energy 𝐸𝑒𝑥𝑝𝑒𝑐𝑡: 𝐸𝑒𝑟𝑟𝑜𝑟 = 𝐸 − 𝐸𝑒𝑥𝑝𝑒𝑐𝑡. 

Since prior expected value for 𝐸𝑒𝑟𝑟𝑜𝑟 is zero and the prior expected value for each ECIs in the 

cluster expansion of 𝐸𝑒𝑟𝑟𝑜𝑟 must also be zero, it is safe to say the mean of the prior distribution 

for the ECIs is zero. 

For intuition 2, since we have assume the mean of prior distribution of ECI is zero, we can 

further assume this distribution is a Gaussian distribution. Then the physical intuition 2 can be 

transformed into: 

P(V⃗⃗ |X) ∝ ∏ e−Vα
2 /2σα

2

α  ( 26 ) 

 

Where 𝑉𝛼 is the 𝛼th element of 𝑉⃗  and 𝜎𝛼
2 is the variance of 𝑉𝛼. 

For intuition 3, we can further assume the distribution of difference of ECIs between similar 

clusters is also Gaussian like: 
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P(V⃗⃗ |X) ∝ ∏ e−(Vα−Vβ)
2/2σαβ

2

α,β≠α  ( 27 ) 

 

Where 2𝜎𝛼𝛽
2  indicates the degree of expected similarity between the two ECIs. Thus for 

equation 

P(V⃗⃗ |X, y⃗ ) =
P(y⃗⃗ |V⃗⃗ ,X)P(V⃗⃗ |X)

P(y⃗⃗ |X)
 ( 28 ) 

 

We have 

P(V⃗⃗ |X) ∝ ∏ e−Vα
2 /2σα

2

α ∏ e−(Vα−Vβ)
2/2σαβ

2

α,β≠α  ( 29 ) 

 

𝑃(𝑦 |𝑋) is a constant with respect to 𝑉⃗ , and 𝑃(𝑦 |𝑉⃗ , 𝑋) is also a Gaussian distribution with zero 

mean as we analyzed in intuition 1. 

P(y⃗ |V⃗⃗ , X) ∝ ∏ e−(yi−x⃗ i∙v⃗⃗ )
2/2σi

2

i  ( 30 ) 

 

We maximize 𝑃(𝑉⃗ |𝑋, 𝑦 ) and thus got the ECIs: 

𝑉⃗ = 𝑎𝑟𝑔𝑚𝑖𝑛 [− ln (𝑃(𝑦 |𝑉⃗ , 𝑋)) − ln (𝑃(𝑉⃗ |𝑋))] 

⁡⁡⁡⁡= argmin [∑
(yi−x⃗ i∙v⃗⃗ )

2

2σi
2i + ∑

Vα
2

2σα
2α + ∑

(Vα−Vβ)
2

2σαβ
2α,β≠α ] ( 31 ) 

The final result would be: 

V⃗⃗ = (XTWX+ 𝛬)−1XTWy⃗  ( 32 ) 

 

Where W is a diagonal weight matrix, Λ is the regularization matrix with elements given by 
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𝛬αα =
σ2

σα2
+ ∑

σ2

σαβ
2β|β≠α  ( 33 ) 

𝛬αβ = 𝛬α = 𝛬β = −
σ2

σαβ
2 ( 34 ) 

Where 𝜎2 is an unknown constant. 

We can better understand the function of Λ through comparison with least square fit:  

 

V⃗⃗ = (XTWX)−1XTWy⃗  ( 35 ) 

We see the regularization matrix input information of physical intuition into fitting process 

which guides the system into the direction of its preference, thus realizes our goal of 

automatically select clusters according to physical intuitions 

For convenience, we define the orbit regularization parameter 𝜆𝛼 =
𝜎2

𝜎𝛼2
, and coupled 

regularization parameter 𝜆𝛼𝛽 = 𝜆𝛽𝛼 =
𝜎2

𝜎𝛼𝛽
2, and Λ becomes: 

𝛬 = (

λα + ∑ λαββ|β≠α −λαβ ⋯

−λβα λβ + ∑ λαββ|β≠α ⋯

⋮ ⋮ ⋱

) ( 36 ) 

 

Actually, if we restrict 𝜆𝛼𝛽 = 0 and 𝜆𝛼 ∈ {0,∞} the process returned to a normal cluster 

expansion, and CV technique can be used to optimize the cluster selection. However, this is a 

process lack of physical insights. In order to have physical intuition helping the cluster selection 

process, we need 𝜆𝛼 and 𝜆𝛼𝛽 as a function of configuration of clusters. This comes the 

generator function of 𝜆𝛼 and 𝜆𝛼𝛽. 

Here we introduce the generator function used for this study.  
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As we have indicated, the 𝜆𝛼 corresponds to intuition 2 and 𝜆𝛼𝛽 corresponds to intuition 3. We 

then find the 𝜆𝛼 should be an increase function of 𝑛 and 𝑟 (number of sites and maximum 

distance between sites) 𝜆𝛼(𝑛, 𝑟).  

Below we will see, just follow the general convergence condition of cluster expansion, physical 

intuition 2 is naturally satisfied. 

The convergence of the cluster expansion can be expressed as: 

For every 𝜀 > 0, there exist {𝑛𝑐𝑢𝑡, 𝑟𝑐𝑢𝑡} such that the expectation value, which mapping over 

all the square of predicted value of very training structure, is smaller than 𝜀 

〈E {[∑ Vb⃗⃗ 𝛷b⃗⃗ (S⃗
 )b⃗⃗ ∉Bcut
]
2

}〉 ⁡< ⁡ε ( 37 ) 

 

Where 𝐵𝑐𝑢𝑡 is the set of all cluster functions dependent on clusters of no more than 𝑛𝑐𝑢𝑡 sites 

and with a distance of no more than 𝑟𝑐𝑢𝑡 from each other. 

Given the number of training structures, this is a general condition that the cluster expansion 

can always reach acceptable accuracy with large enough cutoff  {𝑛𝑐𝑢𝑡, 𝑟𝑐𝑢𝑡}. 

Since the clusters are orthonormal (as in section 2.1) to each other and the mean value of ECIs 

should be 0: 𝐸(𝑉𝑏⃗ ) = 0 

Adding to the condition that the site variable may take discrete values, the convergence of 

cluster expansion can be simplified as: 

For every 𝜀 > 0, there exist {𝑛𝑐𝑢𝑡, 𝑟𝑐𝑢𝑡}, such that: 
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〈∑ δb⃗⃗ 
2

b⃗⃗ ∉Bcut
〉 ⁡< ⁡ε ( 38 ) 

 

Where 𝛿𝑏⃗ 
2 is the variance of the prior distribution of 𝑉𝑏⃗ . 

In the limit of 𝑛𝑐𝑢𝑡 → ∞ and 𝑟𝑐𝑢𝑡 → ∞, if 𝛿𝑏⃗ 
2 decrease more rapidly than the number of 

clusters in 𝐵𝑐𝑢𝑡 increase. The convergence condition stand, and as 𝑟𝑐𝑢𝑡 → ∞, the number of 

clusters in 𝐵𝑐𝑢𝑡 per formular unit is approximately proportional to (𝛾1𝑟𝑐𝑢𝑡)
𝛾2𝑛𝑐𝑢𝑡 

Where 𝛾1 is a scale factor and 𝛾2 depends on the number of periodic dimensions. 

So that: 𝛿𝑏⃗ 
2 ∙ (𝛾1𝑟𝑐𝑢𝑡)

𝛾2𝑛𝑐𝑢𝑡 < 1 

Thus 𝛿(𝑛, 𝑟) have the form of 𝛿(𝑛, 𝑟) = (𝛾1𝑟)
𝛾2𝑛 

More generally 

λα(n, r) = γ1(γ2r + γ3 + 1)
γ4n+γ5 ( 39 ) 

 

Or we can write: 

λα(n, r) = {
γ1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡one⁡point⁡cluster⁡⁡

γ2e
γ3r+γ4n,⁡⁡⁡⁡⁡⁡for⁡clusters⁡larger⁡than⁡one⁡point

 ( 40 ) 

 

We can see here, just following the natural convergence condition of cluster expansion, the 

physical intuition 2 is satisfied. 

For generating 𝜆𝛼𝛽, we basically come with the idea that 𝜆𝛼𝛽 represents physical intuition 3 

and we should decide the degree to which we treated the different cluster functions to be 
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similar. For simplicity of this research, we simply separate the relationship of cluster functions 

into two classes: congruent clusters and non-congruent clusters. 

The congruent clusters are cluster functions for which the non-constant site functions are 

related by an isometry. In details, there must be a way to map the sites of one cluster onto the 

sites of another that preserves all distances and angles between sites. 

If two clusters are not congruent, we simply define them as non-congruent clusters. 

Then just because 𝜆𝛼𝛽 represent the relationship between cluster 𝛼 and cluster 𝛽, we simply 

set: 

𝜆𝛼𝛽 = 0, if 𝛼 and 𝛽 are non-congruent 

𝜆𝛼𝛽 = 𝛾𝑠𝜆𝛼 = 𝛾𝑠𝜆𝛽, if 𝛼 and 𝛽 are congruent. 

So far, to generate 𝜆𝛼 and 𝜆𝛼𝛽, we need to have 6 parameters {𝛾1, 𝛾2, 𝛾3… , 𝛾𝑠} 

And we apply a CV minimization scheme to fit them, that is, using minimization algorithm such 

as congruent conjugate method to find the set of parameters {𝛾1, 𝛾2, 𝛾3… , 𝛾𝑠}. Which minimize 

the CV score of cluster expansions. We can see, compared with normal cluster expansion under 

CV scheme, the searching process is greatly simplified, from a randomly tiral of adding or 

removing clusters into a fitting process of parameters {𝛾1, 𝛾2, 𝛾3… , 𝛾𝑠}. 

2.3 Exact expression for training structure selection 

 

In section 2.1, we see that the variance of the prediction error for a structure S is given by 

𝑠𝑀𝑠𝑇 where M is the convariance matrix and covaiance reduction is 𝑇𝑟(𝑀). 
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For normal cluster expansion with least square fitting 𝑀 = (𝑋𝑇𝑋)−1𝑒2, 

They then applied an assumption of the distribution of randomly selected structure and then 

reach the expression of  

 

E [Var[Ei]] ∝ Tr(M) ( 41 ) 

 

However, since we may not likely to select structure randomly, especially for Bayesian cluster 

expansion, some structures are favored, here, a new process of selecting training structure is 

needed. Tim Muller et all proposed an exact expression of estimate the expected variance of 

prediction error which allows different assumption of distribution of training structure taken 

into account (prior distribution) [14]. 

The main idea of this treatment is that the expected variance for the predicted property value 

for a given population of structure, instead of integral in continues space and comes in the form 

of 𝑇𝑟(𝑀)., can be expressed as: 

〈xMxT〉pop = M: 〈xx
T〉pop ( 42 ) 

 

Where 〈 〉𝑝𝑜𝑝 indicates the average value over all structures in the population and : represent 

Frobenius innder product 𝐴: 𝐵 = ∑ ∑ 𝐴𝑖𝑗𝐵𝑖𝑗𝑗𝑖  And we define 〈𝑥𝑥𝑇〉𝑝𝑜𝑝 to be domain Matrix D. 

Removing the mean square error 𝑒2, we reach a factor 𝜏 = (𝑋𝑇𝑋)−1: 𝐷 for normal cluster 

expansion. 



23 
 

Also, following the fact 𝑀 = (𝑋𝑇𝑋)−1𝑒2 for normal cluster expansion , we can easily comes to 

𝑀 = (𝑋𝑇𝑋 + Λ)−1𝑒2 for Bayesian cluster expansion where Λ−1𝑒2 is the covariance matrix for a 

multivariate Gaussian prior distribution of ECI values. Then 𝜏 = (𝑋𝑇𝑋 + Λ)−1: 𝐷 for Bayesian 

cluster expansion. 

This is a good measurement of how well a given set of training structures reduces prediction 

error. 

If we get the expression for D, we then can undertake a process of structure selection which 

minimize the variance error of predicted energy, just as the same goal in section 2.1. 

Fortunately, in some conditions, with certain prior distribution of structures, specific expression 

for D exist. 

Since 𝐷 = 〈𝑥𝑥𝑇〉𝑝𝑜𝑝, it is natural to write D in the form  

Dαβ = 〈xαxβ〉pop = 〈φα(s)φβ(s)〉pop =
∑ ∑ 〈φb(s)φb′(s)〉popb′ϵβb∈α

NαNβ
 ( 43 ) 

 

Where 𝑁𝛼 and 𝑁𝛽 are the number of cluster functions in orbits 𝛼 and 𝛽. 

 

Given prior distribution of structures, such form can be transformed into simplified form. For 

example, for the interest of the study, where not all structures are of equal interest, we make 

an assumption that all included cluster functions are dependent on a finite number of sites and 

the crystal has infinite periodicity. Since the overlap between clusters are vanishingly small 

relative to the size of 𝑁𝛼𝑁𝛽, in the crystal limit with infinite periodicity, we can in effect regard 
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all clusters are independent with each other. Thus  

𝐷𝛼𝛽 =
∑ ∑ 〈𝜑𝑏(𝑠)𝜑𝑏′(𝑠)〉𝑝𝑜𝑝𝑏′𝜖𝛽𝑏∈𝛼

𝑁𝛼𝑁𝛽
=
∑ ∑ 〈𝜑𝑏(𝑠)〉𝑝𝑜𝑝〈𝜑𝑏′(𝑠)〉𝑝𝑜𝑝𝑏′𝜖𝛽𝑏∈𝛼

𝑁𝛼𝑁𝛽
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
NαNβ〈φb(s)〉pop〈φb′(s)〉pop

NαNβ
= 〈xα〉pop〈xβ〉pop ( 44 ) 

 

For the sought of binary alloy systems, where only allowed value for site variable are +1 and -1, 

we can see 〈𝑥𝛼〉𝑝𝑜𝑝 = (2𝑐 − 1)
𝑁𝛼, where 𝑐 is the concentration thus 

Dαβ = (2c − 1)
Nα+Nβ ( 45 ) 

 

Practically, knowing Domain Matrix of a system, we can estimate expectation error 𝜏 of any 

known training set. With such target parameter, optimized training set can be found using 

minimization algorithm such as simulated annealing. 

3. Proposal of lattice parameter dependent cluster expansion 

 

3.1 Problem statement 

 

Above we review the basic context and current progress of cluster expansion method, applied 

in DFT-CE-MC process. As we introduced in section 1, a process of studying thermodynamic 

properties of large supercell structures is established. Compared with high-throughput DFT 

computation which also showed ability in predict new structures, DFT-CE-MC process brought 

an advantage of inexpensive computation effort and the ability to study system with long scale 

periodic. For example, for studying high entropy alloy, a large supercell is required in order to 



25 
 

allow enough degree of freedom for configuration change [15]. High through-put DFT can not 

deal with this since its ability in studying large scale structures is limited. Another example is in 

low symmetry (low dimensional) systems such as surface or nanoparticles. Since the expense of 

DFT increase greatly when periodic in some dimensions are broken, the computation expense 

in calculating large scale structure of low dimensional system is unaffordable. 

However, DFT-CE-MC process also has its own shortages. One of them, which we will mainly 

cover in this thesis is the limitation of this process in studying strain effects. Especially for the 

case where strain effect can be accurately predicted through known rules (such as quadratic 

rules), but since parameters of the rule is different for different structure, cluster expansion can 

not give Hamiltonian with different strains. Thus a MC simulation with consideration of strain 

effect is impossible.  

Current solution to this problem is collect another collection of training data(same amount as 

with non-strain training data) using DFT if new strain is taken into account. As DFT calculation is 

the most expensive step of the whole DFT-CE-MC process. Calculation of structures with strain 

effect in consideration is a rather expensive process. 

The bad news is that, current progress in alloy catalyst demand this calculation for a reason of 

mismatch of composition between surface and bulk region of catalyst. The reason of this 

composition mismatch is due to the chemical environment of catalyst and specific properties 

difference between surface region and bulk region as we have indicated in section 1. This effect 

may provide promising new catalyst structures experimentally, however, computational it 

result in severe problems. 
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For DFT calculation, different composition will result in different lattice parameters of DFT 

ground state structures. However, in reality, the surface area will experience a strain compared 

with their ground state lattice parameters in order to match the lattice parameter of bulk 

region, and resulting an energy shift compared with DFT result. For the purpose of our study, 

we basically use slab structures to model surface and the lattice parameter of those structures 

should be fixed to the bulk lattice parameters, instead of using their own ground state lattice 

parameters directly from by DFT molecular dynamic result.  Since there are a range of bulk 

lattice we are interested in, DFT result for different lattice parameters for the same slab 

structure should be provide, which greatly expand our calculation amount and is practical. 

As the convention DFT-CE-MC approach with strain effect in consideration is awkward and 

expensive. Aside that high throughput DFT calculation meet difficulty with computation 

expense for low dimensional system. Computational study of composition shift of catalyst 

surface became a difficult problem. 

A possible approach is to only consider a small region of composition shift where the strain 

effect is so small that can be ignored. This comes the work of Liang Cao et al [16]. In their study, 

with experimental result that Ni3Pt skeleton structure is favored, they scanned a small region 

of composition shifted around Ni3Pt and using DFT-CE-MC process studied the ground states 

and catalyst activity map under a grand canonical ensemble, indicating the power of DFT-CE-MC 

approach. 

Here, in this thesis, we propose that, with a small modification of cluster expansion method, 

information of prediction rule such as quadratic rule can become input data and a lattice 
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parameter dependent cluster expansion method is available for DFT-CE-MC approach, which 

solve the current difficulty we meet in surface alloy catalyst study with consideration of 

composition shift. 

3.2 Method Proposal 

 

The basic idea of lattice parameter dependent cluster expansion is that ECIs can not only 

contain information of energies related with configuration, but also energies related with 

strains. 

A hint is that in small region of parameter change (in-plane strain), the formation energy of 

alloy surface follows a quadratic rule. Then, if we force our ECIs to obey such a rule with respect 

to strains, it is possible to predict energies of different strain sets through cluster expansion 

method. 

Below we will firstly look over this quadratic strain rule in DFT result, and then proposed a 

scheme to set this rule as input information into cluster expansion method. 

3.2.1 Quadratic Strain rule of DFT energy 

 

In the theory of linear elasticity, the elastic stress-strain response in solid is normally described 

with up to second-order elastic constant, which means the Taylor expansion expression of 

energy-strain relationship is truncated up to the second order, namely, the quadratic rule [17]. 

The quadratic rule stands when strains are small enough so that effect of higher-order elastic 

constants can be ignored. Generally, when strain is larger than 5%, for alloy, third-order elastic 
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constant should be taken into account. Thus it is necessary to test the goodness of quadratic 

rule for the system we are interested in. 

For the purpose of testing quadratic strain rule of DFT energy of surface alloy, we calculated the 

energy of a slab model of AuPd2 alloy (with FCC lattice structure) under different strain sets.  

The DFT calculation is implemented with VASP package and PBE projector-augmented 

wave(PAW) exchange-correlation functional [18, 19]. The Brillouin zone was sampled with a 

12 × 12 × 1 Monkhorst-Pack k-point mesh for 4 × 4⁡(111) cell calculations. The calculation is 

undertaken with normal precise and the convergence criteria for the electronic self-consistent 

iteration and the ionic relaxation loop were set to be 10−4⁡𝑒𝑉 and 10−3⁡𝑒𝑉 eV, respectively. 

The model used in this calculation is 7 layers of slab of (111) face. For the supercell used in 

calculation, the slab has periodic boundary condition along (111) face and is separated by a 

20𝐴̇ vacuum along [111] direction so that the interaction between the two surfaces of the slab 

is small enough during the calculation. 

The strain set for of choice in this test is as follows: 

Base Structure Pd Pd3Au PdAu PdAu3 Au 

Lattice Parameter(𝐴̇) 3.9115 3.9616 4.0116 4.0617 4.1118 

Strain Compared with Original 

Lattice Parameter 

-0.01678 

 

-0.00419 

 

0.00839 

 

0.02097 

 

0.03356 

 

 

Where we select 5 values of composition as base structure composition, and force the Pd-Au 

slab we have to match the equilibrium lattice parameters (also calculated by DFT) of these base 
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structure. As showed in above table, the strain sets are within 5%(small strain sets) where the 

quadratic rule is expected to stand. 

The fitting result is showed in the figure below, the p-value for the quadratic fitting is 

5.08 × 10−6, which is very small, indicating the quadratic model is well accepted. 

 

Fig 3.1 Quadratic fitting test of energy-strain relationship 

 

This result suggests, for small strain sets, the truncation to second order term of Taylor 

expansion is accurate enough. Thus it is safe to consider the strain-stress response only with 

second-order elastic constant. 

3.2.2 Lattice parameter dependent cluster expansion 

 

Above, we have check that the quadratic rule works well in the surface system we are 

interested in. We need to input this information into cluster expansion approach. 

Considering the idea of forcing the ECIs following the quadratic rule, basically, we have 2 choice: 
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1. Force every cluster following the same rule as in total energy 

2. Fitting ECIs of clusters independently so that each cluster obeys the quadratic rule with 

its own parameters 

The first choice is quite straightforward and easy to undertake, but without much value. Since 

different structures obey different quadratic rules, if we apply the same rule to all ECIs, every 

time we change our structures, the rule of ECIs will also change. This means we can not use the 

same set of ECIs for all possible strains within our region of interest. 

What we actually need is to store the quadratic rule information in the ECIs, so that expanding 

our space of configuration with a new dimension with respect to strains, which comes the 

second choice. Now we makes an assumption that if certain sets of ECIs and their specific 

quadratic rule with respect to strain was found, the total system of configuration space(with 

strain axis) can be estimated accurately. 

Below, we will do two things to verify this assumption: 

1. Theoretically analyze 

2. Implementing this idea and see if it works. 

3.2.2.1 Theoretically analyze 

 

What we want to do is to expand input matrix X 3 times  

Xnew = (X|SX|S
2X) ( 46 ) 
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Where 𝑆 is the in-plane strain 𝜖 we applied isotropically  on the slab structure. Practically, we 

can also use the expression of 𝑆 = 𝜖 + 1, which will guarantee that the expanded term is not 

ignorable. 

Xnew = [

xiα xiβ xiγ ⋯
xjα xjβ xjγ ⋯
xkα xkβ xkγ ⋯

⋮ ⋮ ⋮ ⋱

|

Sxiα Sxiβ Sxiγ ⋯

Sxjα Sxjβ Sxjγ ⋯

Sxkα Sxkβ Sxkγ ⋯

⋮ ⋮ ⋮ ⋱

|

S2xiα S2xiβ S2xiγ ⋯

S2xjα S2xjβ S2xjγ ⋯

S2xkα S2xkβ S2xkγ ⋯

⋮ ⋮ ⋮ ⋱]
 
 
 
 

 ( 47 ) 

Then we use this new matrix as input matrix and applied it into least square fitting process. 

V⃗⃗ = (XTX)−1y⃗  ( 48 ) 

 

Assume the total number of cluster functions of a convention cluster expansion is N, then we 

can view the configuration space of cluster functions to be a N dimensional Dirac space where 

each coordinate is orthogonal to one another. 

As indicated in section 2.1, we see the cluster functions are orthogonal between each other, so 

that the least square fitting of ECIs is actually a fitting of a line in a Dirac space with N 

orthogonal axis. 

We can consider our expansion of input matrix equal to adding up 2N more freedom where 

each index of new freedom is 𝑆𝑥, or 𝑆2𝑥. 

Here is the question that after adding new 2N axis, if the configurational space is still Dirac 

(coordinates are orthogonal to each other) so that the least square fitting process is still the 

same as before? 

Actually this is easy to analyze, since 
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〈ϕαs, ϕβs′〉 = δαβδss′ ( 49 ) 

 

We have: 

〈ϕαs, Sϕβs′〉 = ∫ SdS = 0
a

−a
 ( 50 ) 

 

〈ϕαs, S
2ϕβs′〉 = ∫ S2dS = k

a

−a
δαβδss′ ( 51 ) 

 

〈Sϕαs, S
2ϕβs′〉 = ∫ S3dS = 0

a

−a
 ( 52 ) 

 

Note that the expressions above stand only when the strain sets are choose mirror 

symmetrically around 0.  

Since 〈𝜙𝛼𝑠, 𝑆
2𝜙𝛼𝑠〉 = 𝑘𝛿𝛼𝛼𝛿𝑠𝑠 = 𝑘, where 𝑘 is a constant known as overlap integrals, 

𝜙𝛼𝑠, 𝑆
2𝜙𝛽𝑠′ are not orthogonal to each other, so that our new basis is non orthogonal. In this 

case, although the basic least-square fitting  process works, we should be careful when applying 

some specific technique based on  orthogonal basis. For example, if the amount of our training 

set is very large, we can see our matrix of 𝑋𝑇𝑋 can be view as diagonal matrix: 

XTX = [

∑ xiαxiα
N
i ∑ xiαxiβ

N
i ⋯

∑ xiβxiα
N
i ∑ xiβxiβ

N
i ⋯

⋮ ⋮ ⋱

]
N→∞

→  [
1 0 ⋯
0 1 ⋯
⋮ ⋮ ⋱

] ( 53 ) 

 

However, after we expand the input matrix of 𝑋, since some of the basis function is not 

orthogonal with each other, the situation is different: 
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𝑋𝑇𝑋 = 

[
 
 
 
 
 
 
 
 
 
 
∑ xiαxiα
N
i ∑ xiαxiβ

N
i ⋯ ∑ xiαSxiα

N
i ∑ xiαSxiβ

N
i ⋯ ∑ xiαS

2xiα
N
i ∑ xiαS

2xiβ
N
i ⋯

∑ xiβxiα
N
i ∑ xiβxiβ

N
i ⋯ ∑ xiβSxiα

N
i ∑ xiβSxiβ

N
i ⋯ ∑ xiβS

2xiα
N
i ∑ xiβS

2xiβ
N
i ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱
∑ Sxiαxiα
N
i ∑ Sxiαxiβ

N
i ⋯ ∑ S2xiαxiα

N
i ∑ S2xiαxiβ

N
i ⋯ ∑ S3xiαxiα

N
i ∑ S3xiαxiβ

N
i ⋯

∑ Sxiβxiα
N
i ∑ Sxiβxiβ

N
i ⋯ ∑ S2xiβxiα

N
i ∑ S2xiβxiβ

N
i ⋯ ∑ S3xiβxiα

N
i ∑ S3xiβxiβ

N
i ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱
∑ S2xiαxiα
N
i ∑ S2xiαxiβ

N
i ⋯ ∑ S3xiαxiα

N
i ∑ S3xiαxiβ

N
i ⋯ ∑ S4xiαxiα

N
i ∑ S4xiαxiβ

N
i ⋯

∑ S2xiβxiα
N
i ∑ S2xiβxiβ

N
i ⋯ ∑ S3xiβxiα

N
i ∑ S3xiβxiβ

N
i ⋯ ∑ S4xiβxiα

N
i ∑ S4xiβxiβ

N
i ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ]
 
 
 
 
 
 
 
 
 
 

N→∞
→   

[
 
 
 
 
 
 
 
 
1 0 ⋯ 0 0 ⋯ k1 0 ⋯
0 1 ⋯ 0 0 ⋯ 0 k1 ⋯
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱
0 0 ⋯ k1 0 ⋯ 0 0 ⋯
0 0 ⋯ 0 k1 ⋯ 0 0 ⋯
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱
k1 0 ⋯ 0 0 ⋯ k2 0 ⋯
0 k1 ⋯ 0 0 ⋯ 0 k2 ⋯
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱]

 
 
 
 
 
 
 
 

 ( 54 ) 

Thus the 𝑋𝑇𝑋 is no longer diagonal matrix. Note that since 𝑋𝑇𝑋 matrix expand 3 times in each 

direction, the 𝑦  vector will also expand 3 times, i.e. the size of our training data need to expand 

3 times for normal cluster expansion. For Bayesian cluster expansion, since the number of 

training structures do not need to be equal or larger than the number of clusters included, it is 

not necessary to expand the size of training data accordingly. 

After we get ECIs through fitting process,  the final expression for cluster expansion will just 

remain the same: 

F(s ) = ∑ (V
b⃗⃗ 
(0)
𝛷b⃗⃗ + Vb⃗⃗ 

(1)
𝑆𝛷b⃗⃗ + Vb⃗⃗ 

(0)
S2𝛷b⃗⃗ )b⃗⃗  ( 55 ) 

 

Where we see every cluster is fitted to its unique quadratic rule, and the ECIs can be viewed as 

fitting parameters. 

For Bayesian approach 
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V⃗⃗ = (XTX + 𝛬)−1y⃗  ( 56 ) 

 

We also need to know the expression of Λ after we expands the input matrix, the method to do 

this is quite straightforward: 

Since 𝑋𝑇𝑋 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑥𝑖𝛼𝑆𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛼𝑆𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑥𝑖𝛼𝑆
2𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛼𝑆
2𝑥𝑖𝛽

𝑁

𝑖

⋯

∑𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑥𝑖𝛽𝑆𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛽𝑆𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑥𝑖𝛽𝑆
2𝑥𝑖𝛼

𝑁

𝑖

∑𝑥𝑖𝛽𝑆
2𝑥𝑖𝛽

𝑁

𝑖

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱

∑𝑆𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆2𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆2𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆3𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆3𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯

∑𝑆𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆2𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆2𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆3𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆3𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱

∑𝑆2𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆2𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆3𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆3𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆4𝑥𝑖𝛼𝑥𝑖𝛼

𝑁

𝑖

∑𝑆4𝑥𝑖𝛼𝑥𝑖𝛽

𝑁

𝑖

⋯

∑𝑆2𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆2𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆3𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆3𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯ ∑𝑆4𝑥𝑖𝛽𝑥𝑖𝛼

𝑁

𝑖

∑𝑆4𝑥𝑖𝛽𝑥𝑖𝛽

𝑁

𝑖

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If we assume 𝐴 = [

∑ 𝑥𝑖𝛼𝑥𝑖𝛼
𝑁
𝑖 ∑ 𝑥𝑖𝛼𝑥𝑖𝛽

𝑁
𝑖 ⋯

∑ 𝑥𝑖𝛽𝑥𝑖𝛼
𝑁
𝑖 ∑ 𝑥𝑖𝛽𝑥𝑖𝛽

𝑁
𝑖 ⋯

⋮ ⋮ ⋱

] 

We can simplified the expression into 

XTX = [
A SA S2A

SA S2A S3A

S2A S3A S4A

] ( 57 ) 
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We can see the matrix of 𝑋𝑇𝑋 can be divided into 9 block and each block can be expressed as 

𝑆𝑥𝐴, where 𝑥 = {0,1,2,3,4}. Since the regularization matrix Λ contains the information of prior 

distribution which gives each element in 𝑋𝑇𝑋 a weight during the the accumulate process of 

(𝑋𝑇𝑋 + Λ)−1𝑦 , it is safe to assume that for every block of 𝑋𝑇𝑋, the regularization matrix Λ 

should be approximately the same: 

𝛬new = [
𝛬 𝛬 𝛬
𝛬 𝛬 𝛬
𝛬 𝛬 𝛬

] ( 58 ) 

 

Another option is that, since 𝑆𝑥 and 𝑆2𝑥 are also orthogonal axis in configuration space, we 

may treat the prior distribution of 𝑆𝑥 and 𝑆2𝑥 different from 𝑥, but not too much different. We 

can assign order of stains with a new parameter times the initial elements in regularization 

matrix then: 

  

𝛬new = [

κ0κ0𝛬 κ0κ1𝛬 κ0κ2𝛬
κ0κ1𝛬 κ1κ1𝛬 κ2κ1𝛬
κ0κ2𝛬 κ1κ2𝛬 κ2κ2𝛬

] ( 59 ) 

 

Then we will add 3 new parameters together with the parameters {𝛾1, 𝛾2, 𝛾3… , 𝛾5, 𝛾𝑠} for 

generating regularization matrix Λ. Since we basically use conjugate gradient method searching 

for these parameters minimizing CV score, we do not need to worry about the influence it may 

cause to our searching process when adding 3 new parameters. 

3.2.2.2 Implementing of the method 
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Above we have theoretically analyzed the validity of this treatment, now we will implement this 

method into practical study and see if it works. 

We basically implement this idea in Bayesian cluster expansion based on the source code 

<matsci> written by Dr. Tim Mueller. Below, we firstly explain the structure of <matsci> and 

then show how we add our new method into it. 

 

Since the process of building cluster functions are quite standard and we do not need to modify 

it in this research, here we basically explain the fitting process of <matsci>, excluding the cluster 

expansion building process. 

After the cluster expansion is built for the training set, we have input matrix 𝑋 where each line 

contains the value of cluster functions belonging to the same structure and each column 

contains value of same cluster function in different structures.  

Also we have array of formation energy of each structure in the training set, calculated by DFT, 

𝑦 . 

Then, the regularization matrix Λ is generated using the generating function: 

𝜆𝛼(𝑛, 𝑟) = {
𝛾1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑜𝑛𝑒⁡𝑝𝑜𝑖𝑛𝑡⁡𝑐𝑙𝑢𝑠𝑡𝑒𝑟⁡⁡

𝛾2𝑒
𝛾3𝑟+𝛾4𝑛,⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠⁡𝑙𝑎𝑟𝑔𝑒𝑟⁡𝑡ℎ𝑎𝑛⁡𝑜𝑛𝑒⁡𝑝𝑜𝑖𝑛𝑡

 

𝜆𝛼𝛽 = 0, if 𝛼 and 𝛽 are non-congruent 

𝜆𝛼𝛽 = 𝛾𝑠𝜆𝛼 = 𝛾𝑠𝜆𝛽, if 𝛼 and 𝛽 are congruent. 
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Where 𝑛 is the number of atoms in a cluster,⁡𝑟 is the scale of cluster. {𝛾1, 𝛾2, 𝛾3… , 𝛾4, 𝛾𝑠}  are 

unknown parameters we need to find. 

We give an initial guess of 5 parameters and the ECIs then can be calculated through  

 

V⃗⃗ = (XTWX)−1XTWy⃗  ( 60 ) 

 

and the estimated energy should be 

E = ∑ Vb⃗⃗ 𝛷b⃗⃗ b⃗⃗  ( 61 ) 

 

The CV score then can be calculated through 

(CV)2 = n−1∑ (Ei − E(i))
2n

i=1  ( 62 ) 

 

This whole process can be viewed as a large function 

(CV)2 = f(γ1, γ2, γ3… , γ4, γs) ( 63 ) 

 

And with a conjugate gradient method in order to find the exact value of the parameters which 

minimize the CV score. The satisfactory ECIs can be calculated. 

For the implementation of lattice parameter dependent cluster expansion, we just need to 

change the generate function of 𝑋 and Λ so that allow them expand in the form of  

Xnew = (X|SX|S
2X) ( 64 ) 
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𝛬new = [

κ0κ0𝛬 κ0κ1𝛬 κ0κ2𝛬
κ0κ1𝛬 κ1κ1𝛬 κ2κ1𝛬
κ0κ2𝛬 κ1κ2𝛬 κ2κ2𝛬

] ( 65 ) 

 

And put into function of  

 
(CV)2 = f(γ1, γ2, γ3… , γ5, γs) ( 66 ) 

 

Which yields a new function of 

(CV)2 = f(γ1, γ2, γ3… , γ5, γs, κ0, κ1, κ2) ( 67 ) 

 

With this single treatment, a normal cluster expansion process will become cluster expansion 

with lattice parameter dependents. 

3.3 Method test 

3.3.1 generating training structures 

 

The training structures are generated following the context we mentioned in section 2.3, where 

a minimization algorithm was applied in order to find training structures minimize the 

parameter 𝜏.  

In details, firstly a prim cell of the supercell we are interested was built manually. Such cell is 

basically a 1 × 1 cell of an FCC slab structure with surface along (111). Then the prim cell is 

expanded into supercells with randomly selected miller index along (111) plane. Finally, each 

site in the supercell is decorated with elements of the binary alloy. For the purpose of this study, 

sites are decorated following a mirror symmetry along the middle layer of the slab, so that the 
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middle layer will be in a symmetrical environment and behaves much similar with bulk region. 

When each structure is generated this way, it will then experience a test controlled by a 

minimization algorithm, to see if adding this new structure to training set can help minimize the 

parameter 𝜏. If the structure is rejected, then the above process will be repeat, until enough 

training structures are collected. At last, the training structures were then applied with an in-

plane strain selected from our strain sets of choice. (see Fig 3.2 for an example of structures). 

 

Fig 3.2 Left: side view of an example structure in training set. 

Right: top view of the example structure and the strains applied 

In practice, we mainly tested our method with 2 systems: 

1. Au-Pd (111) slab(7 layers) with up to monolayer of oxygen adsorption 

2. Ni-Pt (111) slab(7 layers) with up to monolayer of oxygen adsorption 

Au-Pd system with oxygen adsorption: 

Since DFT calculation of Au-Pd (111) slab have the most accurate result among these 3 systems, 

we firstly test this system. Only if the test for this system passed, can we go through the 

remaining systems. A problem here is that when oxygen coverage is high, surface 
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reconstruction may happen resulting from the interaction between oxygen atoms and alloy slab. 

In order to avoid this effect, the coverage of oxygen is limited to lower than 1/3 of all FCC sites 

on surface, through which the results passed our test of quadratic rule. 

The model we used for this system is 7 layers of slab of (111) face. For the supercell used in 

calculation, the slab has periodic boundary condition along (111) face and is separated by a 

20𝐴̇ vacuum along [111] direction so that the interaction between the two surfaces of the slab 

is small enough during the calculation.  

The composition range of our study is from 1:1 to 0:1 for the ratio of Au:Pd, which is to say, we 

scan through all Pd rich compositions. 

The strain set we used for this test is the equal distance strain set as in section 3.2.1 

Base Structure Pd Pd3Au PdAu PdAu3 Au 

Lattice Parameter(𝐴̇) 3.9115 3.9616 4.0116 4.0617 4.1118 

Strain Compared with Original 

Lattice Parameter 

-0.01678 

 

-0.00419 

 

0.00839 

 

0.02097 

 

0.03356 

 

 

The DFT calculation is implemented with VASP package and PBE projector-augmented 

wave(PAW) exchange-correlation functional [19, 20, 18]. The Brillouin zone was sampled with a 

12 × 12 × 1 Monkhorst-Pack k-point mes. The calculation is undertaken with normal precise 

and the convergence criteria for the electronic self-consistent iteration and the ionic relaxation 

loop were set to be 10−4⁡𝑒𝑉 and 10−3⁡𝑒𝑉 eV, respectively. For the molecular dynamic part, we 

fixed the strained lattice parameters of the structure and relaxed the sites within lattice.  
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We firstly calculated training data of 700 structures with 140 different supercells. For the same 

supercell, 5 different in-plane strains as listed above were applied to resize the supercell along 

(111) face. After cluster expansion fitting, we have successfully reached an accuracy of LOOCV 

score (leave one out cross-validation score) per atom to be: 5.973 × 10−4eV/atom, which is 

quite small and meet our requirement, where if we do not use lattice parameter dependent 

cluster expansion but use a normal cluster expansion, the LOOCV score per atom will reach a 

value as high as 0.0127eV/atom, which is not acceptable. 

Next, we randomly selected 100 training data from the pool of 700 training data and with the 

help of lattice parameter dependent cluster expansion, the LOOCV score per atom will be 

0.001011eV/atom, which is still acceptable. 

Ni-Pt system with oxygen adsorption: 

After successfully passed the test for system 1, we then undertake the test of the second 

systems. The difficulty of calculating this system is that since Ni-Pt is magnetic materials, we 

should take spin effect into account during our DFT calculation, which results in a decrease of 

accuracy for DFT calculation and the quadratic rule may be hindered. For the purpose of 

increasing accuracy, we used RPBE functional here instead of PBE functional we used for Au-Pd 

system [19, 20]. 

The model we used for this system is just the same as in system 1, but with sites decorated by 

Ni and Pt. And the composition we scan through should be Pt rich. 



42 
 

Here, we changed the strain set to the one we truly want to apply: just randomly generate 

strains in the range of (-0.03 0.03). This strain set was then applied to Ni-Pt with oxygen 

adsorption. 

We calculated the training data of 100 different training structures applied with random in-

plane strains. After cluster expansion fitting, LOOCV score per atom is 0.006961eV/atom, still 

acceptable for us. 

4. Application of lattice parameter dependent cluster expansion(LPDCE) 

 

4.1 LPDCE in studying Ni-Pt catalyst  

 

As we have seen, LPDCE works perfect in Ni-Pt-oxygen system under small stain range. Here we 

introduced a process of studying catalyst properties through DFT-LPDCE-MC approach. 

The most important thing we want to know for analyzing equilibrium state of a system in given 

temperature is the relationship of chemical potential, formation energy, composition and 

configuration. With this information, all other thermodynamic properties can be easily derived. 

For example, the Gibbs energy-composition graph can be derived since chemical potential 

difference of alloy elements such as Ni Pt at certain composition is the slope of Gibbs energy-

composition curve at that composition point. And once we have the Gibbs energy graph, phase 

diagram can be generated using a convex-hull technique [21]. Another example is that the 

adsorption energy of oxygen ∆𝐸𝑂 can be obtained from the difference of formation energy 

between Ni-Pt slab and Ni-Pt slab with oxygen adsorption. The catalyst activity can then be 

analyzed using a volcano plot technique [16]: 
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activity = 𝑚𝑖𝑛⁡(−0.297 + 0.5 × (∆EO − 1.806), −0.297 + 0.53 × (1.806 − ∆EO))(eV) ( 68 ) 

 

Thus we can build a connection of chemical potential activity, composition and configuration. 

Undertaking a searching for equilibrium states for optimized activity would be possible. 

Good news is that this relationship of chemical potential, formation energy and configuration 

can be built through a Grand Canonical Monte Carlo simulation [22]. 

Grand Canonical Monte Carlo simulation is Monte Carlo simulation based on Grand Canonical 

ensemble which allows composition of the system to change. Since adding or removing atoms 

will result in energy shift with a value of the chemical potential of that atom. The chemical 

potential is essential in building partition function and probability of a state: 

𝛯 = ∑ 𝑒𝑥𝑝⁡[−βEi + βμN]i,N  ( 69 ) 

 

P(Ai) =
1

𝛯
(Ai𝑒𝑥𝑝⁡[−βEi + βμN]) ( 70 ) 

 

Practically, we can manually set chemical potential window and study the equilibrium 

composition and configuration with this chemical potential window. Then, we undertake a 

series of Grand Canonical Monte Carlo simulation with chemical potential mapped through the 

range we are interested and finally get the map of chemical potential-composition-formation 

energy-configuration of interest. 
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The Grand Canonical Monte Carlo simulation requires the formation energy 𝐸𝑖 should allow 

composition shift. Normal cluster expansion fails accurately estimating this, and LPDCE works 

well in this, thus allows the whole system to be accessible. 

4.2 Future extension of LPDCE 

 

We still haven’t fully explored the potential of the exiting idea of LPDCE in this thesis, there are 

2 possible choices of extending this method in the future: 

1. Consider not only quadratic rules, but also the effect of higher order elastic constant 

2. Consider not only in-plane strain, but also a 3D strain tensor 

Extending method in the first way will enable elastic analyze of large strain sets. Note that the 

strain should still be within elastic limits, since in inelastic region, lattice structure may not 

remain the same. 

Extending method in the second way will enable analyzing of structures under more complex 

mechanical environment, such as twist and bend. This would be helpful for studying the 

behavior of low dimensional materials (nanotube, surface) in nano-machine or piezoelectric 

devices. 
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