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Abstract

African-Americans experience higher incidences of death and disability com-

pared to non-Hispanic whites. Much of the existing research has focused on

identifying the existence of health disparities, as methodological issues have

hampered the development of health disparities research. In order to create

solutions to eliminate health disparities, researchers must understand the mech-

anisms powering their existence.

Existing causal inference tools are not suitable for studying racial health dis-

parities because race cannot be manipulated or changed, which makes it difficult

to define appropriate counterfactuals. For the same reason, mediators stand to

be useful in creating avenues to intervene on existing health disparities. Struc-

tural equation modeling (SEM) may be a more promising tool for quantifying

the causal framework of health disparities and assessing mediation, viewed as

the indirect effect.

One of the most widely-used tests for assessing mediation is the Sobel test

(Sobel, 1982; MacKinnon et al., 2007). However, it has disadvantages, which

include low power, particularly at smaller sample sizes. Therefore, this work
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focuses on three varying methods for assessing mediation and compares their

performance to the Sobel test.

The first method is an adjustment of the Sobel test that accounts for the

random nature of the mediator when estimating standard errors. The second

method utilizes the joint distribution of the mediator and the outcome to deter-

mine the profile likelihood for the estimands of interest, which is then used to

define an approximate, asymptotic distribution for the indirect effect. Finally,

the third method utilizes Bayesian modeling techniques to fit the structural

equation models and assess the indirect effect.

Each method was assessed through simulations. All three methods demon-

strated comparable estimated statistical power when compared to the Sobel

test, often showcasing superior power at smaller sample sizes. Each method

serves as a new tool of inference into the presence of mediation.

The methods were applied to assess whether caloric intake mediates the re-

lationship between race and blood pressure in non-Hispanic black and white

subjects in the National Health and Nutrition Examination Survey (NHANES)

from 1999-2004.

Advisor: Charles Rohde, Ph.D.

Readers: Karen Bandeen-Roche, M. Daniele Fallin, Roland J. Thorpe, Jr.
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Chapter 1

Introduction

1.1 Health Disparities

Disparities in morbidity and mortality exist between various subgroups of the

United States population. For instance, African-Americans tend to exhibit

higher incidences of disease and disability compared to non-Hispanic whites.

They also tend to experience earlier onset and greater severity of diseases such

as hypertension (Thorpe Jr. et al., 2012), as well as decreased life expectancies

(Gillespie and Hurvitz, 2013).

There are various methodological issues that have hampered progress in

health disparities research across various health outcomes. One example is the

confounding of race and socioeconomic status. Racial status in the United

States, particularly African-Americans, is an important determinant of the life

course. However, minorities, particularly African-Americans, tend to have lower

income and less education than non-Hispanic whites.

Much of the research regarding health disparities has focused on detecting
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disparities in health outcomes. The public health community has done little

to investigate the mechanisms and operations that power the experience health

disparities in African-Americans. It is imperative that researchers understand

the reasons for health disparities in order to create effective interventions to

eliminate them.

A variable that might provide more insight into health disparities is residen-

tial segregation, or the physical separation of subgroups of the population into

distinct residential areas. Oftentimes, African-Americans live in separate areas

that have adverse aspects, affecting variables such as access to health care and

diet.

In addition to studying residential segregation, understanding the mecha-

nisms behind health disparities involves inference into the causal framework of

health disparities. Such inquiry requires more complex methods beyond esti-

mating associations. Causal inference tools are ill-equipped to perform inference

into health disparities, particularly because racial status is seen as fixed and un-

able to be randomized or manipulated. Additionally, defining counterfactuals for

racial status is problematic. As a result, structural equation modeling, or SEM,

may be more useful in understanding the causal framework of health disparities.

Structural equation modeling allows researchers to incorporate a hypothesized

causal framework, convert it into a statistical model, utilize known associations

between variables, and test the significance of various pathways.

With such a tool, researchers may be able to detect mediating variables in the
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health disparities framework. This is especially important for health disparities

research involving unchanging “exposures", such as race and sex. Identifying

mediators may provide variables to intervene upon to attenuate and/or elim-

inate existing health disparities. In addition, identifying mediators will allow

researchers to perform more accurate research when modeling frameworks in

the future.

1.2 Mediation Analysis

For the purposes of this work, mediation is defined as the presence of a variable

in a causal relation such that the exposure causes the variable which then causes

the outcome (MacKinnon et al., 2007). In their landmark paper, Baron and

Kenny (1986) define the causal steps approach of assessing mediation, which

require the association between the exposure and the outcome to be smaller

when accounting for mediation compared to when it is not, as well as the exis-

tence of various significant associations, in order to conclude that mediation is

occurring. The Sobel test has been utilized to assess the difference in associa-

tions. However, the Sobel test has disadvantages such as low power, particularly

at smaller sample sizes, and what may be an inaccurate representation of the

proposed mediator.

There are additional methods of mediation analysis beyond the Sobel test.

Methods of mediation analysis that utilize bootstrapping exist. However, es-

timates obtained from bootstrapping are not as efficient as estimates obtained
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from likelihood-based methods when the parametric assumptions are correct.

1.3 Overview

The purpose of this work is to create various likelihood-based methods of as-

sessing mediation that are tailored to the use of structural equation modeling,

particularly to be used for assessing mediation in health disparities research.

In Chapter 4, three different methods of assessing mediation are presented.

The first method is an adjustment to the Sobel test that incorporates the ran-

dom nature of the mediator in the estimation of the standard errors of the

estimands of interest used to assess the indirect effect. The second method uti-

lizes the joint distribution of the proposed mediator and the outcome to obtain

profile likelihoods for the estimands of interest. The profile likelihoods are then

used to define an approximate, asymptotic distribution for the estimate of the

indirect effect, which can be used to generate a hypothesis test, 95% confidence

interval, and various likelihood intervals. The third method uses Bayesian meth-

ods to fit the structural equation models. The model then provides draws from

the posterior distribution of the estimands of interest that are used to create

posterior draws for the indirect effect. From the posterior draws, mediation is

assessed using quantile estimation.

All three methods are assessed through simulations. The adjusted Sobel

test returned comparable estimated statistical power as the traditional Sobel
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test, often returning superior estimated power at smaller sample sizes. The

profile likelihood also produced comparable estimated power to the Sobel test,

with slightly higher power at smaller sample sizes. Additionally, the likelihood

intervals utilize a coverage/power tradeoff, where one metric can be decreased

to increase the other. The 95% confidence interval, however, seems to be a

natural compromise between coverage and power. Finally, the Bayesian SEM

method showed posterior distributions moving away from zero as the sample

size increases in the presence of a simulated indirect effect, while also providing

a 95% credible interval to quantify the estimated mediation.

In the fifth chapter, all three methods are applied to non-Hispanic black

and white subjects in the National Health and Nutrition Examination Survey

(NHANES) from 1999 to 2004. The methods assessed whether diet, a variable

that may be affected by residential segregation, mediates the relationship be-

tween race and blood pressure. Their findings were then compared to the Sobel

test. For both blood pressure outcomes, all the methods agreed with the Sobel

test.

By providing various methods of mediation analysis, this work seeks to im-

prove the detection of mediation, in order to progress occurring research efforts

to creating interventions so that one day we can eliminate health disparities.
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Chapter 2

Health Disparities Background

2.1 Existence of Health Disparities

It has been well documented in the scientific literature that disparities in mor-

bidity and mortality exist between various subgroups of the United States pop-

ulation. Government agencies such as the United States Department of Health

and Human Services and the Centers for Disease Control and Prevention have

made the elimination of health disparities a priority (hp2, 2001, 2012). How-

ever, their existence persists to this day. For instance, African-Americans tend

to exhibit higher incidences of disease and disability compared to non-Hispanic

whites. They also tend to experience earlier onset and greater severity of dis-

ease as well as decreased life expectancies (Gillespie and Hurvitz, 2013). One

example is an increased risk of cardiovascular disease mortality, compared to

non-Hispanic whites (Thorpe Jr. et al., 2012).

2.2 Epidemiology of Hypertension

A key indicator of cardiovascular health is the presence of hypertension. Over

30% of the United States population has hypertension, or high blood pressure,
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or is taking antihypertensive medication (Delgado et al., 2012). Among adults

age 20 and older in the US, 33.9 and 31.3 percent of white men and women have

hypertension whereas 43.0 and 45.7 percent of black men and women have it,

according to data from the National Health and Nutrition Examination Survey

(NHANES) from 2005 to 2008. The probability of having high blood pressure

increases with age. More than 60% of older adults suffer from hypertension

(Delgado et al., 2012). Not only are there disparities in the prevalence of hy-

pertension between blacks and whites, the disparities persist for those over the

age of 65 (Delgado et al., 2012). It is estimated that 57% of whites age 65

and over have high blood pressure while 75% of blacks age 65 and over have it,

according to NHANES data from 2005-2008. Possible explanations for the dis-

parities in hypertension prevalence have been researched. However, differences

in hypertension prevalence persisted.

2.3 Methodological Obstacles in Health Dis-
parities Research

There are various methodological issues that have hampered progress in health

disparities research across various health outcomes, including hypertension. One

important obstacle is the confounding of race and socioeconomic status. Racial

status in the United States, particularly African-Americans, is an important

determinant of the life course. Minorities, particularly African-Americans, tend

to have lower income and less education than non-Hispanic whites, while con-

currently experiencing higher rates of disease and disability. Such confounding

makes it difficult to parse the effects of each variable.
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Perhaps due to such methodological issues, the research regarding health dis-

parities has focused on detecting disparities in health outcomes and attempting

to explain them by accounting for individual-level demographic characteristics

and health-related behaviors. There has been little investigation into the mech-

anisms and operations that power the observed health disparities. As indicated

in Figure 2.1, it is imperative that researchers understand the reasons for health

disparities in order to create effective interventions to eliminate them. Addi-

tionally, without eliminating health disparities, the existing medical and pub-

lic health tools cannot reach full effectiveness in key groups, such as African-

Americans.

Figure 2.1: Generations of Health Disparities Research

2.3.1 Residential Segregation

When discussing health disparities research, it is important to discuss a vari-

able that may show promise in further understanding racial and socioeconomic

health disparities: residential segregation.
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Residential segregation is the physical separation of subgroups of the pop-

ulation with regards to residential areas. Whites and African-Americans tend

to reside in separate, different residential neighborhoods (Acevedo-Garcia and

Osypuk, 2008). Racial residential segregation, or the separation of races into

distinct geographical areas, is prevalent in the United States. In the early 1900s,

many African-Americans migrated from the South into urban areas in northern

states and moved into the same areas, similar to immigration patterns of other

ethnic groups. However, as time went on, certain areas in the United States

used laws, restrictions, and intimidation to increase the level of segregation.

Even though the passing of the Civil Rights Act of 1968 eliminated lawful seg-

regation, de facto racial residential segregation persisted (Williams and Collins,

2001; Kramer and Hogue, 2009). Because of its history, segregation between

blacks and whites are distinctly unique from other kinds of segregation (Kramer

and Hogue, 2009).

In many cases, the areas that African-Americans live in have vastly more ad-

verse aspects with regards to healthcare quality, environmental exposures, and

the built economic and social environment (Landrine and Corral, 2009). Such

adverse effects include less competent medical facilities, fewer grocery stores,

higher crime rates, and increased exposure to toxic elements to name a few

(Landrine and Corral, 2009). Consequently, racial segregation can possibly

lead to differential social and environmental exposures associated with adverse

health outcomes for African-Americans and can have implications on variables

such as health care and diet, which will be discussed in more detail in Chapter 5.
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Recently, residential segregation has been studied as a variable that may

shed light on existing health disparities and parse the relationship between race,

socioeconomic status, and health. It may also help researchers perform causal

inference into the framework of health disparities.

2.4 Causal Inference and Health Disparities

Investigating the reasons that power health disparities requires inference beyond

mere associations. Inference into the causal framework of health disparities is

imperative to learning more about the underlying mechanisms that contribute

to the existence of health disparities.

Unfortunately, causal inference tools would be problematic to translate to

health disparities research. Due to the strong confounding between race and so-

cioeconomic status, it is difficult to match African-American and white subjects

with similar incomes. Additionally, many of the variables that are influential

in health disparities are correlated with each other, which makes it difficult to

find an instrumental variable to use in causal inference. Finally, the current

causal inference landscape requires an exposure that can be manipulated, such

as treatment for a given disease. While the definition of race has been argued

in existing literature, racial status is rooted in a person’s genetic background,

which cannot be changed. As a result, researchers cannot create randomized

trials using race as the “exposure", as it cannot be randomized to a specific

subject. In addition, there is difficulty in defining appropriate counterfactuals
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in social epidemiology (Kaufman and Cooper, 1999; Glass et al., 2013).

Nevertheless, it is essential to understand the reasons for existing health dis-

parities. One type of variable that could help create meaningful interventions

for health disparities are mediators. Mediators are variables that are caused by

an exposure, which then cause the outcome of interest. Identifying key media-

tors between racial status and various health outcomes will allow for not only

more informed research but will also provide an avenue for creating interven-

tions. As researchers cannot intervene to change a person’s racial status, they

can create interventions on mediators that can still provide some attenuation of

existing health disparities.
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Chapter 3

Existing Techniques of
Mediation Analysis

Mediation is the process in which a treatment or exposure has an effect on an

intermediate variable, often referred to as a mediator, which consequently has

an effect on the outcome. There are several methods that currently exist for

performing mediation analysis. This chapter provides a short overview of the

currently existing methods and discusses their advantages and disadvantages.

3.1 Rubin Causal Model

Arguably, the most prominent statistical model of causal effects is the Rubin

causal model, which utilizes the potential outcomes framework (Rubin, 1974).

Under the Rubin causal model, Ti is the treatment assignment for individual

i and Yi(Ti) is the potential outcome for individual i under treatment Ti.
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Let Yi(0) and Yi(1) be the potential outcomes for individual i under treat-

ment Ti = 0 and Ti = 1, respectively. Then,

Yi(1) − Yi(0)

is considered the causal effect of treatment 1 versus treatment 0 on the outcome

at a given time. Oftentimes, 1 can be used to identify an experimental treat-

ment while 0 can represent a placebo treatment.

However, an individual cannot experience both treatments at a given time.

Therefore, we can never observe both Yi(0) and Yi(1) for individual i (Rubin,

1974). This is commonly referred to as the Fundamental Problem of Causal

Inference (Holland, 1986). The outcome that would have occurred if individual

i was under the unobserved treatment is considered the counterfactual.

The causal effect previously given is the total effect of the experimental

treatment on the outcome. However, sometimes this effect can be partitioned

into a direct effect and an indirect effect.

Treatment

Mediator

Outcome

Figure 3.1: Direct and Indirect Effect

The indirect effect, depicted as the two red arrows in Figure 3.1, is the effect

of the treatment on the outcome that is based on the changing the value of the
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mediator. The direct effect, depicted by the black arrow in Figure 3.1, is the

effect of the treatment on the outcome that is not dependent on changing the

value of the mediator.

We can notate the potential mediator of individual i under treatment Ti

as Mi(Ti) and the potential outcome of individual i under treatment Ti and

mediator Mi as Yi(Ti,Mi). As a result, we can partition the total effect into

the sum of the natural direct and indirect effect (Robins and Greenland, 1992;

Pearl, 2001). We can write out the partition mathematically:

Y (1) − Y (0) = Y (1,M(1)) − Y (0,M(0))

= Y (1,M(1)) − Y (0,M(1)) + Y (0,M(1)) − Y (0,M(0))

= Natural Direct Effect + Natural Indirect Effect

where

Natural Direct Effect = Y (1,M(1)) − Y (0,M(1))

Natural Indirect Effect = Y (0,M(1)) − Y (0,M(0))

Causal inference tools such as propensity scores, instrumental variables, and

experimental designs have been used in the literature to perform mediation
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analysis (Jo et al., 2011; Sobel, 2008; Imai et al., 2013). However, there are

obstacles regarding the use of causal inference tools in social epidemiology, in-

cluding health disparities research.

In the United States, minority groups, including African-Americans, are

more likely to have lower socioeconomic statuses (SES) compared to whites. As

a result, there exists a confounding of race and SES that makes it difficult to

determine which, or both, of the two variables causes the existing health dis-

parities (LaVeist et al., 2007). In addition, the scientific literature contains an

abundance of research that documents associations between both race and SES

with health statuses. Therefore, if a researcher were to use propensity scores to

match blacks and whites for the purpose of causal inference, including income

in the scores would lead to very few matches while excluding income could lead

to biased inference.

In addition, many of the variables that are common in social epidemiology

are correlated with each other. As previously discussed, race and SES are con-

founding variables, indicating strong correlation between them. However, many

other variables, such as health behaviors and demographic variables, are also

correlated with race and SES. As a result, it would prove to be difficult to find

an instrumental variable to utilize in causal mediation analysis. An instrumen-

tal variable must, by definition, be independent of potential confounders and

can only influence the outcome through the exposure.
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Finally, because social epidemiology tends to focus on attributes of indi-

viduals and/or neighborhoods, rather than manipulable treatments, random

assignment of treatment is not possible (Kaufman and Cooper, 1999). In addi-

tion, counterfactuals and potential interventions in social epidemiology can be

difficult to define, leading to a vague statement of the causal effect (Kaufman

and Cooper, 1999; Glass et al., 2013). Both obstacles are especially true for

health disparities research. An attribute such as race is fixed and unchanging

for each individual, making random assignment of race impossible. In addition,

defining the counterfactual for race can be problematic and even controversial,

particularly with regards to defining a counterfactual as a potential outcome

that would be observed if an individual’s race differed.

While the Rubin causal model has proven beneficial to the area of causal

inference, applying its tenets to health disparities research could prove very

difficult. Therefore, we will investigate other methods of mediation analysis,

such as structural equation modeling.

3.2 Structural Equation Modeling

Structural equation modeling (SEM) is a class of statistical models that capture

a network of relationships between one or more independent and dependent

variables. SEM simulataneously models structural equations, each defining a

specific relationship in the framework. Such equations are referred to as struc-

tural because their parameters not only provide information about associations,

but also shed light on “causal" relationships (Bollen, 1989).
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It must be clarified that structural equation modeling relies on previously

hypothesized causal relationships. There must be some sort of theory in mind

before utilizing SEM. However, SEM can quantify the causal relationships and

can test and reject structural equations that represent a causal relationship. In

short, a causal model cannot be validated by SEM, but it can be disproven.

SEM has been used extensively in the psychological and social sciences. Uti-

lizing SEM in health disparities research would allow us to quantify and test

hypothesized causal frameworks that have been previously discussed in the lit-

erature. Additionally, SEM utilizes the covariances between variables in the

structural equations in order to fit the model. Variables in health disparities

research tend to be correlated, and their associations have been discussed in the

literature as well. Finally, SEM would allow us to estimate direct and indirect

effects of hypothesized causal relationships without the need of defining coun-

terfactuals.

While SEM differs from the Rubin causal model, similar information can be

obtained from the structural equations. We can translate hypothesized causal

relationships into path diagrams, such as the one depicted in Figure 3.1, which

can be translated into structural equations. Given the structural equations,

we can obtain estimates for parameters that represent the direct and indirect

effects. For instance, we can translate the path diagram in Figure 3.1 to the

following structural equations:
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Outcome = γ11Treatment + β12Mediator + ζ1

Mediator = γ21Treatment + ζ2

Figure 3.2 depicts the parameters of the structural equation model in the

path diagram:

Treatment

Mediator

Outcome

γ21 β12

γ11

ζ2

ζ1

Figure 3.2: Path Diagram

In mediation analysis, such relationships are typically notated as depicted

in the following figure: (Baron and Kenny, 1986).

Independent Variable

Mediator

Dependent Variable

a b

c

Figure 3.3: Path Diagram Based on Structural Equations

Therefore, the indirect effect is equal to ab, or β12γ21 under SEM notation.

The direct effect is equal to c, or γ11, leading to a total effect of ab + c, or

β12γ21 + γ11.
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3.3 Testing For Mediation

There exists several statistical methods of assessing whether an independent

variable affects an intermediate variable, or mediator, which then changes an

outcome. The following subsections discuss some of the more prominent meth-

ods of assessing mediation that are present in the literature.

The statistical methods that will be discussed typically utilize the single-

mediator model, depicted in the following figure and defined by the following

three equations:

Y = i1 + cX + e1

Y = i2 + c′X + bM + e2

M = i3 + aX + e3

X Y
c e1 X

M

Y

a b

c′

e2

e3

Figure 3.4: Single-Mediator Models

where X is the independent variable or exposure, M is the mediating variable,

Y is the dependent variable or outcome. In addition, i1, i2, and i3 represent

the intercepts for each equation and e1, e2, and e3 represents the error for each

equation.
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3.3.1 Causal Steps

One of the most commonly used methods of mediation analysis is the causal

steps approach, presented in Judd and Kenny (1981) and Baron and Kenny

(1986). In order to conclude that mediation is occurring, the causal steps ap-

proach require the following conclusions:

1. The unadjusted association between X and Y , c, must be significant.

2. The association between X and M , a, must be significant.

3. The association between M and Y adjusted for X, b, must be significant.

4. The unadjusted association between X and Y , c must be larger than than

the association between X and Y adjusted for M , c′, or |c| ≥ |c′|.

The causal steps approach does have limitations, including low statistical

power in simulations, an inability to quantify the strength of the mediated effect,

and the necessity of a significant relationship between X and Y (MacKinnon

and Fairchild, 2009). In particular, the first limitation can be problematic in

several cases, including when the direct and indirect effects have different signs

or cancel each other out.

While the causal steps approach relies on inequalities to determine the pres-

ence of a mediated effect, formulas and tests exist to determine the value and

significance of the difference in coefficients, c−c′, and the product of coefficients,

or indirect effect, ab.
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3.3.2 Difference in Coefficients

This class of statistical methods assess the presence of mediation by comparing

the associations of the independent and dependent variable before and after

adjusting for the mediator.

Multiple papers such as Freedman and Schatzkin (1992), McGuigan and

Langholtz (1988), and Clogg et al. (1992) discuss equations for the standard er-

ror of the difference between the adjusted and unadjusted associations between

the independent and dependent variable, or c − c′. All can be used to test the

null hypothesis that c− c′ = 0.

In addition, an existing method compares the correlation between the inde-

pendent and dependent variable before and after adjusting for the mediating

variable (MacKinnon et al., 2002). In other words, the method tests whether

ρXY − ρXY,I = 0 where ρXY is the correlation between X and Y without ad-

justing for the mediator and ρXY,I is the correlation between X and Y with

adjustment for the mediator I. It has been noted, however, that the method

can falsely detect the occurrence of mediation, particularly when there is no

evidence of a relationship between the mediator and the dependent variable

(MacKinnon et al., 2002).

While these methods exist, they are arguably not commonly used. Instead,

the distinction of the most commonly used test of mediation belongs to the

Sobel test, which assesses the product of coefficients, or indirect effect.
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3.3.3 Indirect Effects

There are several variations of the standard error of the indirect effect, used

to test the null hypothesis that the indirect effect is equal to zero, or ab = 0.

As stated previously, the most commonly used is the approximation derived in

(Sobel, 1982), which uses the multivariate Delta method and a first order Taylor

series approximation to obtain

σab =
√
a2σ2

b + b2σ2
a

where σab is the standard error for ab, σa is the standard error for a, and σb is

the standard error for b. The estimate for the indirect effect can then be divided

by the given standard error and compared to a standard normal distribution to

test the null hypothesis that ab = 0.

The exact standard error utilizes first and second order Taylor series approx-

imation to obtain:

σab =
√
a2σ2

b + b2σ2
a + σ2

aσ
2
b

where the variables are as previously defined (Aroian, 1947). Usually, the prod-

uct of the variances for a and b are small so that the Sobel standard error

provides a good approximation (MacKinnon et al., 2002).

22



The limitations of the Sobel test include its reliance on asymptotic proper-

ties. Perhaps the biggest limitation is that it assumes normality of the product

of a and b, which are regression coefficients. However, the product of regression

coefficients are often asymmetric with high kurtosis (MacKinnon et al., 2002),

and therefore relies on the Central Limit Theorem to achieve the normality

needed for an accurate approximation. As a result, the Sobel test can have low

statistical power.

Alternatives to the Sobel test and other tests of indirect effects have been

explored, in order to address the issue of low statistical power in testing. One

of them includes using bootstrapping to approximate indirect effects.

3.3.4 Bootstrapping Methods

There are methods and programs that exist that use bootstrapping methods to

estimate and provide confidence intervals for mediated effects, the most famous

being Preacher and Hayes (2004).

Bootstrapping involves sampling with replacement from an observed sample

of a population, calculating the estimate of interest using each subsample, and

repeating the process many times to generate an empirical distribution of the

estimate (Efron, 1979). From the empirical distribution, measures of uncer-

tainty such as standard errors and confidence intervals for the estimate can be

calculated.

In similar fashion, the method of calculating confidence intervals of mediated
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effects in Preacher and Hayes (2004) and Preacher and Hayes (2008) requires

taking a sample of n observations from the original sample, calculating ab from

each subsample, and repeating the process k times. The distribution of the k

estimates represent an empirical distribution of the estimate of ab and the val-

ues that define the upper and lower 100(α/2) % of the distribution can estimate

the bounds of a 100(1 − α) % confidence interval.

The advantages of bootstrapping methods for mediation analysis include a

lack of reliance on parametric assumptions, specifically the assumption that the

sampling distribution of the estimate of ab is normal (Efron, 1979). In addition,

the bootstrapping methods are useful when the underlying distribution of the

data cannot be written in closed form (MacKinnon et al., 2002).

However, bootstrapping itself has limitations. They include the necessity

of a large sample size, as the sample must be representative of the population.

Bootstrapping methods are also more sensitive to outliers, since sampling with

replacement traditionally does not limit the amount of times an observation

can be sampled. In addition, bootstrapping methods typically use computer

algorithms, which require computational power. Finally, when the parametric

assumptions are correct, traditional estimates generated from likelihoods are

more efficient than estimates generated from bootstrapping.

As a result of the limitations of bootstrapping, the work presented in the

next chapter will focus on likelihood-based methods of assessing mediators and

mediated effects.
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Chapter 4

New Methods of Assessing
Mediation

4.1 Model Framework and Motivation

For the purposes of this chapter, two models, depicted below, will be utilized.

X Y
β1

Y = β1X + ϵ1

ϵ1 ∼ N(0, σ2)

Figure 4.1: Model 1 - Direct Effect Model

Note that both models utilize structural equations. In SEM, it is common

to see the structural equations written without intercept terms. However, the

intercepts are implied and will be utilized later to obtain the appropriate esti-

mates of β1, β2, β3 and β4.
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X

M

Y

β4 β3
β2

Y = β2X + β3M + ϵ2

M = β4X + ϵ3

ϵ2 ∼ N(0, σ2
Y )

ϵ3 ∼ N(0, σ2
M)

Figure 4.2: Model 2 - Mediated Model

Because the “causes" of Y and M lie within the models and both can be writ-

ten as a random variable, Y and M are considered to be endogenous variables.

Because the “causes" of X are not defined in either model, X is considered to

be an exogenous variable.

Figure 4.1 represents the first model, a direct effect model, which assumes

that the only effect on the outcome Y is a direct effect from the exposure, or

predictor X. In other words, the direct effect model assumes that there is no

mediation occurring between X and Y . As such, we can assume Y to be a linear

function of its predictor X and a normally distributed error term, as written in

Figure 4.1.

Under Model 1, the total effect betweenX and Y is equal to β1. Simple linear

regression can be used to estimate for β1, noted as β̂1 and derive a distribution

for β̂1:
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β̂1 = (X ′X)−1X ′Y

β̂1 ∼ N(β1, σ
2(X ′X)−1)

Figure 4.2 represents an indirect as well as a direct effect. The model as-

sumes not just a direct effect from the predictor X to the outcome Y but also

an effect of X on the mediator M , which then has an effect on Y to create an

indirect effect of X on Y through M . As such, both Y and M can be written

as linear functions of their predictors and normally distributed error terms, as

written in Figure 4.2.

The equations for Y and M that are used to define Model 2 can be combined

to obtain the total effect of X on Y under Model 2:

Y = β2X + β3M + ϵ2

= (β2 + β3β4)X + (β3ϵ3 + ϵ2)

The total effect of X on Y under Model 2 is β2 + β3β4. While the specifica-

tion differs, the total effect under both models should be equal given the same

predictor, mediator, and outcome. Therefore:
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β1 = β2 + β3β4

β1 − β2 = β3β4

In other words, the difference in the association between X and Y before

and after accounting for mediation, M , is equal to β3β4, or the indirect effect.

This estimand will be the estimand of interest for the remainder of this chapter.

Notice that β3β4 is equivalent to ab in Figure 3.4, the single-mediator model.

Traditionally, the Sobel test would be used to assess the null hypothesis that

ab = 0. However, there are two major limitations of using the Sobel test under

our mediated model:

1. The Sobel test uses the assumption that the product of a and b is normally

distributed, which only occurs at large sample sizes, indicating a reliance

on asymptotic properties (MacKinnon et al., 2002).

2. The Sobel test treats the three equations defined in Model 1 and Model 2

as separate regression equations. As a result, it ignores the fact that the

mediator M is a random variable but is used as a predictor in a regression

equation that assumes fixed and constant covariates.

As a result, the remainder of the chapter will discuss new methods of assess-

ing whether the indirect effect β3β4 statistically significantly differs from zero

in a manner that relaxes or removes dependence on asymptotic properties and

that accounts for the random nature of the mediator.
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4.2 Adjusted Sobel Test

A basic assumption of linear regression is that the covariates of the regression

equation are fixed and constant. However, under Model 2, M is a covariate for

Y yet is also defined as a random variable. The Sobel test does not account

for this violation of a regression assumption. Therefore, this method creates a

new estimate for the standard error of β3, the association between M and Y

while adjusting for X, that accounts for the random nature of M . The new

estimate of the standard error will then be used in the calculation of the Sobel

test statistic and compared to a normal distribution.

4.2.1 Derivation

In order to model Y under Model 2 and remove the fixed and constant covariate

assumption for X and M , let

Z ∼ N(0,Σ) where Σ =
[
Σ11 Σ12
Σ21 Σ22

]
,Σ21 is p× 1

Note that under Model 2, p = 2 as Y has two predictors, X and M . In

other words, Σ11 represents the variance of Y and Σ22 represents the variance-

covariance matrix of X and M .

Under Model 2, we seek to fit a linear regression model without the assump-

tion of fixed and constant covariates. Sampson (1974) explores the changes in

the estimation and inference performed under linear regression without the as-

sumption of fixed covariates.
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Let V = [X M ]. Then

1
n
S = 1

n

[
S11 S12
S21 S22

]
= 1
n

[
Y ′Y Y ′V

V ′Y V ′V

]
estimates Σ =

[
Σ11 Σ12
Σ21 Σ22

]

According to Sampson (1974),

β̂ =
[
β̂2

β̂3

]
=
( 1
n
S22

)−1 1
n
S21

= (V ′V )−1V ′Y

where

β̂ =
[
β̂2

β̂3

]
estimates β =

[
β2
β3

]

This means that even with the assumption of fixed covariates removed, the

estimates for the associations remain the same. However, the distribution of

the estimates of β no longer follow a normal distribution, as predicted in the

classic linear regression setting. According to Sampson (1974),

(
n− p+ 1

Σ11.2

) 1
2

(β̂ − β) ∼ Tn−p+1(0,Σ−1
22 , p)

where Tn+p−1(µ,Σ, p) is a multivariate t-distribution with n − p + 1 degrees

of freedom, location parameter µ, scaling parameter Σ, and dimension p × 1.

Additionally,
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Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21

Σ̂11.2 = 1
n

(
Y ′Y − Y ′V (V ′V )−1V ′Y

)

Note that Σ11.2 has dimension 1 × 1 and is therefore scalar.

This representation of the multivariate t-distribution is characterized in Lin

(1972). Components of the multivariate t-distribution can be scaled to the

univariate plane, according to Lin (1972), which states that X ∼ Tν(µ,Σ, p) if

and only if for a ̸= 0,

(a′Σa)− 1
2a′(X − µ) ∼ tν

This finding can be used to obtain the distribution for β̂3, rather than β̂ by

utilizing the vector a where

a =
[
0
1

]

Therefore,

31



(
n− p+ 1

Σ11.2

) 1
2

(β̂ − β) ∼ Tn−p+1(0,Σ−1
22 , p)

(a′Σ−1
22 a)− 1

2a′
(
n− p+ 1

Σ11.2

) 1
2

(β̂ − β) ∼ tn−p+1

(a′Σ−1
22 a)− 1

2

(
n− p+ 1

Σ11.2

) 1
2
a′(β̂ − β) ∼ tn−p+1

(
Σ11.2a

′Σ−1
22 a

n− p+ 1

)− 1
2

a′(β̂ − β) ∼ tn−p+1

(
Σ11.2a

′Σ−1
22 a

n− p+ 1

)− 1
2

(β̂3 − β3) ∼ tn−p+1

As the degrees of freedom ν approaches infinity, a Student’s t distribution

converges to a standard normal distribution. Since ν = n−p+1, the degrees of

freedom approaches infinity as the sample size n approaches infinity. Therefore,

if Z represents a standard normal distribution, then:

(
Σ11.2a

′Σ−1
22 a

n− p+ 1

)− 1
2

(β̂3 − β3) n→∞−−−→ Z

β̂3 − β3√
Σ11.2a′Σ−1

22 a

n−p+1

n→∞−−−→

β̂3
n→∞−−−→ N

(
β3,

Σ11.2a
′Σ−1

22 a

n− p+ 1

)

Based on this finding,
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σ2
β̂3

→ Σ11.2a
′Σ−1

22 a

n− p+ 1

Additionally,

σ2
β̂4

= σ2
M(X ′X)−1

Observe that the variance for β̂4 is the equivalent to its variance under clas-

sic linear regression. Under Model 2, β4 represents the association between X

and M . However, X is considered a fixed variable because it is not defined as

a random variable. Therefore, the standard error under classic linear regression

still applies for β̂4.

According to Sobel (1982), the test statistic for the Sobel test is

β̂3β̂4√
β̂2

3σ
2
β̂4

+ β̂4σ2
β̂3

We will use this test statistic as well as the adjusted estimates of the vari-

ances of β̂3 and β̂4 to obtain an adjusted version of the Sobel test.

Theorem 1 (Adjusted Sobel Test). Let β̂3 be the estimate of β3, the associa-

tion between M and Y accounting for X and let β̂4 be the estimate of β4, the
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association between X and M . Then,

β̂3β̂4√
β̂2

3σ
2
β̂4

+ β̂4σ2
β̂3

where

σ2
β̂3

= a′ Σ11.2Σ−1
22

n− p+ 1a

σ2
β̂4

= σ2
M(X ′X)−1

is an appropriate test statistic for a z-test to assess if β3β4 = 0.

4.2.2 Simulation

The asymptotic standard error of β̂3 requires estimates of the components of Σ,

notated as 1
n
S. This serves as the maximum likelihood estimate of Σ. However,

the unbiased estimate of Σ is 1
n−1S. Regardless, the estimate of the standard

error of β̂3 is the same for each estimate of Σ due to cancellation of the multi-

pliers, 1
n

and 1
n−1 .

Using various sample sizes, the conditions of Model 2 were simulated for

1,000 sets of data. For each set of data, the classic Sobel test and the adjusted

Sobel test were calculated. The specifications for each set of data are as follows:
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β3β4 = 0.25

X ∼ N(µ = 0, σ = 10)

Y = β2X + β3M + ϵ2

M = β4X + ϵ3

ϵ2 ∼ N(0, σ2
Y )

ϵ3 ∼ N(0, σ2
M)

0 ≤ σ2
Y , σ

2
M ≤ 1

Let pk be the p-value obtained for a test using data set k, K be the number

of p-values, and HA represent the alternative hypothesis, β3β4 ̸= 0. Then, by

the Law of Large Numbers:

1
K

K∑
k=1

1{pk < 0.05|HA} P−→ E[1{pk < 0.05|HA}]

= P (pk < 0.05|HA)

In other words, the proportion of significant p-values at the 5% level under

Model 2 is a consistent estimate of the power of the test. Therefore, the pro-

portion of times that each test rejected the null hypothesis that β3β4 = 0 was

calculated and reported as an empirical power estimate.
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In addition, the empirical estimate of the coverage probability for the cor-

responding 95% confidence interval of the adjusted Sobel test was calculated

and reported. An interval is deemed to have good coverage if the true value

of the indirect effect, β3β4, is included in the interval. Similar to the empirical

power estimate, by the Law of Large Numbers, the proportion of times that

the corresponding 95% confidence interval for the adjusted Sobel test contained

the true indirect effect serves as a consistent estimate of the coverage probability.

The results of the estimated power can be found in Table 4.1.

Sample Size Sobel Test Adjusted Sobel Test
10 0.569 0.612
25 0.713 0.722
50 0.774 0.778
75 0.8 0.802
100 0.823 0.823
250 0.882 0.882
500 0.893 0.893

Table 4.1: Adjusted Sobel Test - Estimated Power

The results of the estimated coverage probability can be found in Table 4.2.

To summarize, the adjusted Sobel test using the new estimates for the vari-

ance of β̂3 returned higher power estimates for smaller sample sizes and compa-

rable power estimates at higher sample sizes, compared to the traditional Sobel

test. With regards to the coverage probability, the adjusted Sobel test has an
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Sample Size Adjusted Sobel Test
10 0.879
25 0.933
50 0.937
75 0.944
100 0.943
250 0.951
500 0.958

Table 4.2: Adjusted Sobel Test - Estimated Coverage Probability

estimated coverage probability above 0.95 for larger sample sizes. However, the

estimated coverage probability is much smaller at sample size of 10 than at other

sample sizes. In addition, the estimated coverage probability seems to increase

slightly as the sample sizes increases. Ideally, the estimated coverage proba-

bility should be relatively constant for all sample sizes. Based on the results,

further investigation is necessary to determine the causes of the findings from

the estimated coverage probabilities. Unfortunately, while the adjusted Sobel

test accounts for the random nature of the mediator, it still relies on asymptotic

properties in its variance estimation.

4.3 Estimated and Profile Likelihood-Based In-
ference

While the previous method focused on variance estimation derived from likelihood-

based inference, this method will utilize a joint distribution of the data in order

to perform likelihood-based inference on the estimand of interest. Focusing

on likelihoods, rather than variance estimation, could remove the reliance on

asymptotic properties utilized in the traditional and adjusted Sobel test. In
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addition, using likelihoods allows us to create not only confidence intervals but

also likelihood intervals.

For most likelihoods, there is at least one parameter of interest as well as

parameters that are not useful to the desired inference, typically referred to

as nuisance parameters. Estimated likelihoods utilize estimated values that

are dependent only on the observed data for the nuisance parameters. Pro-

file likelihoods maximize the likelihood over the nuisance parameters, which is

equivalent to substituting the nuisance parameters with their maximum likeli-

hood estimates. In profile likelihoods, the maximum likelihood estimates may

be a function of the parameter of interest, as well as the data. For both kinds

of likelihoods, such substitution returns a “likelihood" that is a function of ob-

served data and the parameter(s) of interest only. In short, estimated and profile

likelihoods offer an avenue of removing the presence of nuisance parameters, or

parameters that we do not seek to perform inference on, so that information

can be gained regarding the parameter(s) of interest.

4.3.1 Derivation

Once again, we will utilize Model 2, depicted in Figure 4.2. Note that ϵ2 repre-

sents the error term for Y and ϵ3 represents the error term for M . Assume that

ϵ2 is independent of M and of ϵ3 and let

V ar(ϵ2) = σ2
Y and V ar(ϵ3) = σ2

M
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Note that X is considered to be fixed, not random. As a result,

V ar(M) = V ar(β4X + ϵ3)

= V ar(ϵ3)

= σ2
M

V ar(Y ) = V ar(β2X + β3M + ϵ2)

= V ar(β2X + β3(β4X + ϵ3) + ϵ2)

= V ar(β2X + β3β4X + β3ϵ3 + ϵ2)

= V ar(β3ϵ3 + ϵ2)

= V ar(β3ϵ3) + V ar(ϵ2)

= β2
3V ar(ϵ3) + V ar(ϵ2)

= β2
3σ

2
M + σ2

Y
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Cov(Y,M) = Cov(β2X + β3M + ϵ2, β4X + ϵ3)

= Cov(β2X + β3(β4X + ϵ3) + ϵ2, β4X + ϵ3)

= Cov(β2X + β3β4X + β3ϵ3 + ϵ2, β4X + ϵ3)

= Cov(β3ϵ3 + ϵ2, ϵ3)

= Cov(β3ϵ3, ϵ3) + Cov(ϵ2, ϵ3)

= Cov(β3ϵ3, ϵ3)

= β3Cov(ϵ3, ϵ3)

= β3V ar(ϵ3)

= β3σ
2
M

Therefore, we can define the variance-covariance matrix for Y and M , Σ, as

Σ =
[
β2

3σ
2
M + σ2

Y β3σ
2
M

β3σ
2
M σ2

M

]

The determinant of Σ is
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|Σ| = (β2
3σ

2
M + σ2

Y )σ2
M − (β3σ

2
M)2

= σ2
Y σ

2
M

Therefore, the inverse of Σ, Σ−1, is

Σ−1 =
⎡⎣ 1

σ2
Y

− β3
σ2

Y

− β3
σ2

Y

β2
3

σ2
Y

+ 1
σ2

M

⎤⎦

=
[
v11 v12
v12 v22

]

Using the specification of Y and M under Model 2 and under the assumption

that Y and M have a multivariate normal distribution:

[
Y

M

]
∼ N

([
β2X + β3M

β4X

]
,

[
β2

3σ
2
M + σ2

Y β3σ
2
M

β3σ
2
M σ2

M

])

Based on the multivariate normal distribution, the probability density func-

tion of Y and M can be written as

f(Y, M |X, β2, β3, β4) ∝ exp

{
−

1
2
[

Y −(β2+β3β4)X M−β4X

][ 1
σ2

Y

− β3
σ2

Y

− β3
σ2

Y

β2
3

σ2
Y

+ 1
σ2

M

][
Y −(β2+β3β4)X

M−β4X

]}

= exp

{
−

1
2σ2

Y

n∑
i=1

[yi − (β2 + β3β4)xi]2
}

exp

{
β3

σ2
Y

n∑
i=1

[yi − (β2 + β3β4)xi][mi − β4xi]

}

exp

{
−

1
2

(
β2

3
σ2

Y

+
1

σ2
M

) n∑
i=1

(mi − β4xi)2

}
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It can also be rewritten as:

f(Y, M |X, β2, β3, β4) = (2π)−n(σ2
Y σ2

M )− n
2 exp

{
−v11

2

n∑
i=1

a2
i − v12

n∑
i=1

aibi − v22
2

n∑
i=1

b2
i

}
(4.1)

where

ai = yi − (β2 + β3β4)xi and bi = mi − β4xi

The probability density function of Y and M can be viewed equivalently

as the joint likelihood of β2, β3, and β4. Therefore, from the likelihood we

can obtain maximum likelihood estimates (MLEs) for β2, β3, and β4. Once the

MLEs have been calculated, they can be substituted into the likelihood to obtain

estimated or profile likelihoods for the parameters of interest, namely β3 and β4.

To find the MLEs, we can maximize the log of the likelihood rather than

the likelihood on the natural scale:

ℓ(β2, β3, β4|X, M, Y, σ2
Y , σ2

M ) = −n ln 2π − n

2 ln σ2
Y σ2

M − v11

2

n∑
i=1

a2
i − v12

n∑
i=1

aibi − v22

2

n∑
i=1

b2
i

Next, the derivative of the log likelihood with respect to the variable that

is being maximized must be set equal to zero. Then, the value for the variable

that solves the equation is considered the maximum likelihood estimate.

In order to calculate the derivatives, the following partial derivatives are

necessary:
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∂ai

∂β2
= −xi

∂ai

∂β3
= −β4xi

∂ai

∂β4
= −β3xi

∂bi

∂β2
= 0 ∂bi

∂β3
= 0 ∂bi

∂β4
= −xi

∂v11

∂β2
= 0 ∂v11

∂β3
= 0 ∂v11

∂β4
= 0

∂v12

∂β2
= 0 ∂v12

∂β3
= − 1

σ2
Y

∂v12

∂β4
= 0

∂v22

∂β2
= 0 ∂v22

∂β3
= 2β3

σ2
Y

∂v22

∂β4
= 0

With this information, we can now obtain the MLE for β2:
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∂ℓ

∂β2
= v11

n∑
i=1

aixi + v12

n∑
i=1

bixi

= 1
σ2

Y

n∑
i=1

[yi − (β2 + β3β4)xi]xi − β3

σ2
Y

n∑
i=1

(mi − β4xi)xi

= 1
σ2

Y

n∑
i=1

yixi − β2

σ2
Y

n∑
i=1

x2
i − β3β4

σ2
Y

n∑
i=1

x2
i − β3

σ2
Y

n∑
i=1

mixi + β3β4

σ2
Y

n∑
i=1

x2
i

= 1
σ2

Y

n∑
i=1

yixi − β2

σ2
Y

n∑
i=1

x2
i − β3

σ2
Y

n∑
i=1

mixi

= 1
σ2

Y

n∑
i=1

(yi − β3mi)xi − β2

σ2
Y

n∑
i=1

x2
i = 0

β2

n∑
i=1

x2
i =

n∑
i=1

(yi − β3mi)xi

β̂2 =
∑n

i=1(yi − β3mi)xi∑n
i=1 x

2
i

Using a similar process, we can obtain the MLE for β3:
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∂ℓ

∂β3
= v11

n∑
i=1

β4aixi + v11

n∑
i=1

n∑
i=1

aibi − v12

n∑
i=1

β4bixi − v12

n∑
i=1

b2
i

= 1
σ2

Y

n∑
i=1

β4aixi + 1
σ2

Y

n∑
i=1

n∑
i=1

aibi − β3

σ2
Y

n∑
i=1

β4bixi − β3

σ2
Y

n∑
i=1

b2
i

= β4

σ2
Y

n∑
i=1

(ai − β3bi)xi + 1
σ2

Y

n∑
i=1

(ai − β3bi)bi

= 1
σ2

Y

n∑
i=1

(ai − β3bi)(β4xi + bi)

= 1
σ2

Y

n∑
i=1

(ai − β3bi)mi

= 1
σ2

Y

n∑
i=1

[yi − (β2 + β3β4)xi − β3(mi − β4xi)]mi

= 1
σ2

Y

n∑
i=1

yi − β2xi − β3mi = 0

0 =
n∑

i=1
yimi − β2

n∑
i=1

ximi − β3

n∑
i=1

m2
i

0 =
n∑

i=1
yimi − β̂2

n∑
i=1

ximi − β̂3

n∑
i=1

m2
i

Recall that

β̂2 =
∑n

i=1(yi − β3mi)xi∑n
i=1 x

2
i

We can substitute in the MLE for β2 into the equation to obtain β̂3, the
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MLE for β3, which will not depend on β2:

n∑
i=1

yimi −
∑n

i=1(yi − β̂3mi)xi∑n
i=1 x

2
i

n∑
i=1

ximi − β̂3

n∑
i=1

m2
i = 0

n∑
i=1

yimi −
∑n

i=1 yixi
∑n

i=1 ximi∑n
i=1 x

2
i

+ β̂3
(∑n

i=1 ximi)2∑n
i=1 x

2
i

− β̂3

n∑
i=1

m2
i = 0

n∑
i=1

yimi −
∑n

i=1 yixi
∑n

i=1 ximi∑n
i=1 x

2
i

+ β̂3

(
(∑n

i=1 ximi)2∑n
i=1 x

2
i

−
n∑

i=1
m2

i

)
= 0

∑n
i=1 yimi −

∑n

i=1 yixi

∑n

i=1 ximi∑n

i=1 x2
i∑n

i=1 m
2
i − (∑n

i=1 ximi)2∑n

i=1 x2
i

= β̂3

∑n
i=1 yimi

∑n
i=1 x

2
i −∑n

i=1 yixi
∑n

i=1 ximi∑n
i=1 m

2
i

∑n
i=1 x

2
i − (∑n

i=1 ximi)2 = β̂3

Finally, we can obtain the MLE for β4:
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∂ℓ

∂β4
= v11

n∑
i=1

β3aixi + v12

n∑
i=1

β3bixi + v12

n∑
i=1

aixi + v22

n∑
i=1

bixi

= β3

σ2
Y

n∑
i=1

aixi − β2
3
σ2

Y

n∑
i=1

β3bixi − β3

σ2
Y

n∑
i=1

aixi +
(
β2

3
σ2

Y

+ 1
σ2

M

)
n∑

i=1
bixi

= 1
σ2

M

n∑
i=1

(mi − β4xi)xi = 0

0 =
n∑

i=1
mixi − β4

n∑
i=1

x2
i

β̂4 =
∑n

i=1 mixi∑n
i=1 x

2
i

Recall that Equation (4.1) represents not only the joint probability density

function of Y and M , but also the joint likelihood of β2, β3, and β4. While

the likelihood does not contain information regarding β3β4 specifically, it does

contain information regarding β3 and β4, separately. As a result, the likelihood

allows us to obtain a profile likelihood for β3 and an estimated likelihood for β4.

When calculating the profile likelihood for β3, the parameter of interest is β3

while β2 and β4 are nuisance parameters. Accordingly, the maximum likelihood

estimates for β2 and β4 must be substituted to obtain the profile likelihood

for β3. The log of the likelihood will be utilized to ease the complexity of the
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derivations:

ℓP (β3|X,M, Y, σ2
Y , σ

2
M) ∝ −v11

2

n∑
i=1

â2
i − v12

n∑
i=1

âib̂i − v22

2

n∑
i=1

b̂2
i (4.2)

where

âi = yi − (β̂2 + β3β̂4)xi and b̂i = mi − β̂4xi

To reduce the amount of notation, let

Sjk =
n∑

i=1
jiki

Through substitution, expansion, and simplification using Equation 4.2 as

well as the fact that β̂2 = β̂1 + β3β̂4,

ℓP (β3|...) = − 1
2σ2

Y

n∑
i=1

[yi − (β̂2 + β3β̂4)]2 + β3

σ2
Y

n∑
i=1

[yi − (β̂2 + β3β̂4)](mi − β̂4xi)

− 1
2

(
β2

3
σ2

Y

+ 1
σ2

M

)
n∑

i=1
(mi − β̂4xi)2

= − 1
2σ2

Y

(
Syy −

S2
xy

Sxx

)
+ β3

σ2
Y

(
Sym − SxmSxy

Sxx

)

− 1
2

(
β2

3
σ2

Y

+ 1
σ2

M

)(
Smm − S2

xm

Sxx

)

∝ β3

σ2
Y

(
Sym − SxmSxy

Sxx

)
− β2

3
2σ2

Y

(
Smm − S2

xm

Sxx

)
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In order to normalize the likelihood so that it is equal to 1 at the maximum

likelihood estimate, it must be divided by a normalizing constant. On the

logarithmic scale, the normalizing constant must be subtracted from the log

likelihood:

ℓP (β3|...) ∝ β3

σ2
Y

(
Sym − SxmSxy

Sxx

)
− β2

3
2σ2

Y

(
Smm − S2

xm

Sxx

)

−

⎡⎣ β̂3

σ2
Y

(
Sym − SxmSxy

Sxx

)
− β̂2

3
2σ2

Y

(
Smm − S2

xm

Sxx

)⎤⎦

= β3 − β̂3

σ2
Y

(
Sym − SxmSxy

Sxx

)
− β2

3 − β̂2
3

2σ2
Y

(
Smm − S2

xm

Sxx

)

Let

V = Smm − S2
xm

Sxx

β̂3V = Sym − SxmSxy

Sxx

Then, the log likelihood can be written as
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ℓP (β3|...) ∝ (β3 − β̂3)β̂3V

σ2
Y

− (β2
3 − β̂2

3)V
2σ2

Y

= 2β3β̂3V − 2β̂2
3V − β2

3V + β̂2
3V

2σ2
Y

= −V (β̂3 − β3)2

2σ2
Y

Observe that the final result for the profile likelihood of β3 takes the structure

of the log of the kernal of the normal distribution. While the function repre-

sents the profile likelihood of β3, the function can also represent the probability

density function for its maximum likelihood estimate β̂3 when β3 is considered

fixed and constant.

Based on the logic, it is concluded that

β̂3 ∼ N

(
β3,

σ2
Y

V

)
where V =

n∑
i=1

m2
i − (∑n

i=1 ximi)2∑n
i=1 x

2
i

(4.3)

Through a similar process, the joint log likelihood can be utilized to obtain

an estimated likelihood for β4, by considering β2 and β3 as nuisance parameters

and substituting in their maximum likelihood estimates:

ℓP (β4|X,M, Y, σ2
Y , σ

2
M) ∝ − v̂11

2

n∑
i=1

â2
i − v̂12

n∑
i=1

âib̂i − v̂22

2

n∑
i=1

b̂2
i (4.4)

where
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âi = yi − (β̂2 + β̂3β4)xi and b̂i = bi = mi − β4xi

v̂11 = v11 = 1
σ2

Y

and v̂12 = − β̂3

σ2
Y

and v̂22 = β̂2
3
σ2

Y

+ 1
σ2

M

Through substitution, expansion, and simplification using Equation (4.4):
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ℓP (β4|...) = − 1
2σ2

Y

n∑
i=1

[yi − (β̂2 + β̂3β4]xi]2 + β̂3

σ2
Y

n∑
i=1

[yi − (β̂2 + β̂3β4]xi](mi − β4xi)

− 1
2

⎛⎝ β̂2
3
σ2

Y

+ 1
σ2

M

⎞⎠ n∑
i=1

(mi − β4xi)2

= − 1
2σ2

Y

(Syy − 2β̂2Sxy − 2β̂3β4Sxy + β̂2
2Sxx + 2β̂2β̂3β4Sxx + β̂2

3β
2
4Sxx)

+ β̂3

σ2
Y

(Sym − β4Sxy − β̂2Sxm − β̂3β4Sxm + β̂2β4Sxx + β̂3β
2
4Sxx)

−

⎛⎝ β̂2
3
σ2

Y

+ 1
σ2

M

⎞⎠ (Smm − 2β4Sxm + β2
4Sxx)

= − 1
2σ2

Y

(Syy − 2β̂2Sxy − 2β̂3β4Sxy + β̂2
2Sxx + 2β̂2β̂3β4Sxx + β̂2

3β
2
4Sxx

− 2β̂3Sym + 2β̂3β4Sxy + 2β̂2β̂3Sxm + 2β̂2
3β4Sxm − 2β̂2β̂3β4Sxx − 2β̂2

3β
2
4Sxx

+ β̂2
3Smm − 2β̂2

3β4Sxm + β̂2
3β

2
4Sxx) − 1

2σ2
M

(Smm − 2β4Sxm + β2
4Sxx)

= − 1
2σ2

Y

(Syy − 2β̂2Sxy + β̂2
2Sxx − 2β̂3Sym + 2β̂2β̂3Sxm + β̂2

3Smm)

− 1
2σ2

M

(Smm − 2β4Sxm + β2
4Sxx)

∝ − 1
2σ2

M

(Smm − 2β4Sxm + β2
4Sxx)

As with β3, in order to normalize the likelihood so that it is equal to 1 at

the maximum likelihood estimate, it must be divided by a normalizing constant.

On the logarithmic scale, the normalizing constant must be subtracted from the
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log likelihood:

ℓP (β4|...) ∝ − 1
2σ2

M

(Smm − 2β4Sxm + β2
4Sxx) −

(
− 1

2σ2
M

(Smm − 2β̂4Sxm + β̂2
4Sxx)

)

= − 1
2σ2

M

(Smm − 2β4Sxm + β2
4Sxx − Smm + 2β̂4Sxm − β̂2

4Sxx)

= − 1
2σ2

M

[2(β̂4 − β4)Sxm + (β2
4 − β̂2

4)Sxx]

= − 1
2σ2

M

[2Sxxβ̂4(β̂4 − β4) + (β2
4 − β̂2

4)Sxx]

= − Sxx

2σ2
M

(β2
4 − β̂2

4 + 2β̂2
4 − 2β̂4β4)

= − Sxx

2σ2
M

(β2
4 − 2β̂4β4 + β̂2

4)

= − Sxx

2σ2
M

(β4 − β̂4)2

As with β3, the final result for the estimated likelihood of β4 takes the

structure of the log of the kernal of the normal distribution. While the func-

tion represents the profile likelihood of β4, the function can also represent the

probability density function for its maximum likelihood estimate β̂4 when β4 is

considered fixed and constant.

Based on the logic, it is concluded that:

β̂4 ∼ N

(
β4,

σ2
M∑n

i=1 x
2
i

)
(4.5)
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The finding of β̂3 and β̂4 being normally distributed can be verified by Bren-

ner et al. (1982) and Fraser and McDunnough (1984), which also found that

normalized and standardized likelihoods are also approximately normal, partic-

ularly at large sample sizes, and that likelihoods have an approximate normal

shape near the maximum.

To elaborate, for independently and identically distributed x1, ..., xn with

density f(x|θ), where θ takes values in Ω = R, let

Ln(θ) ∝ f(x1|θ)...f(xn|θ)

ln(θ) = lnLn(θ)

Then, according to Fraser and McDunnough (1984), if the following assump-

tions hold, asymptotic normality of the maximum likelihood estimate of θ, θ̂, is

assured:
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Assumption 1: lim
n→∞

1
n

sup
s:|s−θ|>θ

ln(s) − ln(θ) < 0

Assumption 2: l1(θ) is twice continuously differentiable with

0 < E[−l′′n(θ)] < ∞

Assumption 3: For each ϵ > 0, there exists δ > 0 such that

lim
n→∞

σ2
n sup

s:|s−θ|<δ
|l′′n(s) − l′′n(θ)| < ϵ where σ−2

n = E[−l′′n(θ)]

Assumption 1 is used to ensure the existence and consistency of θ̂. Assump-

tion 2 refers to the Fisher information generated from the likelihood, ensuring

that the variance exists. Assumption 3 is an assumption of the continuity of

the second derivative of the log-likelihood.

Because Y and M are considered to be jointly normal, the likelihood in ques-

tion is that of a multivariate normal distribution. Therefore, the assumptions

should apply to this problem and thus confirm that β̂3 and β̂4 are asymptotically

normal.

From the profile likelihoods, we obtain distributions for β̂3 and β̂4, which

can be used to infer about β3 and β4, respectively. However, the estimand of

interest is the indirect effect under Model 2, namely β3β4, making the estimate

of interest β̂3β̂4. As a result, the distribution of β̂3β̂4 is necessary, and an ap-

proximate distribution can be obtained from the distributions of β̂3 and β̂4 using
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the Delta method.

The Delta method states that if X is a random vector such that
√
n(X −

µ) D−→ N(0,Σ), then

√
n[g(X) − g(µ)] D−→ N(0,∇g(µ)T Σ∇g(µ))

In order to utilize the Delta method to determine the distribution of β̂3β̂4,

it must be proven that β̂3 and β̂4 are jointly normal.

According to Fraser and McDunnough (1984), the assumptions and findings

can be transferred to the multivariate space, where θ is now a vector that

takes on values Ω = Rk and |θ| represents Euclidian k-dimensional distance.

Assumptions 1, 2, and 3 will be referred to as 1’, 2’, and 3’ in the multivariate

space. The assumptions in the multivariate space are as follows:

Assumption 1’: lim
n→∞

1
n

sup
s:|s−θ|>θ

ln(s) − ln(θ) < 0

Assumption 2’: ln(θ) is twice continuously differentiable with

0 < det{−E[l′′n(θ)]} < ∞ where l′′n(θ) =
[

∂2

∂θi∂θj

ln(θ)
]

Assumption 3’: For each ϵ > 0, there exists δ > 0 such that

lim
n→∞

det(Σn) sup
s:|s−θ|<δ

|l′′n(s) − l′′n(θ)| < ϵ where Σ−1
n = E[−l′′n(θ)]
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When the assumptions hold, θ̂ is considered asymptotically normal. With

regards to β̂3 and β̂4, if one considers θ to be a joint vector of β3 and β4, then

if the assumptions hold, the joint vector of β̂3 and β̂4 will be asymptotically

normal, indicating joint normality of the two estimates and allowing for the use

of the Delta method. As discussed in the univariate version, because the likeli-

hoods in question are multivariate normal, it follows that the three assumptions

hold. Therefore, it can be concluded that β̂3 and β̂4 are jointly normal.

Let

β̂ =
[
β̂3

β̂4

]
estimate β =

[
β3
β4

]

It can be proven that Cov(β̂3, β̂4) = 0 using the Law of Total Covariance:

Cov(β̂3, β̂4) = CovM(E[β̂3|M ], E[β̂4|M ]) + EM [Cov(β̂3, β̂4|M)]

Recall that β̂4 is dependent on X and M only. X is considered fixed so

conditioning on M renders β̂4 a constant. Since the covariance of a random

variable and a constant is equal to zero, we now have

Cov(β̂3, β̂4) = CovM(E[β̂3|M ], E[β̂4|M ])

Recall that
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β̂3 =

∑n

i=1 x2
i

∑n

i=1 yimi −
∑n

i=1 ximi

∑n

i=1 xiyi∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2

E[β̂3|M ] =

∑n

i=1 x2
i

∑n

i=1 E[yi]mi −
∑n

i=1 ximi

∑n

i=1 xiE[yi]∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2

=

∑n

i=1 x2
i

∑n

i=1(β2xi + β3mi)mi −
∑n

i=1 ximi

∑n

i=1 xi(β2xi + β3mi)∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2

=
β2
∑n

i=1 ximi

∑n

i=1 x2
i + β3

∑n

i=1 m2
i

∑n

i=1 x2
i − β2

∑n

i=1 x2
i

∑n

i=1 ximi − β3
(∑n

i=1 ximi

)2∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2

=
β2
(∑n

i=1 ximi

∑n

i=1 x2
i −
∑n

i=1 x2
i

∑n

i=1 ximi

)
+ β3

(∑n

i=1 m2
i

∑n

i=1 x2
i −
(∑n

i=1 ximi

)2
)

∑n

i=1 x2
i m2

i −
(∑n

i=1 ximi

)2

=
β3

(∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2
)

∑n

i=1 x2
i

∑n

i=1 m2
i −
(∑n

i=1 ximi

)2

= β3

Therefore, E[β̂3|M ] is a constant and the covariance of a random variable

and a constant is zero. Thus,

Cov(β̂3, β̂4) = 0

Based on the finding of asymptotic normality, it can be concluded that

β̂ =
[
β̂3

β̂4

]
D−→ N

⎛⎝[β3
β4

]
,

⎡⎣σ2
Y

V
0

0 σ2
M∑n

i=1 x2
i

⎤⎦⎞⎠
Let g(β) = β3β4. Then, the variance of g(β) is equal to
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∇g(β)T Σg(β) =
[
β4 β3

] ⎡⎣σ2
Y

V
0

0 σ2
M∑n

i=1 x2
i

⎤⎦ [β4
β3

]

= β2
4
σ2

Y

V
+ β2

3
σ2

M∑n
i=1 x

2
i

Thus, by the Delta Method,

√
n(β̂3β̂4 − β3β4) D−→ N

(
0, β2

4
σ2

Y

V
+ β2

3
σ2

M∑n
i=1 x

2
i

)

In other words,

β̂3β̂4
D−→ N

(
β3β4, β

2
4
σ2

Y

V
+ β2

3
σ2

M∑n
i=1 x

2
i

)
(4.6)

Note that because β̂3 and β̂4 are maximum likelihood estimates, they are

consistent estimators for β3 and β4, respectively. Hence, substituting them into

the variance term will produce consistent estimates of the variance for β̂3β̂4.

In addition, the derived distribution for β̂3β̂4 should be considered an approxi-

mate distribution, as it is based on estimated and profile likelihoods of β3 and β4.

Based on the approximate, asymptotic distribution of β̂3β̂4, we can derive a

95% confidence interval and hypothesis test for assessing whether β3β4 = 0.

Theorem 2 (Profile Likelihood-Based Test and Confidence Interval). Let β̂3 be

the MLE of β3, the association between M and Y while accounting for X and
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let β̂4 be the MLE of β4, the association between M and X. Then,

β̂3β̂4 ± 1.96

√β̂4
2σ2

Y

V
+ β̂3

2 σ2
M∑n

i=1 x
2
i

where

V =
n∑

i=1
m2

i − (∑n
i=1 ximi)2∑n

i=1 x
2
i

is a 95% confidence interval for β3β4 based on its profile likelihood. Equivalently,

β̂3β̂4√
β̂4

2 σ2
Y

V
+ β̂3

2 σ2
M∑n

i=1 x2
i

is an appropriate test statistic for a z-test to test if β3β4 = 0.

From the approximate distribution of β̂3β̂4, “likelihood" intervals for β3β4

can be generated. A likelihood interval is defined as the following:

{
β : L(β|X, Y,M) ≥ 1

k

}

where k is a constant.

The likelihood interval changes as k changes, as confidence intervals change

as the level of confidence changes. It is worth mentioning that likelihood in-

tervals have similar coverage rates as confidence intervals. However, while the

statistical calculations will be based on likelihood intervals, the intervals calcu-

lated will not technically be likelihood intervals as the distribution of β̂3β̂4 is

based on estimated and profile likelihoods.

60



4.3.2 Simulation

Using various sample sizes, the conditions of Model 2 were simulated for 1,000

sets of data. The specifications for the simulations are the same as the simula-

tions for the adjusted Sobel test, which are as follows:

β3β4 = 0.25

X ∼ N(µ = 0, σ = 10)

Y = β2X + β3M + ϵ2

M = β4X + ϵ3

ϵ2 ∼ N(0, σ2
Y )

ϵ3 ∼ N(0, σ2
M)

0 ≤ σ2
Y , σ

2
M ≤ 1

For each set of data, the Sobel test and the proposed profile likelihood-based

test were utilized. In addition, the profile likelihood-based 95% confidence in-

terval along with the 0.125 (k = 8) and 0.25 (k = 4) likelihood intervals were

calculated. The proportion of times that each test rejected the null hypothesis

that β3β4 = 0 was calculated and reported as an empirical power estimate, as

previously shown. An interval was deemed to have good coverage if the true

value of β3β4 was included in the interval. The proportion of times that an in-

terval contained the true indirect effect value β3β4 was calculated and reported
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as an empirical coverage probability estimate. However, unlike confidence inter-

vals, likelihood intervals do not have corresponding hypothesis tests. Therefore,

an interval was deemed to have good “power" if 0 was not included in the in-

terval. Note that the power of the 95% confidence interval is the power of the

profile likelihood-based test. The results of the simulations can be found in the

Tables 4.3 and 4.4.

N .125 LI C .25 LI C 95% CI C
10 0.955 0.901 0.946
25 0.959 0.910 0.952
30 0.960 0.911 0.953
50 0.956 0.911 0.949

100 0.968 0.907 0.956
500 0.969 0.912 0.954

1000 0.963 0.909 0.959

Table 4.3: Profile Likelihood - Coverage of Intervals

N .125 LI P .25 LI P 95% CI P Sobel P
10 0.544 0.607 0.559 0.553
25 0.688 0.728 0.695 0.687
30 0.716 0.753 0.723 0.721
50 0.716 0.758 0.720 0.719

100 0.797 0.825 0.803 0.799
500 0.887 0.903 0.891 0.891

1000 0.947 0.954 0.950 0.950

Table 4.4: Profile Likelihood - “Power" of Intervals

From observing the values presented in the table, the 0.125 likelihood in-

terval tends to have slightly lower power than the Sobel test, while the 0.25

likelihood tends to have higher power compared to the Sobel test. Conversely,

the 0.125 likelihood interval has greater coverage than the 0.25 likelihood in-

terval. The 95% confidence interval tends to have higher power than the 0.125
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likelihood interval yet greater coverage than the 0.25 likelihood interval, indi-

cating that it may represent a balance between coverage and power. The profile

likelihood-based hypothesis test tends to have higher power at smaller sample

sizes and comparable power at larger sample sizes, compared to the Sobel test.

The power of the various intervals and test seem to converge to the same value

at higher sample sizes, while differences are more evident at the smaller sample

sizes.

It is important to recognize that while the results presented in the table are

not sufficient to prove these observations, they do provide some evidence of the

validity of such conclusions.

While utilizing a joint distribution for the outcome and mediator, Y and

M , did not remove reliance on asymptotic properties, it does provide the use

of likelihood intervals, which may provide some flexibility in terms of capturing

indirect effects, while the proposed hypothesis test performed as well or better

than the Sobel test in simulations.

4.4 Mediation in the Bayesian Setting

The majority of the research and applications regarding structural equation

modeling and mediation analysis utilize a frequentist perspective. The frequen-

tist viewpoint argues that parameters are unknown, but fixed and constant.

Hence, to estimate the fixed parameters, SEM uses the sample covariance ma-

trix generated from the observed data to define the estimates of the parameters
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so that the estimates will make the observed covariance matrix as likely as pos-

sible.

However, there is a growing interest in applying Bayesian theory and meth-

ods to SEM. The Bayesian viewpoint argues that parameters are random vari-

ables with distributions defined by other parameters that may or may not be

random as well. Consequently, the focus is on estimating the distribution and

specifications of the parameters of interest. To do so, traditional Bayesian meth-

ods such as Monte Carlo Markov chains (MCMC) and Gibbs sampling are used

to draw observations from the posterior distributions of the parameters of inter-

est. The posterior distribution is a combination of the prior distribution, based

on existing knowledge, and the likelihood, which is based on observed data.

Using Bayesian methods to fit structural equation models has multiple ad-

vantages:

1. The existence of a prior distribution allows researchers to incorporate

existing knowledge about a parameter (Palomo et al., 2007; Song and

Lee, 2012).

2. Collecting draws from a distribution allows researchers to obtain different

estimates than the maximum likelihood estimate (Song and Lee, 2012).

3. Bayesian models often return similar findings to frequentist models as

sample sizes increase (Song and Lee, 2012).

4. The use of MCMC removes reliance on asymptotic assumptions (Palomo
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et al., 2007). This could improve estimates and reliability generated from

smaller samples.

However, one notable disadvantage of Bayesian methods is computational

time, particularly as models become increasingly complex due to the amount of

samples that must be generated from MCMC to decrease Monte Carlo errors

(Palomo et al., 2007).

Model 2 remains the basis for the inference, as with the adjusted Sobel test

and the profile-likelihood based inference. However, the notation will change in

order to align with traditional SEM notation:

X

M

Y

γ21 β12

γ11

Y = γ11X + β12M + ζ1

M = γ21X + ζ2

Figure 4.3: SEM Model

Note that under Model 2, the indirect effect, the estimand of interest, is now

γ21β12.

Gibbs sampling will be utilized to obtain draws from the posterior distribu-

tions of the parameters in Figure 4.3, based on defined priors for each parameter
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and likelihoods of the data. From the parameters of interest, draws for the esti-

mand of interest γ21β12 will be calculated and inference will be performed using

the empirical distribution generated from the draws.

4.4.1 Derivation

In matrix form and including variance matrices, the model can be specified as

follows:

[
Y

M

]
=
[
γ11
γ21

] [
X
]

+
[
0 β12
0 0

] [
Y

M

]
+
[
ζ1
ζ2

]

In the model, Φ represents the variance-covariance matrix of the exoge-

nous variables, which is the variance of X in this case. Also, Ψ represents the

variance-covariance matrix of the errors of the endogenous variables, Y and M :

Φ =
[
φ11

]
=
[
V ar(X)

]
and Ψ =

[
ψ11 0
0 ψ22

]
=
[
V ar(ζ1) 0

0 V ar(ζ2)

]

Note that Ψ is a diagonal matrix because we assume that the error terms ζ1

and ζ2 are independent.

Under the Bayesian framework, X, Y , and M are considered to be known

data and Γ, B, Φ, and Ψ are random parameters with some distribution. Note

that there are no latent, or unobserved, variables in this model so path analysis

is sufficient for fitting the model. As a result, we can write the joint posterior

distribution of the parameters:
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p(Γ, B,Ψ,Φ|Y,M,X) ∝ p(Y,M,X|Γ, B,Ψ,Φ) p(Γ, B,Ψ,Φ)

= p(Y,M,X|Γ, B,Ψ,Φ) p(Γ, B,Ψ) p(Φ)

= p(Y,M |X,Γ, B,Ψ,Φ) p(X|Γ, B,Ψ,Φ) p(Γ, B,Ψ) p(Φ)

= p(Y,M |X,Γ, B,Ψ) p(X|Φ) p(Γ, B,Ψ) p(Φ)

= p(Y,M |X,Γ, B,Ψ) p(Γ, B,Ψ) p(X|Φ) p(Φ)

The proportional statement is an application of Bayes’ Rule, which indicates

that the posterior is proportional to the product of the prior distribution and

likelihood. The first equality is due to the independence of (Γ, B,Ψ) and Φ.

The second is another application of Bayes’ Rule. The third is due to existing

relationships of independent: the distribution of (Y,M) is defined by all param-

eters except Φ while the distribution of X is only defined by Φ. Finally, the

fourth equality is a rearrangement of the previous line.

The noticeable fact about the posterior is that Φ does not provide informa-

tion regarding the indirect effect, which is a function of Γ and B. Therefore, the

last two terms in the fourth equality can be ignored. Therefore, the posterior

distribution of interest is:

p(Y,M |X,Γ, B,Ψ) p(Γ, B,Ψ) (4.7)

In other words, the posterior distribution is the joint likelihood of Y and
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M , which can be equivalent to the joint distribution of Y and M used to derive

the profile likelihoods in the previous method, and an incorporation of existing

information about the parameters of interest through the prior distribution.

Song and Lee (2012) utilizes normal priors for observed data and gamma

priors for variance terms. With such information, Model 2 can be fit in the

Bayesian setting using Gibbs sampling, with the hope that removing asymptotic

constraints will lead to improved ability to detect a non-zero indirect effect.

4.4.2 Simulation

For the likelihood of the observed data, the following was specified:

Y ∼ N(γ11X + β12M,ψ−1
11 )

M ∼ N(γ21X,ψ
−1
22 )

In Bayesian contexts, the second parameter of the normal distribution is typi-

cally the precision, which is the inverse of the variance.

For the prior distributions of the parameters, the following was specified:
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γ11 ∼ N(0, 0.01)

γ21 ∼ N(0, 0.01)

β12 ∼ N(0, 0.01)

ψ−1
11 ∼ InvGamma(0.001, 0.001)

ψ−1
22 ∼ InvGamma(0.001, 0.001)

Note that these priors are rather non-informative, as they do not provide much

information about the parameters on the natural scale. In addition, each data

variable and parameter is modeled as independent from all others, which may

result in unrealistic simulations if there is any correlation or dependence be-

tween the observed data Y and M , or between the random parameters.

In order to use Gibbs sampling to obtain draws from the posterior distri-

butions of the parameters, the R2jags and rjags packages were utilized in R

(Plummer et al., 2015; Su and Yajima, 2012).

For each sample size, 100 sets of data were simulated using the specified

priors and likelihoods. The specifications for each set of data, the same as for

the other simulations, are as follows:
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β3β4 = 0.25

X ∼ N(µ = 0, σ = 10)

Y = β2X + β3M + ϵ2

M = β4X + ϵ3

ϵ2 ∼ N(0, σ2
Y )

ϵ3 ∼ N(0, σ2
M)

0 ≤ σ2
Y , σ

2
M ≤ 1

For each set of data, corresponding draws from the posterior distributions

of γ21 and β12 to create draws representing the indirect effect, γ21β12. Let θ(k)

represent the kth ordered multiplied draw from the posterior distributions of γ21

and β12. Then, the following was calculated:

1
K

K∑
k=1

1{θ(k) ≤ 0}

By the Law of Large Numbers,

1
K

K∑
k=1

1{θ(k) ≤ 0} P−→ E[1{θ(k) ≤ 0}]

= P (θ(k) ≤ 0)
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In other words, the proportion of multiplied draws that are less than or

equal to 0 is a consistent estimator of the proportion of the distribution of the

multiplied draws that is less than or equal to 0, or the percentile of the posterior

distribution that is equal to zero.

As a result, 100 sample percentiles are generated for each sample size. The

indirect effect was set equal to 0.25 for the purposes of the simulation. The

summary statistics of the percentiles are reported in Table 4.5.

N Average Median 1st Quartile 3rd Quartile
10 0.24 0.14 0.03 0.36
25 0.19 0.08 0.01 0.30
30 0.18 0.04 0.00 0.28
50 0.12 0.03 0.00 0.17

100 0.08 0.01 0.00 0.06
500 0.00 0.00 0.00 0.00

Table 4.5: Bayesian Mediation - Distribution of Percentiles

Using a similar argument as the estimated percentiles,

1
K

K∑
k=1

1{θ(0.025K+1) < θ(k) < θ(0.975K)} P−→ E[1{θ(0.025K+1) < θ(k) < θ(0.975K)]

= P (θ(0.025K+1) < θ(k) < θ(0.975K))

However,

1
K

K∑
k=1

1{θ(0.025K+1) < θ(k) < θ(0.975K)} = 0.95
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Thus, (θ(0.025K+1), θ(0.975K)) is a consistent estimate for the 95% credible in-

terval for the posterior distribution of γ21β12.

Recall that in the Bayesian setting, parameters are considered random vari-

ables. As a result, a 95% credible interval is an interval such that 95% of the

posterior distribution falls within its endpoints. For each set of data in each

sample size, a 95% credible interval for γ21β12 was generated and the proportion

of times an interval contained 0 was calculated. While the frequentist notion

of power does not exist in the Bayesian setting, “power" can be assessed in the

Bayesian setting given a mechanism for assessing hypotheses. For instance, if

zero is not included in the 95% credible interval, it can be interpreted as the

2.5% percentile of the posterior distribution of the indirect effect being greater

than zero or the 97.5% percentile being less than zero. In other words, the

exclusion of zero from the 95% credible interval indicates that at least 95% of

the posterior distribution of the indirect effect lies away from zero. This can be

viewed as evidence of an indirect effect.

The proportion of times for each sample size are reported in the table below:

N Power
10 0.21
25 0.37
30 0.45
50 0.48

100 0.61
250 0.85
500 0.98

Table 4.6: Bayesian Mediation - Power of Credible Intervals
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As one would expect, as the sample size increases, the summary statistics

for the estimated percentiles converged to 0. This indicates that the number

of estimated draws greater than 0 increases as the sample size increases. The

finding can possibly provide evidence that the draws from the posterior dis-

tribution are moving away from 0 and towards a positive value, indicating an

indirect effect. It must be noted that estimating the percentile equal to 0 is

appropriate when there is prior belief that the indirect effect may be positive.

If the indirect effect is believed to be negative, then the interest is in the propor-

tion of the posterior distribution of the indirect effect greater than or equal to 0.

In addition, the estimated power of the credible intervals, or the proportion

of intervals that do not contain 0, increase with increasing sample size, indicat-

ing that a significant proportion of the posterior distribution of γ21β12 sits away

from 0. However, the simulation does provide evidence of relatively low power

of the 95% credible intervals at smaller sample sizes.

Utilizing Bayesian structural equation modeling to assess mediation allows

for the use of prior information, and also removes reliance on asymptotic proper-

ties or distributions. However, the cost of such gains is increased computational

time, which led to smaller sets of the data for the simulation of this approach.
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Chapter 5

Example: Race, Diet, and
Hypertension in NHANES

5.1 Introduction

While the methods presented in Chapter 4 can be utilized in any application

that can be depicted as in Figure 4.2 and that seeks to conduct inference re-

garding the indirect effect, the methods were derived with health disparities in

mind. Therefore, to illustrate the usefulness of the presented methods, each will

be applied to a real-world example, assessing whether the number of calories

eaten per day mediates the relationship between race and hypertension in black

and white older adults. The application and results of the methods to this pur-

pose will be discussed in this chapter.

5.1.1 Residential Segregation and Diet

There is ample work in the scientific literature that sheds light on the relation-

ship between the built environment, particularly residential segregation, and
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dietary patterns of its inhabitants. For instance, the research suggests that in-

habitants of a neighborhood with access to supermarkets tend to have healthier

diets and lower rates of obesity (Landrine and Corral, 2009; Larson et al., 2009).

However, there has been recent discussion of neighborhood-level disparities in

the type of food stores present in a neighborhood and the residents’ access to

fresh foods.

There is evidence of racial and socioeconomic disparities in food quality

in neighborhoods. Wealthier neighborhoods have been found to contain a

larger number of supermarkets, compared to poorer neighborhoods (Kramer

and Hogue, 2009; Morland et al., 2002). Also, poor neighborhoods as well

as segregated neighborhoods tend to have more options for obtaining alcohol

(Kramer and Hogue, 2009). Predominantly white neighborhoods tend to have a

significantly higher number of supermarkets, compared to predominantly black

neighborhoods (Kramer and Hogue, 2009; Landrine and Corral, 2009; Morland

et al., 2002). Also, black neighborhoods tend to have significantly higher num-

bers of fast food establishments, which may promote increased consumption of

fast food and a less healthy diet as fast food tends to be high in calories and fat

(Landrine and Corral, 2009; Larson et al., 2009). It has been hypothesized that

racial residential segregation is a cause of the disparity in the density of fast

food between black and white neighborhoods (Kwate, 2008). On the individ-

ual level, residential segregation has been found to be associated with fruit and

vegetable consumption in African-Americans, which is pertinent to preventing

high blood pressure (Corral et al., 2011).
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In summary, a growing body of research points to the existence of an asso-

ciation between the presence of residential segregation and decreased quality in

diet. While a causal relationship has not been definitively proven in the liter-

ature, much of the evidence points to residential segregation influencing food

and diet quality in minority groups, particularly African-Americans.

5.1.2 Race, Diet, and Hypertension

Chapter 2 discussed the relationship between race and hypertension, in that

blacks have higher prevalences of hypertension compared to whites across the

life cycle, especially at older ages. Additionally, research has suggested that

neighborhood-level context such as neighborhood poverty and racial composi-

tion may shed light on the racial disparity of hypertension prevalence in adults

(Kershaw et al., 2011) and specifically, older adults (Usher et al., 2016).

While the research on racial differences in diet is limited, there is some evi-

dence of differences in diet quality and perception with regards to race. In one

study, blacks aged 18-64 were found to have lower mean healthy eating indices

for total vegetables and whole grains than whites, and overall quality of diet

in adults generally improved with income level (Hiza et al., 2013). However,

the same study only found lower scores for milk consumption for blacks than

whites aged 65 and over, which may be due to a higher prevalence of lactose

intolerance in blacks (Hiza et al., 2013). Another study found that blacks and

Hispanics generally agreed on the importance of dieting but discussed obstacles

in adherence to a diet, including the expense and the departure of traditional

and preferred diets (Horowitz et al., 2004). Given the findings of the studies, it
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may be beneficial to explore further the relationship between race and diet.

It is common knowledge that adherence to a healthy diet is imperative to the

prevention and treatment of hypertension and the lowering of blood pressure.

Such knowledge has been aided by the advocacy of diet modification by influen-

tial agencies such as the Centers for Disease Control (for Disease Control et al.,

2011). Diets aimed at treating hypertension have also been developed (Sacks

et al., 2001). The focus has fallen on reducing sodium intake rather than on

limiting caloric intake, with the exception of preventing obesity, which is known

to be associated with hypertension. As a result, the assessment of whether an

indirect effect exists between race and blood pressure through caloric intake

may provide useful information regarding what is known about the relationship

between race and hypertension.

5.2 Study Design

5.2.1 Data

The example will utilize the National Health And Nutrition Examination Sur-

vey (NHANES), conducted by the Centers for Disease Control and Prevention.

NHANES was designed to determine the health, functional, and nutritional

status of the United States population. NHANES is conducted as a continu-

ous, annual survey with public use data files released in 2-year periods. Each

iteration of NHANES is a cross-sectional survey that serves as a nationally

representative population of the civilian, noninstitutionalized population of the
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United States.

Home interviews were used to collect health history, health behaviors, health

utilization, and risk factors from participants. They were then invited to receive

a physical examination at a mobile examination center. Of those who partici-

pated in the examination, a nationally representative subset underwent labora-

tory tests. Additional details regarding the NHANES data collection or design

can be found at the NHANES website (http://www.cdc.gov/nchs/nhanes.htm).

The data used in the example will be restricted to non-Hispanic black

(n=1011) and white (n=3547) adults aged 50 and over, for a total sample size

of 4558. The cutoff of 50 years of age was used to define older adults rather

than the traditional 65 years of age because it provides a much larger sample

size of black participants.

5.2.2 Variables of Interest

In the example, the exposure will be the racial status of the subject, dichotomized

as non-Hispanic white or non-Hispanic black. While diet cannot be fully ex-

plained from one single variable, we can utilize a proxy measure to serve as the

potential mediator and interpret the results with regards to the proxy. There-

fore, the potential mediator will be the self-reported number of calories eaten

in one day. Finally, the outcomes will be systolic and diastolic blood pressure,

measured continuously with the unit being mm Hg. The indirect effect of race

on systolic and diastolic blood pressure will be assessed separately.
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To ensure that both variables have an approximately normal distribution,

the number of calories consumed per day and systolic/diastolic blood pressure

are log-transformed.

5.2.3 Methods

The following models will be utilized for this example:

Race Systolic BP
β1

BP = β1Race + ϵ1

Figure 5.1: Race and Hypertension in NHANES - Direct Effect Model

Race

Diet

Systolic BP

β4 β3
β2

BP = β2Race + β3Diet + ϵ2

Diet = β4Race + ϵ3

Figure 5.2: Race and Hypertension in NHANES - Mediated Model

For each outcome, estimates of the causal relations depicted in Models 1

and 2 will be calculated under the frequentist perspective. Estimates of the

relations in Model 2 will be calculated under the Bayesian perspective. Under

each perspective, the indirect effect and its standard error will be estimated.
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Non-Hispanic White Non-Hispanic Black p-value
Calories per day 1890.0 1673.1

log Calories per day 7.46 7.30 3.31e-16
Systolic BP 134.7 139.5

log Systolic BP 4.90 4.93 4.96e-09
Diastolic BP 69.0 72.2

log Diastolic BP 4.18 4.22 0.061

Table 5.1: Demographic Information by Racial Status

Test statistics and p-values for the adjusted Sobel test and profile likelihood-

based test will be reported and compared to the traditional Sobel test. Addi-

tionally, the 0.125 and 0.25 likelihood intervals and 95% confidence interval

using the profile likelihood method will be reported and compared. Finally, us-

ing Bayesian estimation of Model 2, the percentile of the posterior distribution

of the indirect effect equal to 0 will be reported as well as the 95% credible

interval of the indirect effect.

5.3 Results

Table 5.1 shows estimated means of the potential mediator and outcomes used

in this example, stratified by racial status. While non-Hispanic blacks have a

lower average number of calories consumed per day, they have higher average

systolic and diastolic blood pressures, compared to non-Hispanic whites. After

log transformation, the inequalities were found to be statistically significant us-

ing t-tests.

Table 5.2 illustrates the estimates of the parameters of Figures 5.1 and 5.2 us-

ing log-transformed systolic blood pressure as the outcome. The adjusted Sobel
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Adjusted Sobel Profile Likelihood Bayesian SEM
β1 0.035

β2 (γ11) 0.029 0.029
β3 (β12) -0.036 -0.035
β4 (γ21) -0.160 -0.159

β3β4 0.0058 0.0058 0.0056
β3β4 SE 0.00046 0.00053

Table 5.2: Systolic Blood Pressure: Estimates

test and the profile likelihood-based methods both utilize frequentist statistics.

As a result, their estimates for β1, β2, β3, and β4 are equal. The parameter

estimates and estimated indirect effect between the frequentist and Bayesian

methods are almost equivalent. However, the standard errors for the indirect

effect estimates for the adjusted Sobel test and profile likelihood-based test dif-

fer slightly.

Table 5.3 reports the findings from the three methods discussed in Chapter 4

with regards to systolic blood pressure. Note the variability in the test statistics

between the frequentist methods and the Sobel test. However, all three tests

report p-values below the significance level of 0.05, meaning that they all reject

the null hypothesis that the indirect effect equals 0 for the alternative hypoth-

esis that it significantly differs from 0. Additionally, the estimated percentile

of the posterior distribution of the indirect effect equal to 0 is approximately

0. This indicates that the distribution sits above zero, which can be seen as

further evidence of a non-zero indirect effect. Finally, none of the frequentist or

Bayesian intervals include zero, providing more evidence of a non-zero indirect

effect.
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Adjusted Sobel Profile Likelihood Bayesian SEM Sobel
Test statistic 3.07978 10.93669 5.42157
Test p-value 0.00207 7.696e-28 5.91e-08

Percentile 0.00
0.125 PL int (0.00472, 0.00688)
0.25 PL int (0.00491, 0.00668)

95% CI (0.00476, 0.00684)
95% cred int (0.00388, 0.00746)

Table 5.3: Systolic Blood Pressure: Inference

Figure 5.3 shows plots based on draws from the posterior distributions of

β12, γ11, and γ21 with log-transformed systolic blood pressure serving as the

outcome. The empirical densities of the posterior distribution of γ11 and γ21

appear to be fairly normal and the traces indicate good mixing with regards

to the Gibbs sampling of the posterior draws. However, the empirical density

for the posterior distribution of β12 does not appear to be as bell-shaped or

symmetric as the other posteriors. In addition, the traces do not appear to be

as random, potentially indicating improper mixing in the draws and an area

that requires improvement. This may be due to the fact that β12 represents the

association between M and Y but M is being modeled as well.

Table 5.4 illustrates the estimates of the parameters of Figures 5.1 and 5.2

using log-transformed diastolic blood pressure as the outcome. Once again, the

parameter estimates and estimated indirect effect between the frequentist and

Bayesian methods are almost equivalent. However, the standard errors for the

indirect effect estimates for the adjusted Sobel test and profile likelihood-based

test are relatively different, with the profile likelihoood-based method providing
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Figure 5.3: Systolic Blood Pressure: Posterior Distributions

a smaller estimate.

Table 5.5 reports the findings from the three methods discussed in Chapter

4 with regards to diastolic blood pressure. The variability in the test statistics

between the frequentist methods and the Sobel test is still present. However,

all three tests report p-values below the significance level of 0.05, concluding

that the indirect effect differs from zero. Additionally, the estimated percentile

of the posterior distribution of the indirect effect equal to 0 is approximately 1.

This indicates that the distribution sits below zero, which is appropriate since

the estimated indirect effect is negative. In other words, the proportion of the

posterior distribution greater than 0 is approximately zero. Finally, none of the
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Adjusted Sobel Profile Likelihood Bayesian SEM
β1 0.038

β2 (γ11) 0.050 0.050
β3 (β12) 0.070 0.075
β4 (γ21) -0.160 -0.159

β3β4 -0.011 -0.011 -0.012
β3β4 SE 0.00175 1.08e-06

Table 5.4: Diastolic Blood Pressure: Estimates

Adjusted Sobel Profile Likelihood Bayesian SEM Sobel
Test statistic -6.429 -10.803 -3.612
Test p-value 1.28e-10 3.33e-27 0.00030

Percentile 1.00
0.125 PL int (-0.01335, -0.00911)
0.25 PL int (-0.01296, -0.00950)

95% CI (-0.01327, -0.00911)
95% cred int (-0.01864, -0.00698)

Table 5.5: Diastolic Blood Pressure: Inference

frequentist or Bayesian intervals include zero, which contributes to the evidence

of a non-zero indirect effect.

Figure 5.4 shows plots based on draws from the posterior distributions of

β12, γ11, and γ21 with log-transformed diastolic blood pressure serving as the

outcome. Once again, the empirical densities of the posterior distribution of

γ11 and γ21 appear to be fairly normal and the traces indicate good mixing

with regards to the Gibbs sampling of the posterior draws. However, as with

systolic blood pressure, the empirical density for the posterior distribution of

β12 does not appear to be as bell-shaped or symmetric as the other posteriors.

In addition, the traces do not appear to be as random, which will need to be

addressed in further research.
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Figure 5.4: Diastolic Blood Pressure: Posterior Distributions

5.4 Conclusions

All three methods, along with the Sobel test, provide evidence that the number

of calories consumed per day mediates the relationship between race and sys-

tolic blood pressure as well as the relationship between race and diastolic blood

pressure. Based on the estimates, the indirect effect through the number of

calories eaten per day increased the magnitude of the association between race

and systolic blood pressure. However, the indirect effect decreased the mag-

nitude of the association between race and diastolic blood pressure. It should

be noted that the unadjusted direct effect of the association between race and

diastolic blood pressure depicted in Model 1 was not found to be significantly

different from zero. This can indicate that there is only a significant indirect
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effect between race and diastolic blood pressure through calories consumed per

day.

While there was great variability in the test statistics between the proposed

methods, they all reached the same conclusion. In addition, the estimates for

the parameters are very similar across the frequentist and Bayesian methods.

Finally, the 95% credible interval generated from the Bayesian model fit is rel-

atively larger than the frequentist intervals. However, none of the intervals

include 0, further indicating the presence of mediation.

It must be noted that the tested associations are unadjusted for potential

confounders. Therefore, unmeasured confounding can affect the validity of the

findings in this example. In addition, NHANES uses a complex sampling pro-

cess but the methods have not been extended to incorporating sampling weights.

Therefore, generalizability of the results to the national population is problem-

atic.
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Chapter 6

Conclusion

Despite much research, disparities in health statuses, such as hypertension

prevalence, persist between African-Americans and whites. Particularly for hy-

pertension prevalence, the disparities tend to increase as African-Americans and

whites age. Methodological issues have hampered attempts of moving past the

documentation of health disparities to creating potential interventions to re-

duce or eliminate health disparities. One such important issue is performing

causal inference in health disparities research, where race and socioeconomic

status are strongly correlated. Nevertheless, it is imperative to perform such

inference, including mediation analysis to determine variables that link race and

health statuses.

Perhaps the most predominant model of causal effects, the Rubin causal

model, relies on counterfactuals that are not easily defined in social epidemi-

ology. Additionally, the strong correlation between predominant variables in

health disparities research makes it difficult to utilize traditional causal infer-

ence tools, such as propensity score matching.
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There are various tests and measures of standard errors that can be used to

assess mediation using regression or structural equation modeling. The indirect

effect is one of the most common estimands of mediation and the Sobel test is

commonly used to test the significance of the indirect effect. However, the Sobel

test relies on asymptotic properties. As a result, its power for smaller sample

sizes is reduced. In addition, the Sobel test focuses on hypothesis testing only,

rather than confidence and likelihood intervals. As a result, three new methods

were presented that seek to assess mediation in health disparities research by

performing inference on the indirect effect between an exposure and an outcome.

The first method is an adjusted Sobel test that calculates the standard errors

of estimates using the fact that the proposed mediator is considered random in

the single-mediator model (Figure 4.2). In simulations, the adjusted Sobel test

has larger estimated power for smaller sample sizes than the traditional Sobel

test, and comparable estimated power as the sample sizes increase.

The second method utilizes the joint distribution of the mediator and the

outcome to obtain profile likelihoods for the two parameters that form the esti-

mand of interest. From the profile likelihoods, distributions for the estimates of

the parameters were obtained and used to define an approximate, asymptotic

distribution for the estimate of the indirect effect. Then, likelihood intervals,

confidence intervals, and a hypothesis test was generated. Simulations highlight

a coverage/power tradeoff where power increases while coverage decreases when

the threshold of the likelihood interval is increased. Simulations also indicated
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that the 95% confidence interval may serve as the interval that balances cov-

erage and power, with it having good coverage and comparable power to the

Sobel test. The hypothesis test based on the inference from the profile likeli-

hoods once again has larger estimated power than the traditional Sobel test at

smaller sample sizes, with the estimated powers converging to equal at larger

sample sizes.

The third method assesses mediation by evaluating the indirect effect in a

Bayesian context. It utilizes Bayesian methods of fitting structural equation

models, then evaluating mediation using the posterior distribution of the indi-

rect effect. Gibbs sampling was used to fit the model. The indirect effect was

investigated using a 95% credible interval as well as the percentile of the pos-

terior distribution that is equal to zero. Simulations showed that average and

median percentile equal to zero approached zero for a positive indirect effect

as the sample size increased, indicating that the posterior distribution moved

further from zero as the sample size increased. In addition, the estimated power

of the credible interval, or the proportion of times the credible interval did not

contain zero, increased as the sample size increased.

In an application of the three methods, they assessed whether diet, measured

as the number of calories consumed per day, mediated the relationship between

race and systolic and diastolic blood pressure in non-Hispanic blacks and whites

aged 50 and over in the National Health and Nutrition Examination Survey

(NHANES) from 1999-2004. All three methods, along with the Sobel test,

showed evidence of a significant indirect effect of race on systolic and diastolic
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blood pressure through diet. In addition, the findings from the application

were consistent with some of the observations from the simulations, such as a

potential coverage/power tradeoff within the likelihood intervals.

6.1 Strengths and Limitations

The strengths of the frequentist methods presented include higher statistical

power for smaller sample sizes compared to the Sobel test and explicit state-

ments of the standard errors of the estimates of interest. The method based

on profile likelihoods allow for the use of likelihood intervals to infer on the

indirect effect, which is typically not used. It also sheds light on a potential

coverage/power tradeoff that has not been investigated before. Because the

methods rely on likelihoods, their inference is optimal in the instances that the

assumptions hold. Regarding the Bayesian methods of assessing mediation, it

extends mediation to the Bayesian setting and presents methods for assessing

inference in the Bayesian setting with the use of credible intervals and estimated

percentiles of the posterior distribution.

The limitations of the methods include a reliance of the assumption of nor-

mality of the mediator and outcome. While it is beneficial when the mediator

and outcome are both normally distributed, the methods may not perform as

effectively if the assumption is violated. In addition, the methods do not incor-

porate potential confounders that can bias the indirect effect. Additionally, the

methods cannot incorporate survey weights, which can prevent generalization

to larger populations when used in complex study designs. Also, the frequentist
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methods rely on asymptotic findings, which require larger sample sizes. While

the Bayesian method of mediation does not, obtaining draws from the posterior

distribution of the indirect effect can be computationally intensive.

It is worth noting the methods were generated from models that do not

account for feedback loops, or reverse causality. As a result, the methods may

not be appropriate for structural models that account for reverse causality.

Structural equation models in general become more complex and harder to

estimate in the presence of feedback loops. However, an option could be to

utilize temporality to redefine the model to remove any feedback loops. For

instance, if a model contained income and education, which may form a feedback

loop, one variable could be modeled as an early-life variable while the other is

modeled as a later-life variable.

6.2 Future Areas of Research

A major area of research includes relaxing the normality assumptions in the

frequentist methods and similarly, further exploration with different prior dis-

tributions and likelihoods in the Bayesian method to extend the methods to

categorical and dichotomous data. In addition, validating or extending the

methods to latent variables will allow us to assess residential segregation itself

as a potential mediator between race and health statuses, rather than using

indicators of residential segregation such as diet. Including the adjustment for

potential confounders within the methods will allow for unbiased estimates of

indirect effects. For the Bayesian method, further investigation into the use of
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informative priors in order to incorporate useful information into the assessment

of mediation is a key area of further interest. Finally, accounting for collinearity

between exposures, mediators, and outcomes may allow the methods to achieve

higher statistical power than what is currently observed.

6.3 Public Health Implications

The methods presented assess the presence of mediation by performing infer-

ence on indirect effects obtained from structural equation models. From the

results of the simulations, the methods may be able to perform more accurate

inference than the Sobel test.

With regards to racial and socioeconomic health disparities research, this

work outlines the reasons that necessitates some form of causal inference into

the health disparities framework. Also, the use of structural equation models al-

low for the use of these methods in health disparities research, where regression

and SEM are commonplace. The methods also do not rely on counterfactuals,

which are not straightforward for exposures that cannot be manipulated, like

race, and are difficult to define in social epidemiology research (Kaufman and

Cooper, 1999; Glass et al., 2013). Perhaps most importantly, the methods have

been created with health disparities in mind. In particular, the work involv-

ing mediation in the Bayesian setting might allow for more informed mediation

analysis of health disparities by including prior information, which exists in

great supply.

92



As it stands, the work presented helps to point the field of health dispari-

ties research towards the second generation by encouraging more inquiry into

the mechanisms of health disparities. With further research, such as extend-

ing the methods to categorical and dichotomous data and incorporating survey

weights, the methods presented can contribute to the widespread use of me-

diation analysis in health disparities research and could one day lead towards

third-generation research, the creation of meaningful interventions to reduce or

eliminate health disparities.
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