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Abstract

Randomized trials are considered the gold standard for estimating causal ef-

fects, and evidence from trials is highly regarded in decision making processes

that impact entire populations. While rigorous in design, RCTs can still be

flawed; leveraging data and information from additional non-experimental

or “real world" studies can be advantageous for addressing statistical issues

and improving inferences. This dissertation addresses two complications

that arise in trials and can be addressed in this way: poor external validity

and measurement error. To deal with both of these issues, it is important to

consider (and account for) differences in baseline covariates between the RCT

sample and the external data source. In other words, it is crucial to address

how “transportable" inferences are between the two studies. This work fo-

cuses on transportability between an RCT and an external non-experimental

study in two contexts: 1) when generalizing RCT findings to a well-defined

target population and 2) when correcting for outcome measurement error in

an RCT.
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Chapter 1

Introduction

Randomized controlled trials (RCTs) are considered the gold standard for

estimating causal effects, and evidence from trials is highly regarded in de-

cision making processes that impact entire populations. Randomization of

treatment assignment helps yield strong internal validity and allows for unbi-

ased estimation of the sample average treatment effect (ATE). While rigorous

in design, RCTs can still be flawed. Leveraging data and information from

additional non-experimental or “real world” studies can be advantageous for

addressing various statistical issues and improving inferences drawn from

RCTs. When doing so, it is important to consider the relationship between

each study sample’s demographics, and how they each relate to a common

target population of interest. In other words, it is crucial to address how

“transportable" inferences are between the two studies, such as by comparing

the baseline covariate distributions between them. Failure to address trans-

portability when supplementing RCTs with external data can add further

biases to ATE estimates, sometimes more-so than if the supplemental data

were not used at all.
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This dissertation research focuses on the development and dissemination

of statistical methods for transportability when addressing two complications

that arise in trials: poor generalizability and outcome measurement error. The

first issue is a matter of external validity, where supplemental data are being

used to extrapolate ATE estimates from an RCT to a broader population. The

second issue is a matter of internal validity, where supplemental data are

being used to model a measurement error structure that is then applied to

the RCT sample. Nevertheless, the statistical methodology discussed and

proposed in both of these cases are complementary.

Chapter 2 builds upon existing statistical methods for generalizing RCT

inferences to well-defined target populations. Findings from RCTs are often

used to inform health policy and public health program implementation, yet

their results may not generalize well to a policy-relevant target population due

to potential differences in effect moderators between the trial and population

(Imai, King, & Stuart, 2008). This issue has been frequently raised about

trials across various fields in health (Dababnah & Parish, 2016; Susukida,

Crum, Ebnesajjad, Stuart, & Mojtabai, 2017), social work (Stuart, Ackerman,

& Westreich, 2017) and education (Tipton & Olsen, 2018), and can often be

attributed to the convenience sampling recruitment strategies implemented to

acquire the trial sample. While there are trial design approaches to improving

external validity (Flay, 1986; Insel, 2006), there are many barriers to changing

recruitment for medical trials, such as time, money and strict exclusion criteria

established for safety purposes. Recently, post-hoc statistical methods have

been developed to generalize trial findings to a target population, and to
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assess when such generalizations are even possible (Kern, Stuart, Hill, &

Green, 2016; Stuart, Cole, Bradshaw, & Leaf, 2011). One such generalization

method draws from the propensity score literature by modeling the probability

of trial selection conditional on pre-treatment characteristics, and weighting

the trial so that it better resembles the target population (Cole & Stuart, 2010).

This approach (as well as other model-based approaches) requires finding

external data that are a simple random sample of the target population, which

can be challenging to do in practice (Stuart & Rhodes, 2017).

One promising source of population data are large health-related govern-

ment surveys; they often have an extensive set of measured covariates that

describe a wide range of populations. However, given their complex survey

design, these datasets are not representative of their respective target popu-

lations without the incorporation of survey weights. Existing generalization

methods do not account for this type of population data study design, and

applying current methods using a population survey could therefore pro-

duce incorrect (or biased) estimates of the population average treatment effect

(PATE). In Chapter 2, we formally show that the PATE depends on both the

RCT-to-survey transportability weights and the survey’s inverse probability

of selection weights. We then propose and evaluate an extension to existing

generalization weighting methods: a two-stage weighting approach that in-

corporates survey weights from supplementary population survey data when

generalizing trial findings.

Chapter 3 similarly draws upon the propensity score weighting literature

to address transportability when correcting for measurement error in lifestyle
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intervention trials. Lifestyle intervention trials aim to establish how changes

to human behavior, such as physical activity or food intake, can impact and

improve health outcomes. In such trials, it is important to obtain accurate

measures on these behaviors; however, reliable measures are often expensive

and burdensome for participants to collect. Self-reported outcomes, such as

dietary intake, are often therefore used in order to assess the intervention’s

effectiveness. While less costly and challenging to obtain, these measures

are subject to measurement error, which can lead to biased estimates of the

average treatment effect (Rothman, Greenland, & Lash, 2008; Willett, 2012).

Methods have been developed to correct for measurement error by using

external validation studies, which measure both the self-reported outcome

and an accompanying biomarker, to model the measurement error structure

(Wong, Day, Bashir, & Duffy, 1999). Much of the attention in the measurement

error literature has been paid to when measurement error is present in either

the exposure of interest or in covariates (Buonaccorsi, 2010; Carroll, Ruppert,

Stefanski, & Crainiceanu, 2006; Keogh & White, 2014). Less work, however,

has focused on correcting for misclassification or measurement error in study

outcomes (Keogh, Carroll, Tooze, Kirkpatrick, & Freedman, 2016), which

is particularly worrisome for trials that focus on self-reported behavioral

outcomes (Spring et al., 2012; Spring et al., 2018). Additionally, external

validation samples typically only collect measures under a “usual care" setting,

which we must assume is equivalent to the control conditions of a randomized

trial. This makes it infeasible to directly correct for the error under both

the treatment and control conditions based on the information available to

researchers.
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Siddique et al. (2019) developed methodology for modeling outcome mea-

surement error under the control condition using an external validation sam-

ple, followed by sensitivity analyses to obtain a range of plausible values

for the treatment effect. The existing literature, for both covariate and out-

come measurement error, often assumes that measurement error models from

external validation studies apply directly to the variable in the trial of inter-

est; however, there is growing concern that such error corrections may not

transport well due to pre-treatment characteristic differences between the two

samples. We show that poor transportability can lead to further biases in

estimating the average treatment effect. We then evaluate the relationship

between such covariate imbalance and measurement error correction through

simulation, and propose the use of propensity score-type weighting methods

to improve upon error correction transportability. Chapter 3 concludes with

guidance for researchers on how to check if their validation sample inferences

would transport well to the trial of interest, with the hopes of making this

work easy to implement in practice.

Finally, Chapter 4 returns to generalizability with a methods tutorial paper

published in Addictive Behaviors (Ackerman et al., 2019). This publication

provides an overview of existing statistical methods for assessing and gener-

alizing findings from randomized trials to a well-defined target population,

with an applied research audience in mind. The paper highlights how to

approach several pragmatic issues when making generalizations, such as

where to look for population data, how to harmonize the external data with
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the trial data, and how to check for violations of key assumptions. Accom-

panying this tutorial is the development of an R package, “generalize." This

R package wraps existing methods for assessing and improving upon RCT

external validity, and is available to download and install from Github at

http://benjamin-ackerman.github.io/generalize. The software provides user-

friendly functions for implementing the propensity score-type weighting

generalization method described in Chapter 2. It also has functions to imple-

ment outcome-modeling generalization approaches, where flexible models of

the outcome conditional on observed covariates are fit in the trial, and then

outcomes under treatment conditions are predicted in the target population.

This can be done using Bayesian Additive Regression Trees (BART) (Hill,

2011; Kern et al., 2016) or Targeted Maximum Likelihood Estimation (TMLE)

(Rudolph, Díaz, Rosenblum, & Stuart, 2014). Lastly, “generalize" allows re-

searchers to compare the baseline demographic distributions between a trial

and target population, both individually (as standardized mean differences)

and jointly through a generalizability index (Tipton, 2014).

Each chapter of this dissertation provides methodological advances for

improving inferences drawn from randomized trials. Chapter 3 demonstrates

the consequences of applying outcome measurement error correction from

a validation study that is not transportable to the RCT of interest, and illus-

trates the benefit in applying propensity score-type weighting methods to

improve transportability. Chapter 2 identifies a pragmatic issue that arises

when implementing generalization methods using target population data

from a complex survey, and offers a methodological fix to ensure that findings
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are generalized to the correct target population of interest. Chapter 4 aims to

bridge the gap between method development and method implementation for

generalizability, providing applied researchers with guidance and software

for generalizing trial findings. This work highlights the importance of taking

transportability into consideration when supplementing randomized trials

with external data.
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Chapter 2

Generalizing Randomized Trial
Findings to a Target Population
using Complex Survey Population
Data

2.1 Introduction

Randomized controlled trials (RCTs) are considered the gold standard for

estimating the causal effect of a new treatment or intervention; however,

they often suffer from poor external validity, or generalizability (Imai, King,

& Stuart, 2008; Shadish, Cook, & Campbell, 2002). Evidence from RCTs is

frequently used when formulating health policy and implementing new large-

scale health programs, but poor generalizability may hinder policymakers’

abilities to make correct policy decisions for their populations. When feasible,

trial designs that strategically sample from the target population of interest

to improve representativeness have been shown to also improve upon the

generalizability of RCTs (Insel, 2006; Peto, Collins, & Gray, 1995; Tipton &
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Matlen, 2019); however, particularly in medical trials, there are many barriers

to doing so, such as time, money and location. Recruitment strategies for

RCTs that do not consider the ultimate target population of interest may lead

to non-representative trial samples. More formally, if the trial sample differs

from the target population on characteristics that moderate treatment effect,

then the average treatment effect in the trial sample (SATE) will not equal the

average treatment effect in the target population (PATE) (Cole & Stuart, 2010).

Several classes of post-hoc statistical methods have been developed to

address concerns of generalizability once a trial has already been completed.

One broad strategy uses propensity score-type methods to weight the trial so

that it better resembles the target population on baseline covariates (Westreich,

Edwards, Lesko, Stuart, & Cole, 2017). Note that this is similar to using

propensity score weighting to estimate the average treatment effect on the

treated (ATT) in non-experimental studies, where instead of fitting a model

of treatment selection, a model of sample membership (i.e. trial participation

vs. not) is specified. A second approach involves modeling the outcome as a

flexible function of the observed covariates in the trial, and then predicting

outcomes under treatment conditions in the target population. This can be

done using Bayesian Additive Regression Trees (BART) (Hill, 2011; Kern,

Stuart, Hill, & Green, 2016) or Targeted Maximum Likelihood Estimation

(TMLE) (Rudolph, Díaz, Rosenblum, & Stuart, 2014). Lastly, doubly robust

methods have been proposed, in which models are fit for both the outcome

and the probability of sample membership (Dahabreh, Hernán, Robertson,

Buchanan, & Steingrimsson, 2019).
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The implementation of these methods requires the identification of a

dataset for the target population of interest, one that contains individual-

level data on all relevant treatment effect modifiers in the trial. While data

availability and quality make this challenging to do (Stuart & Rhodes, 2017),

in practice, large nationally representative surveys collected by government

agencies are often good sources of information on policy-relevant popula-

tions. For example, the National Health and Nutrition Examination Survey

(NHANES) consists of a series of annual surveys that collect information

on participants’ demographics, socioeconomic status, dietary behaviors and

health outcomes, with supplemental laboratory tests and medical examina-

tions (Johnson, Dohrmann, Burt, & Mohadjer, 2014). NHANES is designed to

be representative of the non-institutionalized civilian US population across all

50 states and Washington D.C., and may therefore be a promising source of

population data for implementing generalizability methods.

While surveys like NHANES may provide a wealth of information on the

target population of interest, the analytic datasets on their own are themselves

not representative of the target population. These raw datasets are the result of

complex survey sampling designs that systematically over-sample and under-

sample certain demographic groups. Such designs may involve stratifying the

target population (e.g., first by state, then by county or Census tract) and then

selecting primary sampling units (e.g., households, schools, individuals) by

pre-specified rates, perhaps defined by demographic categories. Some surveys

implement additional levels of stratification, for example, sampling counties

first and then selecting individuals within the sampled counties. Selected

14



participants in the final sample are then assigned sampling weights inversely

proportional to their probability of being selected. Additional corrections for

non-response and post-stratification are also often applied (Valliant, Dever, &

Kreuter, 2013). These sampling weights are typically included as a variable in

the final analytic datasets, though note that not all variables used to construct

the weights are always available for researchers to use. For example, sampling

may occur at the zipcode level, but for confidentiality reasons, zipcode may

be omitted from the final public-use dataset, while a correlated variable, such

as state or region, may be included.

Given these complex survey design elements, any inferences made by

weighting a trial to look like one of these survey raw datasets will generally not

be accurate for the true target population, rather they will just reflect the survey

sample’s demographics. In other words, when using NHANES as target

population data without utilizing NHANES’ survey weights, one would be

generalizing to the NHANES sample, not to the non-institutionalized civilian

US population. While several studies have applied these generalizability

methods using population data from complex surveys, no previous work

has formalized an approach for properly incorporating survey weights when

doing so.

Although the proper incorporation of complex survey design elements

has not been not been addressed in the generalization context, there are

some methodological similarities to be found in a limited, yet growing set

of papers on using propensity score methods to estimate causal effects in

non-experimental complex survey data. However, even in that context, there
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is no consensus on how to best use the survey weights when specifying a

treatment assignment model, whether as weights or as covariates. Zanutto

(2006) argue that survey weights do not need to be used in propensity score

estimation when using matching methods, so long as the survey weights are

used in modeling the outcome. Through simulation studies, DuGoff, Schuler,

and Stuart (2014) show benefit in using the survey weights as predictors in

the propensity score model, but not in using them to weight the propensity

score model. Ridgeway, Kovalchik, Griffin, and Kabeto (2015) provide theo-

retical justification for weighting the propensity score model using the survey

weights, and then weighting the outcome model by the resulting propensity

score weights multiplied by the survey weights. Lenis, Nguyen, Dong, and

Stuart (2017) observe no difference through simulation in how the survey

weights are incorporated in the propensity score model, and Austin, Jembere,

and Chiu (2018) similarly report inconclusive findings on the optimal speci-

fication of the propensity score model. Overall, though, researchers tend to

agree that ignoring survey weights altogether yields causal estimates that

do not generalize to the target population in which a survey was conducted,

and may produce invalid inferences when using propensity score methods.

An important distinction to make is that here, we are not using the survey

weights to estimate an effect within the survey itself, rather we are using the

survey as a target population to generalize to. Other recent relevant work

by Yang, Ganesh, Mulrow, and Pineau (2018) demonstrates the benefit of a

propensity score-type weighting approach when combining a non-probability

sample with a companion probability sample to enhance population-level

estimation. While their approach can be extended to our context by viewing
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RCTs as non-probability samples and surveys as population-level data, this

work does not provide detailed methodological justification on the proper use

of the probability-sample’s survey weights.

Given this existing relevant literature, we hypothesize that it is crucial to

incorporate the survey weights, which relate the survey sample back to the

target population of interest, in order to correctly generalize RCT findings to

the target population of interest. The rest of this paper is structured as follows:

In Section 2.2, we formally evaluate the consequences of ignoring survey

weights when generalizing RCT findings to a target population on which

data are available from a complex survey. We then propose an approach

to estimating the population average treatment effect while incorporating

survey weights in Section 2.3. In Section 2.4, we examine our hypothesis by

conducting a simulation study to investigate when the proposed approach

improves our population-level inferences. We then apply the methods to two

generalization examples where population data come from complex surveys

in Section 2.5, and we conclude by summarizing the findings and discussing

future work in Section 2.6.

2.2 Transporting to a Complex Survey Population
Dataset

2.2.1 Definitions and Assumptions

Suppose the goal of a randomized trial is to estimate the population average

treatment effect (PATE), defined as E[Y(1)− Y(0)] where Y(a) is the potential

outcome Y under treatment a (a = 1 denotes treatment and a = 0 denotes
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Figure 2.1: Scenario of how data sources relate to each other and to the target popula-
tion. The entire grey region denotes the target population, S = 1 denotes the RCT,
S = 2 denotes the complex survey sample, and S = 0 denotes members of the target
population not sampled into either study. Only individuals with S = 1 or S = 2
are observed, while data on individuals with S = 0 are assumed unavailable. This
three-level “S" variable also assumes no overlap between trial and survey participants.
This is a plausible assumption to make for policy-relevant scenarios, where the target
population may be the entire US, and the study sample sizes are on the magnitudes
of a few thousand.

control). This expectation is defined across a well-defined target population

of interest. Let S denote sample membership, where S = 1 denotes trial

membership, S = 2 denotes survey membership, and S = 0 denotes the

individual is in the target population, but not the trial nor the survey sample

(See Figure 2.1)1. Here, we assume no overlap between the trial and survey

samples, which is plausible for policy-relevant scenarios where the target

population is the entire US and the study sample sizes are comparatively

small. Additionally, let A denote treatment assignment and let X denote a set

of pre-treatment covariates.

1Extensions of this work could consider settings in which the trial and survey samples
overlap (i.e. having two indicator variables, one for trial selection and one for survey selec-
tion).
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Note that the population of interest is the union of all S levels; however,

in practice, we often do not have any data on the full population, nor do we

observe outcomes for each level of S. Suppose all we have are data from

the trial itself (S = 1). If the RCT is a simple random sample of the target

population, then we can unbiasedly estimate the PATE using the trial data

alone. However, if the treatment effect in the trial is moderated by covariate X,

and if the distribution of X differs between the trial and the target population,

then the naive estimate in the trial will be a biased estimate of the PATE (Olsen,

Orr, Bell, & Stuart, 2013).

In such cases, we can supplement the trial with survey data (S = 2) and

transport the estimate of the trial to the survey to obtain an unbiased estimate

of the PATE (Westreich et al., 2017). Note that this requires the survey data

to have all Xs related to sample selection and treatment effect heterogeneity

fully observed, while treatment assignment and outcomes may be missing.

Estimating the PATE by transporting the trial findings to a complex survey

sample require making the following assumptions:

1A All members of the target population have nonzero probability of being

selected into the trial.

1B All members of the target population also have nonzero probability of

being selected into the survey.

2A There are no unmeasured variables associated with treatment effect and

trial sample selection.

2B There are also no unmeasured variables associated with treatment effect,
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trial sample selection and survey sample selection.

3 Treatment assignment in the trial is independent of trial sample selection

and the potential outcomes given the pre-treatment covariates.

4 The survey sample is a simple random sample of the target population

(in other words, the survey is “self-weighting").

The plausibility of assumptions 1A, 2A and 3 have been discussed and estab-

lished in previous work on generalizability. For instance, Nguyen, Ackerman,

Schmid, Cole, and Stuart (2018) address assumption 2A by developing sensi-

tivity analysis methods for unobserved moderators. When using population

data that come from complex surveys, however, assumptions 2B and 4 must

also be made. These two assumptions are under-discussed in the existing

generalizability literature, and are also highly unrealistic assumptions to make

given the complex survey designs of most publicly available government

surveys. We now describe how biased the transported estimate will be as an

estimate of the PATE when assumptions 2B and 4 are violated, and particularly,

when the complex survey weights are ignored.

2.2.2 Consequence of ignoring survey weights in the PATE

Recall that the estimand of interest here is the PATE, defined as ∆ = E[Y(1)−

Y(0)]. This estimand can be expanded upon and expressed as:

∆ = E

[︄
1S=1AY

e(∅)δ−1(X)
− 1S=1(1 − A)Y

e(∅)δ−1(X)

]︄
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where e(∅) = P(A = a) and δ(X) = P(S=2|X)
P(S=1|X)

× 1
P(S=2|X)

. In other words, the

PATE can be re-written in terms of the trial data (S = 1) and the relationship

between the trial sample and the target population (δ(X)). This extends upon

a result from Cole and Stuart (2010) by recognizing that(︄
P(S = 2|X)

P(S = 1|X)

)︄
⏞ ⏟⏟ ⏞

Transportability weights

×
(︄

1
P(S = 2|X)

)︄
⏞ ⏟⏟ ⏞

Survey weights

=

(︄
1

P(S = 1|X)

)︄
(2.1)

Furthermore, when P(S = 1|X) cannot be estimated directly, as is often the

case since RCTs are not equipped with “trial selection weights," it can be

conveniently decomposed into two estimable quantities: the inverse odds

of sample vs. survey membership (transportability weights) and the inverse

probability of survey sampling (survey weights).

Note that survey weights are commonly included as variables in publicly

available government complex surveys. While some researchers have, in

practice, incorporated survey weights when transporting from a trial to a

complex survey sample, none have provided methodological details on how

exactly they were used, nor have they provided any justification for their

use. Without such reasoning, it is plausible that some researchers may apply

current generalization methods with complex survey population data while

neglecting to incorporate the survey weights. Suppose we were to ignore the

survey weights altogether. We can refer to this quantity as follows:

∆transport = E[Y(1)− Y(0)|S = 2] = E

[︄
1S=1AY

e(∅)γ−1(X)
− 1S=1(1 − A)Y

e(∅)γ−1(X)

]︄

Note that ∆transport differs from ∆ in that we substitute δ(X) for γ(X) such
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that γ(X) = P(S=2|X)
P(S=1|X)

. Observe that

∆transport = ∆ × P(S = 2|X)

In other words, if survey weights are ignored, then the estimate of ∆transport

will be biased as an estimate for ∆, the PATE, by a factor of P(S = 2|X), or

the probability of being sampled for the survey given covariates X. Note that

∆transport will only be equal to ∆ when P(S = 2|X) = 1, or when the survey is

either a simple random sample of the population, or it is the entire finite target

population.

2.3 Estimating the PATE, ∆

We now discuss three different potential estimators to estimate ∆, the last of

which will incorporate the complex survey weights. First, if we were to use

the trial data alone (S = 1) to estimate ∆, we could use the following naive

estimator:

∆̂naive =
∑i 1Si=1AiYi

∑i 1Si=1Ai
− ∑i 1Si=1(1 − Ai)Yi

∑i 1Si=1(1 − Ai)

However, recall from Section 2.2 that ∆̂naive will be a biased estimate of the

PATE if the treatment effect is moderated by a pre-treatment covariate and

sample selection also depends on that covariate. To improve upon this, we can

transport the estimate to the survey (S = 2) with the following inverse-odds

of sample membership weighted estimator:

∆̂transport =
∑i 1Si=1AiYiγ̂i

∑i 1Si=1Aiγ̂i
− ∑i 1Si=1(1 − Ai)Yiγ̂i

∑i 1Si=1(1 − Ai)γ̂i
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where γ̂i = γ(Xi, β̂) and γ(X, β) = P(S=2|X)
P(S=1|X)

. Note that γ̂i(Xi, β̂) can be

estimated parametrically by fitting a logistic regression model of sample mem-

bership (trial vs. survey) conditional on pre-treatment observables in a dataset

in which the trial and survey data have been concatenated. While ∆̂transport

may be unbiased for ∆transport (Westreich et al., 2017), it will still be a biased

estimate of the PATE, ∆, if the complex survey is not “self-weighting." We

therefore propose a modified version of this estimator, one that incorporates

the complex survey weights relating the survey sample (S = 2) to the target

population:

∆̂svy.wtd =
∑i 1Si=1AiYi δ̂i

∑i 1Si=1Ai δ̂i
− ∑i 1Si=1(1 − Ai)Yi δ̂i

∑i 1Si=1(1 − Ai)δ̂i

where δ̂i = δ(Xi, β̂) and δ(X, β) = P(S=2|X)
P(S=1|X)

× 1
P(S=2|X)

. Here, δ̂i can be es-

timated parametrically by fitting a model for P(S=2|X)
P(S=1|X)

, and multiplying the

resulting estimated transportability weights by the survey weights. If all

related covariates are observed and accounted for, then this estimator is un-

biased for the PATE, directly following a result from Buchanan et al. (2018)

by applying the equality in Equation 2.1. We will now present a simple ex-

ample to compare each of these estimators when weighting a trial to a target

population based on a single covariate.

2.3.1 Toy Example

In order to highlight the consequences of ignoring survey weights when

estimating the PATE, consider the scenario in Table 2.1. Suppose that in the

true target population of interest, 50% of people are above the age of 40, while
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the other 50% are 40 or younger. Suppose data on the full target population

are not available, but a survey is conducted among the target population

members, where 200 individuals over the age of 40 and 300 individuals who

are 40 or younger are sampled. In order for the survey to be representative

of the target population according to dichotomous age, survey weights are

constructed as the inverse probability of being sampled into the survey given

age category. The older category individuals are given a weight of 5
2 while the

younger category individuals are assigned a weight of 5
3 . In doing so, older

survey participants receive greater weight than younger ones to reflect that

older individuals are undersampled in the survey.

Table 2.1: Toy example of a population (not observed), a survey sampled from the
population with weights to reflect the population demographics distribution, and a
trial sampled from the population (by convenience sampling)

E[Y(1)− Y(0)|X] Target pop Survey RCT
age > 40 2 500 200 100
age ≤ 40 4 500 300 50

Next, suppose a randomized trial is conducted among a convenience sam-

ple from the population, and among the recruited participants, 2
3 of them are

40 years or older. Additionally, suppose that the treatment effect is truly mod-

erated by age, where younger participants experience twice the average effect

as older participants. Observe that while older members are undersampled in

the survey, they are oversampled in the trial, and since age moderates treatment

effect and differs between the trial and population, the RCT findings will not

generalize well to this target population.
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First, the true PATE can be calculated by averaging over the stratum-

specific treatment effects in the target population:

∆ = ∑
x

E[Y(1)− Y(0)|X = x]P(X = x) = 2 × 0.5 + 4 × 0.5 = 3

Next, the naive trial estimator for the PATE can be estimated as follows:

∆̂naive = ∑
x

E[Y(1)− Y(0)|X = x]P(X = x|S = 1) = 2 × 2
3
+ 4 × 1

3
= 2.67

As expected, the naive estimate is an underestimate of the PATE because the

trial oversampled older participants, while the treatment has a stronger effect

for younger participants. If we apply the standard transportability weighting

methods using the survey as the target population dataset, and if we ignore

the survey weights, we would weight trial members by the inverse odds of trial

participation conditional on their age category. Older trial participants would

be given a weight of 200
100 = 2, and younger trial participants would be given a

weight of 300
50 = 6. We would therefore estimate the transported estimate as

follows:

∆̂transport =
∑x E[Y(1)− Y(0)|X = x]P(X = x|S = 1)P(S=2|X=x)

P(S=1|X=x)

∑x P(X = x|S = 1)P(S=2|X=x)
P(S=1|X=x)

=
2 × 2

3 × 2 + 4 × 1
3 × 6

2
3 × 2 + 1

3 × 6

= 3.2

As a result, the estimate is unbiased for the ATE in the survey; however, it

is still biased as an estimate of the PATE. Our inferences here reflect that
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older participants are oversampled in the survey, and so in this case we are

overestimating the true PATE. Finally, if we utilize the survey weights by

multiplying the inverse odds transportability weights by the inverse probability

of survey selection, we would obtain weights of 200
100 ×

500
200 = 5 and 300

50 × 500
300 =

10 for the older and younger trial participants, respectively, thereby accurately

weighting them to the target population age distribution. We would estimate

the PATE using this approach as follows:

∆̂svy.wtd =
∑x E[Y(1)− Y(0)|X = x]P(X = x|S = 1)P(S=2|X=x)

P(S=1|X=x)
1

P(S=2|X=x)

∑x P(X = x|S = 1)P(S=2|X=x)
P(S=1|X=x)

1
P(S=2|X=x)

=
2 × 2

3 × 5 + 4 × 1
3 × 10

2
3 × 5 + 1

3 × 10

= 3

Observe that our estimate of the PATE is now unbiased, as we are accounting

for the fact that our survey is not “self-weighting" and the survey weights must

therefore be used to make inferences relevant to the true target population of

interest.

2.3.2 Estimating ∆̂svy.wtd with a weighted sample membership
model

When accounting for a small set of covariates, such as in the example above,

one can directly construct and multiply the transportability weights by the

survey weights. When using a survey equipped with pre-estimated survey

weights, though, this is not plausible. We therefore propose a two-stage
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weighting approach, where we first weight the sample membership model

using the survey weights before constructing the inverse odds transportability

weights. This is equivalent to the multiplication of weights in the simple

approach above, because by weighting survey participants in the sample

membership model, we are recognizing that each participant represents a

particular number of individuals in the true target population. For example,

if a survey participant has a probability of survey selection of 0.02, the corre-

sponding weight of 1
0.02 = 50 suggests that the individual should count for 50

people in the population when estimating population effects with the survey.

Weighting the survey participants in the sample membership model allows us

to therefore compare the trial demographics to the target population, and not

to the survey sample.

The first step entails fitting a weighted logistic regression model of sample

membership using a pseudo-likelihood approach (Pfeffermann, 1993), where

trial participants are assigned a weight of 1 while survey participants are

assigned weights equal to their inverse probability of survey selection. Again,

these weights are typically included in complex survey datasets and are meant

to be used in analyses to relate the survey back to the target population of

interest. The second step entails using the predicted probabilities from the

sample membership model, êi, to construct the inverse odds weights (δ̂i) that

are used to estimate ∆̂svy.wtd, where trial participants are assigned a weight of
1−êi

êi
and survey participants are assigned a weight of 0. It is important to note

that, in theory, this approach will yield an unbiased estimate of ∆ only when

we account for all covariates that impact treatment effect heterogeneity and
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sample selection. However, it may be the case that certain variables used to

construct the survey weights may not be available in the trial data, or even in

the survey dataset itself. In other words, if a moderator is accounted for in the

survey weights, but cannot be directly accounted for in the transportability

weights as well, the PATE estimate may still be biased. With this in mind,

we now describe a simulation study to compare our two-stage weighting

approach to the standard transported estimator and the naive trial sample

estimator.

2.4 Simulation

We conducted a simulation study to assess the performance of the two-stage

weighting approach described in the Section 2.3. We first simulated a finite

population of size N = 1000000 with six covariates using the multivariate

Normal distribution with mean vector 0, and a variance-covariance matrix

where each variable had variance 1, and pair-wise correlation (i.e. X1 and

X2, X3 and X4, X5 and X6) of ρ. We paired the covariates in this way and

varied ρ to look at scenarios where a covariate related to the sample selection

mechanisms was not available in the analytic datasets, but a variable correlated

with the missing covariate was available for use in its place. For example,

survey participants may be sampled proportional to their zipcode, but the

survey dataset might only include state as a geographic indicator for privacy

purposes.

We then assigned probabilities of survey selection and trial selection to

everyone in the population according to the following two models:
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P(Si = 1) = expit[γ1(X1i + X2i + 2X3i + 0X4i + X5i + 0X6i)]

P(Si = 2) = expit[γ2(2X1i + 0X2i + X3i + X4i + X5i + 0X6i)]

We used scaling parameters γ1 and γ2 to control the magnitude of differ-

ence between the two samples and the population, while fixing the relative

impacts of each covariate for each model. As the scaling parameters increase,

the samples differ more greatly from the target population. The coefficients for

the covariates were set to different values in each model to ensure that the sam-

pling mechanisms for the trial and the survey differed from one another. Next,

we generated potential outcomes for the entire population as Y(0) ∼ N(0, 1)

and Y(1) ∼ N(2 + γ3[∑6
i=1 Xi], 1), such that the PATE = 2, and the γ3 scaling

parameter controlled the amount of treatment effect heterogeneity due to the

covariates. Note that when γ3 = 0 (no treatment effect heterogeneity), all of

the PATE estimates should be unbiased.

In each simulation run, we then randomly sampled approximately 600 trial

participants and approximately 4000 survey participants according to each

individual’s respective selection probabilities. In order to do this, we scaled

each individual’s originally generated P(Si = 1) by 0.0006 and their P(Si = 2)

by 0.004, and estimated their probability of not being selected into either study

as P(Si = 0) = 1 − P(Si = 1)− P(Si = 2). This type of scaling combined the

specified selection models with the desired sampling proportions from the

population, and allowed us to then randomly generate an S of 0, 1 or 2 for

each individual using a multinomial distribution. For the survey participants
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(S = 2), we retained their P(Si = 2) as their known survey sampling proba-

bilities to construct survey weights. For the trial participants, we generated

a randomized binary treatment variable A, as well as the observed outcome

Y = A × Y(1) + (1 − A)× Y(0).

Once the trial and survey data were simulated, we estimated the PATE

in the following three ways: 1) Naive trial estimator (∆̂naive), 2) transported

estimator (trial-to-survey) while ignoring the survey weights (∆̂transport) and

3) transported estimator (trial-to-survey) using the survey weights to fit a

weighted sample membership model (∆̂svy.wtd). For the two transportability

estimators, we predicted the probabilities of sample membership by fitting

models with logistic regression, generalized boosted models (GBM) and the Su-

per Learner. GBM is a flexible, iterative algorithm that has been demonstrated

to perform well when used to estimate propensity scores in non-experimental

studies, capturing nonlinear relationships between covariates and treatment

assignment (McCaffrey, Ridgeway, & Morral, 2004). The Super Learner fits

a series of models based on a user-specified library of methods, combining

the resulting estimates such that the overall performance is no worse than the

performance of the best individual method (Van der Laan, Polley, & Hubbard,

2007). We considered two Super Learner libraries (Luedtke & van der Laan,

2016; Moodie & Stephens, 2017), and fit each of the estimators described above

using the ‘WeightIt’ package in R (Greifer, 2019; R Core Team, 2019).

Lastly, in order to investigate scenarios where variables used to construct

survey weights are omitted from the survey dataset, we fit the sample mem-

bership model by using all of the covariates, by omitting X1, and by omitting
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X1, X3 and X5. To evaluate the performance of each method, we calculated the

bias and the empirical 95% coverage of each estimator, using PATE = 2 as the

truth. Standard error estimates were obtained by using a standard sandwich

variance estimator. We also calculated coverage for a subset of simulation

scenarios using a stratified double bootstrapping approach, in which both the

trial and the survey were sampled with replacement upon each bootstrap run.

Strata for survey re-sampling were defined by survey probability deciles, and

survey weights in each bootstrap sample were adjusted according to Valliant

et al. (2013) (see Appendix A for details). The results presented in the next

section are averaged over 1000 simulation runs, and are stable to the 2nd

decimal place across different seeds.

2.4.1 Simulation Results

We now present the findings of the simulation study. Given the number of

parameters to vary, we present figures where ρ = 0.3 (pairwise X correlation)

and γ3 = 0.3 (treatment effect heterogeneity). Note though that as expected,

when γ3 = 0, all estimators were unbiased for the PATE across all scenarios.

When ρ = 0.3 and γ3 = 0.3, Figure 2.2 shows the bias of the three PATE es-

timators across simulation scenarios. Each column signifies a different setting

regarding which variables are omitted from the sample membership model:

on the left, all variables are included, and on the far right, X1, X3 and X5 are

all missing from the analytic datasets, but they were used to calculate the

survey weights in the survey. Within each plot, the x-axis depicts the absolute

standardized mean difference (ASMD) of the predicted probability of survey
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sampling between the survey sample and the target population (see Figure

A.2 for the relationship between γ2 and ASMD). In other words, moving from

left to right along the x-axis, the survey sample becomes increasingly different

from the target population on baseline covariates. The top row depicts when

γ1 = 0, or when the trial is a simple random sample from the target popula-

tion. Notice that the naive estimate is unbiased, as is the transported estimate

that uses the survey weights. However, when the ATE is transported from

a representative trial to a non-representative survey and the survey weights

are not used, the transported ATE estimate becomes increasingly biased as

the survey becomes less representative of the population. This suggests that

if findings from a trial are already generalizable, yet researchers implement

transportability weighting methods without survey weights to a complex sur-

vey that is not representative of the target population, then they may actually

obtain a more biased PATE estimate than had they not transported at all.

As the trial differs more greatly from the target population (moving down

the rows, γ1 = 0.3 to γ1 = 0.9), the naive trial estimate becomes increasingly

biased as expected. When the survey is slightly different from the target

population of interest, the transported estimate that ignores survey weights is

less biased then the naive estimate. However, once the survey differs enough

from the target population, ignoring the survey weights when transporting

yields similar bias to the naive estimator, and in some cases, even greater bias.

On the other hand, the transported estimate that uses the survey weights to

fit a weighted sample membership model is uniformly less biased than the

other estimators across all scenarios. In other words, it seems as though using
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the survey weights in the sample membership model can help prevent any

additional bias introduced from the survey not being a simple random sample

from the population.

Between the different methods used to fit the trial membership model,

there is little to no difference in terms of PATE bias for ∆̂svy.wtd, except for when

the trial differs greatly from the target population. In such cases, predicting

the probability of trial membership using GBM appears to yield the least

biased ATE estimates, with notable differences in performance between the

two SuperLearner libraries considered.

Next, observe that the transported estimators perform best when the se-

lection model is fit using all covariates used to calculate the survey weights.

However, when one of the variables influencing survey selection (i.e. X1)

is not available in the survey dataset, the bias of the transported estimators

increases, and continues to increase as fewer variables impacting survey selec-

tion are included in the analytic dataset. However, as the pairwise correlation

of the missing and non-missing covariates increases, the bias decreases. In

other words, and not surprisingly, if X1 is unavailable to use in the sample

membership model, but X2 is available, the more X2 and X1 are correlated,

the less it matters that X1 is missing in terms of bias.

Figure 2.3 shows the empirical 95% coverage of the three estimators across

simulation scenarios. Note that a standard sandwich variance estimator was

used for all weighting approaches here, and results were fairly similar when

using the double bootstrap approach as well (see Figure A.1). Across the top

row, where the trial is representative of the target population, the coverage
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Figure 2.2: Bias of estimating the PATE by weighting method. Each column represents
a different scenario of missing a variable used to calculate survey weights in the
analytic survey dataset. From top to bottom row, the γ1 “scale" parameter for how
much the trial differs from the population by the Xs increases. The different colors
represent the different weighting approaches: Naive trial estimate (blue), transported
estimate ignoring the survey weights (green), and transported estimate using the
survey weights (purple). This figure appears in color in the electronic version of this
article.

34



of the naive estimator is around 95%, as expected (as is the coverage of the

transported estimator using the survey weights). However, the coverage of

the transported estimator that ignores the survey weights rapidly decreases

as the survey becomes less representative of the population. Note that this

corresponds to when the bias of the transported estimator without survey

weights increases as well. As the trial becomes more different from the pop-

ulation, the empirical coverage of the naive estimator drops to zero. The

transported estimator that incorporates the survey weights maintains much

better coverage than the estimator that ignores the survey weights as the

survey becomes less representative of the population. Also, when the trial

differs substantially from the target population, the ∆̂svy.wtd estimate using

GBM to fit the trial membership model results in the best coverage of the

∆̂svy.wtd estimates. The variability in the performance of ∆̂svy.wtd using the two

Super Learner libraries is also notable, highlighting the method’s sensitivity

to library choice. Lastly, note that the transported estimator performs best

when all variables included in the survey selection model are available in the

survey dataset, and the empirical coverage declines as fewer of those variables

become available for use in the sample membership transportability model

(as ρ increases, the empirical coverage improves slightly across scenarios as

well).

2.5 Data Examples

We now present two applications of these methods to generalizing trial find-

ings to well-defined target populations. First, we generalize findings from
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Figure 2.3: Empirical 95% coverage of the PATE estimates by weighting method.
Each column represents a different scenario of missing a variable used to calculate
survey weights in the analytic survey dataset. From top to bottom row, the γ1 “scale"
parameter for how much the trial differs from the population by the Xs increases. The
different colors represent the different weighting approaches: Naive trial estimate
(blue), transported estimate ignoring the survey weights (green), and transported
estimate using the survey weights (purple). This figure appears in color in the
electronic version of this article.
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PREMIER, a lifestyle intervention trial for reducing blood pressure, to the

National Health and Nutrition Examination Survey (NHANES). Next, we

generalize results from CTN-0044, a trial examining the use of a web-based in-

tervention for substance use disorder (SUD) treatment, to the National Survey

on Drug Use and Health (NSDUH). In both examples, data on the respective

target populations come from publicly available government surveys with

complex survey sampling designs, where each participant is assigned a survey

weight indicative of the number of individuals they represent in the target

population. For each example, we illustrate the importance of utilizing the

survey weights when comparing covariate distributions between the trial

and survey, and demonstrate how the use of the survey weights affects PATE

estimation. Given the simulation findings, we fit the sample membership

model using GBM in both examples.

2.5.1 Lifestyle Intervention Trial for Blood Pressure Reduc-
tion

PREMIER was a multi-center randomized trial in which 810 participants were

randomized to either one of two behavioral interventions, comprised of a mix

of diet and exercise recommendations, or to standard care. The primary goal

of the trial was to study the effect of these lifestyle interventions on blood

pressure reduction. The original report on the trial found evidence supporting

the interventions’ effectiveness on blood pressure reduction, and concluded

that “results from PREMIER should influence policy pertaining to implemen-

tation of lifestyle modification in the contemporary management of patients

with above-optimal blood pressure through stage 1 hypertension" (Svetkey
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et al., 2003). For illustrative purposes, we combine the two intervention arms

into a single “lifestyle intervention treatment" group, and select our outcome

of interest as change in systolic blood pressure (SBP) between baseline and

6-month study followup.

We will now further investigate how these findings generalize to a poten-

tially policy-relevant target population. To do so, we use population data from

NHANES, a national survey funded by the Centers for Disease Control and

Prevention (CDC) with extensive measures on participants’ dietary behaviors

and health outcomes. Using a complex and multistage probability-based sam-

pling design, NHANES participants are carefully sampled according to sex,

age, race, ethnicity and income, resulting in a sample that is representative of

the entire non-institutionalized civilian US population (CDC, 2003). To define

the target population of interest, we subset the NHANES sample to individ-

uals who are 25 years of age or older with BMI between 18.5 and 40 (due to

PREMIER inclusion criteria). To better determine how PREMIER findings

may impact a population of adults with “above-optimal blood pressure," we

further limit the NHANES sample to individuals with either SBP greater than

or equal to 120 or diastolic blood pressure (DBP) greater or equal to 80. This

results in a sample size of 2180 representing a population of over 85 million

US adults.

Figure 2.4A shows the covariate distributions in the trial and survey sam-

ples, as well as in the weighted survey sample (indicating the target population

of interest). Observe that while some variables, such as sex and BMI, are dis-

tributed quite similarly between the unweighted and weighted NHANES
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samples, other variables, such as race, age and education, differ a fair amount

between the two. These differences show the NHANES survey sampling

methodology, and how the true population characteristics may differ from

the raw analytic sample. If we generalize to the NHANES survey sample

(i.e. fit the transportability estimator ignoring the survey sampling weights),

we would be generalizing to a population that is younger, less educated, and

more racially diverse than our true target population of interest. Figure 2.4B

shows the covariate balance between the trial and target population before

and after transport weighting. Note that weighting the trial to resemble ei-

ther the NHANES sample or the target population results in better covariate

balance; however, only the latter is truly relevant to our interests.

The effect of the lifestyle intervention on change in SBP is shown in Figure

2.5, with the naive trial estimate on the left, the transported estimate in the

middle, and the transported estimate using survey weights on the right. The

naive trial estimate of -4.66 and 95% confidence interval of (-6.10, -3.23) indi-

cate a positive effect of the lifestyle intervention recommendations in lowering

systolic blood pressure among study participants, as originally reported in

the trial findings. In this example, there are no substantial differences be-

tween the naive estimates and the transported estimates, nor between the two

transported estimates (ignoring vs. incorporating the survey weights). Note,

though, that both weighted estimators have larger standard errors. Given

the consistent estimates, these generalized findings provide further evidence

to support the original trial’s claims, that PREMIER’s results should be used

to influence blood pressure management policies related to persons with
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Figure 2.4: A) Covariate Distributions in PREMIER (trial) and NHANES (survey
sample), along with the weighted NHANES sample (target population). B) Absolute
standardized mean difference (ASMD) of covariates between the trial and target
population. Points in blue reflect covariate differences between the raw trial sample
and the weighted survey sample (i.e. the target population demographics). Points in
green show the differences between the transport-weighted trial and survey sample.
Points in purple show the differences between the transport-weighted trial and
population (where the trial is weighted to be more similar to the target population).

above-optimal blood pressure in the United States.

2.5.2 Web-Based Intervention for Treating Substance Use Dis-
orders

We now turn to our second illustrative example using a trial from the Clinical

Trials Network (CTN), a publicly available data repository for substance use-

related RCTs funded by the National Institute of Drug Abuse (NIDA). The trial

of interest, CTN-0044, evaluated the effectiveness of Therapeutic Education

System (TES), a web-based behavioral intervention including motivational

incentives, as a supplement to SUD treatment. A total of 507 individuals in

treatment for SUDs were randomized to either treatment as usual or treat-

ment plus TES, and the reported trial results suggested that TES successfully

reduced treatment dropout and improved upon abstinence (Campbell et al.,
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Figure 2.5: Blood pressure reduction PATE estimates by transportability method.
Points in blue reflect the naive PATE estimate, points in green show the transported
PATE estimate ignoring survey weights. Points in purple show the survey-weighted
transportability estimate.

2014). Our outcome of interest is a binary indicator of drug and alcohol

abstinence in the last week of the study.

We generalize these findings from CTN-0044 to a population of US adults

seeking treatment for substance use disorders using NSDUH, a survey on

drug use in the United States. In its sampling design, NSDUH systematically

over-samples adults over the age of 26 in order to better estimate drug use

and mental health issues in the US. This suggests that the raw NSDUH survey

sample is likely not reflective of the target population on key demographics.

We subset the NSDUH sample to individuals over the age of 18 who have

reported any illicit drug use in the past 30 days in order to best reflect our target

population of interest. The resulting NSDUH sample has 5645 participants
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representing a target population of around 20 million people.

The distribution of covariates across the trial and survey samples are

shown in Figure 2.6A. Note that, pre-transport-weighting, there are substan-

tial differences between the trial and raw survey samples with respect to age,

though when the survey sample is weighted to the target population using the

survey weights, these age differences decrease. Other variables like race, edu-

cation and prior substance use treatment are actually more different between

the trial and target population than they are between the trial and unweighted

NSDUH sample. This further highlights the importance of incorporating the

survey weights in order to make inferences on the true target population of

interest when transporting. Figure 2.6B shows the covariate balance between

the trial sample and (survey-weighted) target population before and after

weighting. Points in green show covariate balance when the trial is weighted

to the raw survey sample, while points in purple show covariate balance when

the trial is weighted to the target population (the survey-weighted survey

sample). Overall, both weighting methods yield better balance (and therefore

better resemblance) between the trial and the population, though it should be

noted again that only the points in purple reflect when the trial is weighted to

resemble the true target population (i.e. the survey weights are used in the

sample membership model).

Figure 2.7 depicts the three PATE estimates, or the odds ratio of substance

abstinence. As reported in the original trial, the naive estimate is statistically

significant, with an odds ratio of 1.5 and 95% confidence interval of (1.02,

2.24), suggesting that TES was effective in increasing substance abstinence in
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the trial. However, when this estimate is transported to the NSDUH sample

(middle, green), this point estimate drops to around 0.8 and the confidence

interval width increases (0.28, 2.48). While the lower odds ratio may suggest

qualitative differences in TES’ effectiveness, the transported estimate indicates

no significant difference in abstinence rates between the two treatment arms

in the NSDUH sample. When the survey weights are included in the sample

membership model, and the estimate therefore generalized to the target popu-

lation of interest, the wide confidence interval of (0.90, 3.55) indicates a similar

not-significant conclusion, though the point estimate of 1.79 more closely

mirrors what was estimated in the original trial. This example highlights

that if the survey weights are left out when making generalizations, different

qualitative conclusions may be reached.

2.6 Conclusion

Existing methods for improving RCT generalizability with propensity score-

type weights make an implicit assumption about the population data: that they

are either 1) a simple random sample drawn from the true target population,

or 2) the complete finite target population. When transporting trial findings to a

population dataset derived from a complex survey, this assumption no longer

holds. Our work demonstrates that it is crucial to incorporate the survey

weights from the complex survey population data in order to obtain the best

estimate of the PATE with these methods. Omitting the survey weights can

be thought of as generalizing to an entirely different population, one that has

the demographics of the survey sample rather than the target population of
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Figure 2.6: A) Covariate Distributions in CTN-0044 (trial) and NSDUH (survey
sample), along with the weighted NSDUH sample (target population). B) Absolute
standardized mean difference (ASMD) of covariates between the trial and target
population. Points in blue reflect covariate differences between the raw trial sample
and the weighted survey sample (i.e. the target population demographics). Points in
green show the differences between the transport-weighted trial and survey sample.
Points in purple show the differences between the transport-weighted trial and
population (where the trial is weighted to be more similar to the target population).
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Figure 2.7: Substance abstinence PATE estimates by transportability method. Points
in blue reflect the naive PATE estimate, points in green show the transported PATE
estimate ignoring survey weights. Points in purple show the survey-weighted trans-
portability estimate.

interest. While the demographic differences between a survey sample and

its intended target population may not be that large for some analytic survey

datasets, it can be particularly noticeable for others where great amounts of

over- or under-sampling of certain groups are implemented.

Our work has shown that fitting a sample membership model weighted by

survey weights can only improve upon our ability to draw population-level

inferences from RCTs, and that failing to do so (i.e. using standard transporta-

bility weights alone) may actually result in more biased estimates. Given that

complex survey data often come ready for use with a variable containing

the necessary survey weights, implementing this approach does not require

specifying any additional models other than those needed for the standard

transportability weighting methods. Still, there are still a few limitations to
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this work. First, as noted earlier in this paper, we can obtain an unbiased

estimate the PATE when we assume that all covariates impacting survey selec-

tion, trial selection, and treatment effect heterogeneity are fully observed and

accounted for in both datasets. In practice, certain variables used to construct

the survey weights may not be publicly available at the individual-level in the

survey sample. While we demonstrated the performance of these methods

when we use a correlated proxy for one such variable, it is also conceivable

that certain key covariates may be unobserved in one or both datasets com-

pletely. Further research is needed to extend upon sensitivity analyses for

partially and fully unobserved treatment effect modifiers, particularly when

the population data come from a complex survey. Second, while we explored

the benefit of double-bootstrapping methods for variance estimation, there

may be additional concerns over uncertainty introduced by using a small

survey sample that represents a huge target population. Additional research

is warranted to assess the impact of the proportion of the population sampled

on estimate variability. Finally, the propensity score-type weighting method

explored in this paper is only one post-hoc statistical approach for estimating

population effects from RCTs. Outcome-model-based approaches have also

been shown beneficial, where a model is fit using trial data, and predictions

are generated under treatment and control conditions in the target population

data. Future work should build upon such methods when using complex sur-

vey population data as well. Nevertheless, our two-stage weighting method

will ultimately allow researchers to draw more accurate inferences from trials

to be used in policy formation and population-level decision making.
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Chapter 3

Transportability of Outcome
Measurement Error Correction:
from Validation Studies to
Intervention Trials

3.1 Introduction

Lifestyle intervention trials aim to establish how changes to human behav-

ior, such as physical activity or food intake, can impact and improve health

outcomes. In such trials, it is important to obtain accurate measures on these

behaviors; however, reliable measures are often expensive and burdensome

for participants to collect. Self-reported measures are therefore commonly

collected as proxies of the truth. For example, food frequency questionnaires

or interviewer-assisted 24-hour dietary recall may be administered in nutrition

studies to quantify sodium intake instead of having participants routinely

collect urine samples. While self-reported measures are more feasible to ob-

tain, they are prone to measurement error, as participants may not be able
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to accurately quantify their behaviors, or may misreport their true actions

(Willett, 2012).

Measurement error can lead to biased, less precise estimates of a treat-

ment’s effect on the outcome (Rothman, Greenland, & Lash, 2008). In nutrition

intervention studies, self-reported dietary intake measures have been shown

to differ from the truth both randomly and systematically, which impacts the

inferences drawn on the effectiveness of such lifestyle interventions (Espeland

et al., 2001; Forster, Jeffery, VanNatta, & Pirie, 1990; Natarajan et al., 2010).

Much of the attention in the measurement error literature has been paid to

when measurement error is present in either the exposure of interest or in

covariates (Buonaccorsi, 2010; Carroll, Ruppert, Stefanski, & Crainiceanu,

2006; Keogh & White, 2014). Less work, however, has focused on correcting

for misclassification or measurement error of study outcomes (Keogh, Carroll,

Tooze, Kirkpatrick, & Freedman, 2016), which is particularly worrisome for

trials that focus on self-reported behavioral outcomes (Spring et al., 2012;

Spring et al., 2018). This is in part because measurement error in the outcome

will only lead to a biased estimate of the average treatment effect if the error

is differential with respect to the intervention (Natarajan et al., 2010).

Existing measurement error methods, whether for covariates or outcomes,

often rely on the use of a validation sample, or a group of individuals where

both the truth and the observed mis-measured value are recorded (Wong,

Day, Bashir, & Duffy, 1999a; Wong, Day, & Wareham, 1999b). Such validation

data can either be internal, where the reliable biomarkers are collected on a

chosen subset of individuals within the primary study, or external, where a
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study is conducted on a separate set of individuals with the sole intention of

modeling the error structure. Internal validation studies are typically more

feasible to embed within a large observational study cohort (Jenab, Slimani,

Bictash, Ferrari, & Bingham, 2009), while it is rather rare to see intervention

trials, given added costs of biomarker sample collection and added burden

to trial participants. External validation samples also typically only collect

measures under a “usual care" setting, which usually corresponds to a control

condition in a trial, making it infeasible to directly correct for the error under

both the treatment and control conditions based on the information available

to researchers. Siddique et al. (2019) developed methodology for modeling the

measurement error under the control condition using an external validation

sample, followed by sensitivity analyses to obtain a range of plausible values

for the treatment effect.

While external validation samples play an important role in correcting for

measurement error, concerns have been raised over external validation studies

not always being “transportable," such that the measurement error correction

from an external study may not accurately apply to the main study of interest

(Bound, Brown, & Mathiowetz, 2001; Carroll et al., 2006; Courtemanche,

Pinkston, & Stewart, 2015). Previous efforts to address transportability have

involved combining external validation data with internal validation data

(Lyles, Zhang, & Drews-Botsch, 2007), though such an approach cannot be

implemented in intervention studies without any internal validation.

In this paper, we address the issue of transportability when using external

validation data to correct for measurement error of a continuous outcome
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in lifestyle intervention trials. Using a potential outcomes framework, we

formalize cases when assumptions of measurement error transportability are

violated and quantify the resulting additional bias that is introduced when

estimating the average treatment effect. We then propose a weighting method

for transportability, calibrating the validation data to the intervention trial to

better estimate the measurement error.

3.2 Definitions

In order to set up the transportability issue, we will first provide some def-

initions and describe the measurement error problem more formally. Let A

denote treatment assignment (0 = control, 1 = treatment), let S denote sam-

ple membership (v = validation, rct = intervention study), and let ns = the

sample size of study s. Let Z denote the outcome measured without error,

Y denote Z measured with error, and let X denote a pre-treatment covariate.

Z(a) and Y(a) will denote potential outcomes under treatment a, such that

Y(a) = Z(a) + ϵ(a), where ϵ(a) ∼ N(µa, σ2
a ). Here, we are assuming a simple

classical measurement error structure, where the error terms are Normally

distributed such that their distributions can differ across treatment groups.

To expand upon this notation, let Ys(a) denote the outcome measured with

error under treatment a in dataset s. We can define the potential outcomes

measured with error under different treatment conditions in different study
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samples in the following way:

Yrct(0) = Z(0) + ϵrct(0) ϵrct(0) ∼ N(µrct
0 , σrct

0
2
)

Yrct(1) = Z(1) + ϵrct(1) ϵrct(1) ∼ N(µrct
1 , σrct

1
2
)

Yv(0) = Z(0) + ϵv(0) ϵv(0) ∼ N(µv
0, σv

0
2)

Yv(1) = Z(1) + ϵv(1) ϵv(1) ∼ N(µv
1, σv

1
2)

Note that Z(a) does not differ by study sample, because conceptually, we do

not consider someone’s underlying true potential outcomes to differ by which

study they are in. However, we use the sample superscripts to suggest that

a person’s potential outcomes measured with error can, in fact, differ by study

sample, because the measurement error parameters could differ by study

sample. Using these definitions, we will now formalize when the average

treatment effect in the intervention trial will be biased when estimated using

an outcome variable measured with error instead of a variable measured

without error.

3.2.1 ATE Bias under Outcome Measurement Error

Suppose the estimand of interest in an intervention trial is the average treat-

ment effect (ATE) of the intervention on the outcome measured without error,

defined as ∆ = E[Z(1)− Z(0)]. However, since we do not observe Z(0) or

Z(1) in the intervention study, we can only attempt to estimate ∆ using Y, the
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observed outcome measured with error, in the intervention study with the

following naive estimator:

∆̂ =
∑nrct

i=1 Yi Ai

∑nrct
i=1 Ai

− ∑nrct
i=1 Yi(1 − Ai)

∑nrct
i=1(1 − Ai)

(3.1)

Using Equation 3.1, we can derive the bias of ∆̂ as an estimate for ∆ as:

bias∆̂ = µrct
1 − µrct

0 (3.2)

In other words, estimating ∆ using the mis-measured outcome will be a

biased estimate if the means of the outcome error under treatment and control

conditions are different. Note that if the measurement error is either classical

or differential with respect to treatment, but the errors under treatment and

control conditions are centered around the same value, then ∆̂ will still be an

unbiased estimate of ∆ (its variance may be inflated, though this is not the

focus of the current paper). Throughout this paper, we will therefore focus on

the case where the measurement error is differential with respect to treatment,

such that in the trial, µrct
0 ̸= µrct

1 .

One challenge to correcting for bias∆̂ is that the true outcomes measured

without error, Z(0) and Z(1), are typically unobserved in an intervention trial.

Therefore, the error means µrct
0 or µrct

1 cannot be estimated using the trial data

alone. One strategy is to utilize information from an external validation study

to estimate µrct
0 or µrct

1 by making an assumption of transportability. However,

external validation studies typically only measure the outcomes under a single

control condition, as described in Table 3.1 below.

Note that if the potential outcomes under treatment, Z(1) and Y(1), were
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Table 3.1: Observables by study sample. Cells shaded in grey denote observed
measures, while blank cells denote unobserved quantities.

Z(0) Z(1) Y(0) Y(1) X
validation S = v ✓ ✓ ✓

intervention study S = rct ✓ ✓ ✓

also observed in the validation sample, then the validation study would be

considered an intervention trial in itself. Such a scenario is highly unlikely,

given the intention and design of external validation studies. To account for

this, Siddique et al. (2019) propose using external validation data to estimate

the error mean under control conditions, µrct
0 . We will consider the following

naive estimator for µrct
0 :

µ̂naive
0 =

1
nv

nv

∑
i=1

(Yi − Zi) (3.3)

Observe that µ̂naive
0 is an unbiased estimate of µv

0, the error mean under control

in the validation sample. By assuming that transportability holds, we are also

assuming that it is an unbiased estimate for µrct
0 , the error mean under control

in the intervention study.

Lastly, Siddique et al. (2019) conduct sensitivity analyses around the error

under treatment (µrct
1 ) to obtain a plausible range of estimates for ∆. We build

on this work by proposing a solution to when the transportability assumption

is violated, and µ̂naive
0 is therefore a biased estimate for the error mean under

control in the intervention study, µrct
0 .

The remainder of the paper is structured as follows: in Section 3.3, we de-

scribe the transportability assumption evoked to estimate µrct
0 using validation

data and discuss its plausibility. We then formalize when the transportability
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assumption will be violated, and how much bias is introduced as a result.

Then, in Section 3.4, we propose the utilization of propensity score-type

weighting methods to decrease the bias of estimating µrct
0 using validation

data, followed by a simulation illustrating the performance of the weighting

methods in Section 3.5. We apply the methods to a data example in Section

3.6, and conclude with a discussion of outcome measurement error and the

utilization of validation data, along with some limitations, in Section 3.7.

3.3 Transportability

Suppose ∆̂ is a biased estimate of ∆ in an intervention trial, and external

validation data is therefore utilized to partially account for bias∆̂ by estimating

the mean error under control, µrct
0 . In order to obtain an estimate for µrct

0 , a

transportability assumption must be made. Formally, the assumption is as

follows:

f (Yv(1), Yv(0)|Z(1), Z(0), X) = f (Yrct(1), Yrct(0)|Z(1), Z(0), X)

This transportability assumption implies that, under Normality, µv
0 = µrct

0

and σv
0

2 = σrct
0

2 (and also that µv
1 = µrct

1 and σv
1

2 = σrct
1

2). In other words,

the assumption states that the measurement error structures for the potential

outcomes in the validation sample are the same as they are in the intervention

study. This assumption also implies that µ̂naive
0 , which estimates the error

mean under control using validation data, is an unbiased estimate of µrct
0 .

However, the transportability assumption may not hold in some cases, which

would introduce additional bias when estimating the ∆. We will now describe
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when the transportability assumption will be violated.

3.3.1 Bias from transportability violation (biasµ̂0)

In order to formalize when there will be bias in estimating µrct
0 using validation

data, consider the case where we have a single covariate, X, such that X =

β0 + β11S=v + ϵX, where ϵX has mean 0 and variance σ2
X. Observe that β0 =

E[X|S = rct] and β1 = E[X|S = v] − E[X|S = rct]. In other words, β1

represents the difference in mean of covariate X across the two datasets (trial

and validation data).

Next, recalling the classical measurement error structure of Y = Z + ϵ,

consider when the error term is distributed as ϵ ∼ N(α0 + α1A + α2X, σ2
Y)

such that the measurement error is differential with respect to both treatment

and X. By performing a substitution for X, we obtain the following:

ϵ ∼ N(α0 + α1A + α2{β0 + β11S=v + ϵX}, σ2
Y) (3.4)

Recall that µs
a = E[Ys(a)]− E[Z(a)]. The measurement error mean parame-

ters under each treatment condition in each dataset can therefore be expressed
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as follows:

µrct
0 = α0 + α2β0

µrct
1 = α0 + α2β0 + α1

µv
0 = α0 + α2(β0 + β1)

µv
1 = α0 + α2(β0 + β1) + α1

First, notice that bias∆̂, which is the difference in error means between treat-

ment and control conditions in the trial, can be expressed as α1. Next, we can

derive the bias of µ̂naive
0 , which uses validation data, as an estimate of µrct

0 as

follows:

biasµ̂0 = µv
0 − µrct

0 = α2β1 (3.5)

The transportability assumption will therefore be violated if α2 ̸= 0 and β1 ̸= 0.

In other words, if a covariate X impacts the measurement error structure

(α2 ̸= 0), and the distribution of X differs across the trial and the validation

sample (β1 ̸= 0), then µ̂naive
0 will be a biased estimate of µrct

0 . This also extends

to when there are multiple covariates that meet these two conditions.

The transportability assumption violation, and the introduction of biasµ̂0 ,

may also increase bias∆̂. Observe that if we substitute the estimate µ̂naive
0 for
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µrct
0 in Equation 3.2, we obtain the following:

˜︃bias∆̂ = µrct
1 − µ̂naive

0

E[˜︃bias∆̂] = µrct
1 − µrct

0 − α2β1

= α1 − α2β1

This motivates the proposal of a weighted estimator for µrct
0 , that reduces

biasµ̂0 , which we present in Section 3.4.

Table 3.2 summarizes the discussion on the two potential biases, bias∆̂

and biasµ̂0 , providing different cases for researchers to consider when these

biases should be of concern. While this may not be an exhaustive list of all

possible scenarios, we think of these as the most plausible scenarios in practice

that researchers may encounter. Only Scenario VI, in which the measurement

error is differential in the trial with respect to A, differential in the trial and

validation sample with respect to X, and the distribution of X differs between

the trial and the validation sample, violates the transportability assumption.

Scenario V is technically possible, where biasµ̂0 ̸= 0 while bias∆̂ = 0. However,

note that the motivation for outcome measurement error correction is only

really when the measurement error is differential by treatment (i.e. bias∆̂ ̸= 0),

so Scenario V is therefore highly unlikely.

3.3.2 Additional Assumptions

In addition to the transportability assumption, we make a parametric as-

sumption that the measurement error model form is the same across the two
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Table 3.2: Conditions under which to be concerned about bias in the ATE (bias∆̂)
and/or bias in the measurement error (ME) correction (biasµ̂0)

Scenario ME differs
by A

ME differs
by X

X differs
by sample

bias∆̂ biasµ̂0

I 0

µrct
0 = µrct

1

0

II ✓ α1

µrct
0 ̸= µrct

1

0

III ✓ ✓ α1

µrct
0 ̸= µrct

1

0

α2 ̸= 0,
but β1 = 0

IV ✓ ✓ α1

µrct
0 ̸= µrct

1

0

β1 ̸= 0,
but α2 = 0

V ✓ ✓ 0

µrct
0 = µrct

1

α2β1

β1 ̸= 0
and α2 ̸= 0

VI ✓ ✓ ✓ α1

µrct
0 ̸= µrct

1

α2β1

β1 ̸= 0
and α2 ̸= 0
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samples. In other words, we assume that if the measurement error is differen-

tial with respect to a given covariate in the validation sample, then it is also

differential with respect to that covariate in the intervention trial (i.e. if age

impacts the measurement error structure in the validation sample, it also does

so in the trial). This assumption extends to the presence of higher order terms,

such as interactions or quadratic terms, that they be present in both samples.

We also must assume that there are no unobserved covariates that impact

the measurement error and differ between the two samples. Lastly, we must

make an assumption of common support, that the range of all covariates in the

validation sample are covered by their respective ranges in the intervention

trial. For example, we cannot transport an estimate from a validation study

where the oldest participant is fifty years old to an intervention trial with

participants over the age of fifty. Another way to frame this is that each trial

participant has a nonzero probability of participating in the external validation

study. The plausibility of these assumptions are discussed further in Section

3.7.

3.4 Weighting-Based Approach to Reduce Transporta-
bility Bias

We will now describe the use of propensity score-type weights to reduce the

transportability bias. Propensity scores have been traditionally used in non-

experimental studies, where treatment is not randomized, to make treatment

groups more similar on pre-treatment covariates using matching or weighting

methods (Rosenbaum & Rubin, 1983). This approach has since been applied
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to the fields of transportability and generalizability, where propensity scores

are used to model the conditional probability of trial participation (instead of

treatment assignment). The probabilities are subsequently used to weight a

randomized trial so it better resembles a well-defined target population on

observed pre-treatment covariates (Dahabreh, Robertson, Tchetgen, Stuart, &

Hernán, 2018; Kern, Stuart, Hill, & Green, 2016; Stuart, Ackerman, & Westreich,

2018).

Previous work has demonstrated similar benefits of implementing propen-

sity score-type weighting methods when using external validation data to

adjust for missing confounders (McCandless, Richardson, & Best, 2012) and

when evaluating disease prediction models in samples that differ from the

target population (Powers, McGuire, Bernstein, Canchola, & Whittemore,

2019). Here, we are interested in addressing the transportability violation

by weighting the external validation sample so that it better resembles the

intervention study of interest on a set of observed pre-treatment covariates.

In brief, we will do so by modeling the probability of study membership

(trial vs. validation study), and then weighting the validation sample before

estimating µ0. Consider the following model of study participation:

logit(P(S = rct|X)) = θtX (3.6)

Where X is a set of observed covariates measured in both the trial and the

validation data. We can then predict the probability of trial participation as

êi = ê(X) = expit(θ̂tX) (3.7)
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Similar to ATT weighting for non-experimental studies, we then construct the

following weights:

ŵi =

{︄
êi

1−êi
if S = v

0 if S = rct
(3.8)

Using these weights, we can then estimate µrct
0 using validation data with the

following estimator:

µ̂
weighted
0 =

∑nv
i=1 ŵi(Yi − Zi)

∑nv
i=1 ŵi

(3.9)

Individuals in the validation sample that are more similar to the trial par-

ticipants will have greater predicted probabilities of being trial participants,

and will therefore have larger weights. Members of the external validation

sample that are most dissimilar to the trial sample will be down-weighted

towards zero. In this way, we can obtain a weighted estimate of the error

mean under control in the validation sample, µv
0, such that we reduce the

bias of this estimate as an estimate for µrct
0 due to covariate differences across

samples. Details on estimating the standard error for inference can be found

in the Supplemental Materials.

3.4.1 Weighting under Misspecification of the Sample Mem-
bership Model

Recall that the error estimate in the validation sample will be a biased esti-

mate of the error in the trial if there exists a set of covariates that impact the

measurement error structure and that also differ by sample. We therefore

want to include all observed covariates that fall into this category when fit-

ting the model of sample membership. If we fit the correct model of sample

67



membership accounting for all such Xs in the true form, then we should be

able to eliminate the bias of our µ0 estimate through this weighting procedure

(as is the case when transporting trial results to a target population using

inverse odds weighting, see proof in Westreich, Edwards, Lesko, Stuart, and

Cole (2017)). In practice, however, it can be quite challenging to fit the correct

sample membership model (i.e. there may be complex interactions or higher

order terms in the true model that are omitted). Fitting a simpler, misspeci-

fied sample membership model may lead to a smaller reduction of the bias

when weighting. In the next section, we describe a simulation study, where

we demonstrate the performance of the proposed weighting methods under

increasingly complex true sample membership models, and varying amounts

of model misspecification.

3.5 Simulation

We now conduct a simulation study to assess the weighting methods described

in Section 3.4 on decreasing biasµ̂0 . We consider four covariates, and vary the

following: (1) the degree to which each X impacts the measurement error

model, (2) the degree to which each X impacts the trial membership model,

and (3) the degree of misspecification of the trial membership model that is fit

using the validation sample.

3.5.1 Simulation Setup

Consider the following measurement error model of Y:
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Y = α0 + α1Z + α2A + α3X1 + α4X2 + α5X3 + α6X4 + ϵY

where ϵY ∼ N(0, σ2
Y). Since we only require that the Xs impact the error

structure in some capacity, we do not consider other, more complex true

structures of the measurement error model in this simulation study.

We vary the true underlying models of sample membership by considering

the following seven model forms:

1. S ∼ X1 + X2 + X3 + X4

2. S ∼ X1 + X2 + X3 + X4 + X2
3

3. S ∼ X1 + X2 + X3 + X4 + X2
4

4. S ∼ X1 + X2 + X3 + X4 + X3X4

5. S ∼ X1 + X2 + X3 + X4 + X3X4 + X2
3 + X2

4

6. S ∼ X1 + X2 + X3 + X4 + X1X4

7. S ∼ X1 + X2 + X3 + X4 + X1X3

We parameterize the coefficients for the covariates X1, X2, X3, and X4 as

{γ1, 0, 1
2 γ1, 2γ1} in the measurement model, and as {0, γ2, 2γ2, 1

2 γ2} in the trial

membership model (See Supplemental Table B.1). In doing so, we establish

that covariate X1 impacts sample membership but not measurement error, X2

impacts measurement error but not sample membership, X3 weakly impacts

sample membership and strongly impacts measurement error, and X4 strongly

impacts sample membership and weakly impacts measurement error. We
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set any quadratic term coefficients to 50% of the original X’s coefficient (i.e.

if X3 has a coefficient of 1
2 γ1, then X2

3 would have a coefficient of 1
4 γ1). For

interaction terms, the coefficient is set to the average of the two Xs’ original

coefficients (i.e. the coefficient for a X1X3 interaction term would be 3
4 γ1).

The two parameters γ1 and γ2 function as scaling parameters, varying

from 0 to 1 by increments of 0.2. Observe that when γ1 = 0, the four co-

variates do not impact sample membership at all, and the trial membership

probabilities are expected to be 0.5 in both study samples. As γ1 increases to 1,

the impact of the variables on sample membership increases, and the overlap

of the probabilities across the two samples decreases. In this way, γ1 can be

considered a function of the absolute standardized mean difference (ASMD)

of the participation probabilities between the trial and the validation sample.

When γ2 = 0, then the measurement error is not differential with respect to

any of the covariates, and as γ2 increases, so does the impact of the covariates

on the measurement error structure. Note that when either γ1 = 0 or γ2 = 0,

then we expect that biasµ̂0 = 0.

For each of the seven true trial membership models, we fit both the true

model, which is correctly specified, as well as a main-effects-only model.

The main-effects-only model will be misspecified when the true model has

interaction and/or quadratic terms. This type of misspecification illustrates a

plausible scenario, in which researchers may fit a simple multi-variable logistic

regression model to estimate the trial participation probabilities, ignoring

potential complexities in the underlying true model form.

In order to quantify the degree of model misspecification (DoM), Lenis,
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Ackerman, and Stuart (2018) propose a unit-independent, informative metric:

ηS =
1
N

N

∑
i=1

|π̂i − π̂C
i |

σπ̂C

where π̂i is the predicted probability of being in the trial under the specified

model, and π̂C
i is the predicted probability of being in the trial under the

true selection model. We use the DoM metric to relate the amount of model

misspecification across scenarios.

In total, there are 756 simulation scenarios that vary by: (6 values for

γ1) × (6 values for γ2) × (7 true trial membership models) × (3 weighting

options: unweighted naive estimator, weighted estimator with correctly speci-

fied weights, and weighted estimator with misspecified weights). We iterate

over each scenario 1000 times, and will now describe the data generation

process.

3.5.2 Data Generation

Consider one particular scenario from the 756 scenarios outlined above. We

start by simulating a population of four X covariates (N = 1000000) according

to a multivariate Normal distribution with mean 0, variance 1, where there is

no correlation between the Xs. Based on the scenario’s γ1 value and true trial

membership model form - suppose the simplest true form for example - we

generate the probability of being in the trial (vs. the validation sample) for the

whole population as follows:

pi = expit(γ1X1i + 0X2i +
1
2

γ1X3i + 2γ1X4i)
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for i = 1, ..., N. Next, we generate the binary sample membership variable S

for each member of the population as Si ∼ Bernoulli(pi) for i = 1, ..., N. Note

that while each pi is determined by the scenario’s specified parameters, S is

assigned with a degree of randomness, such that each person in the population

theoretically has a chance of being “in the trial" or “in the validation sample"

across each different simulation run.

After assigning S, we randomly sample members for the trial and valida-

tion samples, each of size n = 1000. In this step, we observe the differences in

the covariates across the two samples as specified by the γ1 scaling parameter.

We then generate the true potential outcomes Z(0) and Z(1) as Z(0) ∼ N(0, 1)

and Z(1) ∼ N(2, 1), and the mis-measured potential outcomes Y(0) and Y(1)

as:

Y(a) ∼ N
(︁
Z(a) + 0X1 + γ2X2 + 2γ2X3 +

1
2

γ2X4, 1.5
)︁

such that the variance of Y(a) is 1.5 times the variance of Z(a).

We assign treatment A as Bernoulli(0.5) in the trial and 0 in the validation

sample. Lastly, we generate the observed outcomes Z and Y as Z = A ×

Z(1) + (1 − A)× Z(0) and Y = A × Y(1) + (1 − A)× Y(0).

3.5.3 Simulation Results

Figure 3.1 shows the absolute biasµ̂0 , or the transportability bias, across simu-

lation scenarios. Each column represents a different underlying true sample

membership model structure, increasing in complexity and degree of misspec-

ification from left to right (see Supplemental Figure B.1 for DoM by sample
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membership model form). The strength of the impact of the Xs on the mea-

surement error (γ2) increases by row, from top to bottom. The x axis depicts

the absolute standardized mean difference (ASMD) of the true selection prob-

abilities across the samples, representing an increasing difference between the

X distributions across the samples (γ1) (see Supplemental Figure B.2). Note

that scenarios where the ASMD is greater than 1 represent fairly extreme, less

realistic settings. The three lines represent the absolute bias of the naive esti-

mator, the weighted estimator with misspecified weights, and the weighted

estimator with correctly specified weights.

First, note that in the top row, the absolute bias is zero under all cases,

because the measurement error is not differential with respect to any of the

covariates (Table 3.2, Scenarios II and IV). Next, note that in all of the plots, the

absolute bias is zero when the ASMD is zero, or when the distribution of co-

variates in the trial and validation sample do not differ (Table 3.2, Scenarios II

and III). Under the same true sample membership model (for a given column),

as the impact of the Xs on the measurement error model increases (from top to

bottom row), and as the distributional difference of the Xs increases between

the samples (from left to right of the x axis), the absolute biasµ̂0 also increases.

When the selection model is correctly specified, and the resulting predicted

probabilities are used to construct the weights, the weighted estimator is

nearly unbiased in all scenarios (except for when the impacts of the Xs on

the measurement error model and on sample membership are extremely,

somewhat unrealistically, large). In practice, though, model misspecification
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Figure 3.1: Bias of estimating the error mean under control using validation data.
Each column represents a different true sample membership model. From top to
bottom row, the γ2 “scale" parameter for the impact of the Xs on the measurement
error increases, meaning the strength of the relationship between Y and the Xs is
increasing in magnitude. The different line types and colors represent the different
weighting approaches: Unweighted (blue dotted dash), weighted by fitting the
simplest additive model (“Weighted - Misspecified", red solid), and weighted by
fitting the true selection model (“Weighted - True", green dash). This figure appears
in color in the electronic version of this article.
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Figure 3.2: Empirical coverage of 95% CI for estimators of µrct
0 . Each column rep-

resents a different true sample membership model. From top to bottom row, the
γ2 “scale" parameter for the impact of the Xs on the measurement error increases,
meaning the strength of the relationship between Y and the Xs is increasing in magni-
tude. The different line types and colors represent the different weighting approaches:
Unweighted (blue dotted dash), weighted by fitting the simplest additive model
(“Weighted - Misspecified", red solid), and weighted by fitting the true selection
model (“Weighted - True", green dash). This figure appears in color in the electronic
version of this article.

75



is very plausible, as it may be common for researchers to fit a main-effects-

only model of the covariates to predict the sample membership probabilities,

unable to identify the true model form. Under varying amounts of model

misspecification, we see that the weighted estimator still performs fairly

well in reducing biasµ̂0 . As the severity of the transportability assumption

violation increases, the weighted estimator with misspecified weights does

appear to perform worse than the weighted estimator with correctly specified

weights under certain scenarios, particularly when the omitted interaction

and/or quadratic terms are for covariates that more strongly impact sample

membership and measurement error. For example, in column 4, the main-

effects-only model omits an interaction between X3 and X4, the two variables

that impact both models. That weighted estimator performs worse than the

main-effects-only model that omits an X1X3 interaction (column 3), and the

model that omits an X1X4 interaction (column 4), as X1 does not impact the

measurement error structure at all.

Figure 3.2 shows the empirical 95% confidence interval coverage of the

different estimators for µrct
0 . First, observe that across all scenarios in which

the covariates impact the measurement error (rows 2-6), the coverage of the

naive estimator sharply decreases towards zero as the intervention trial differs

more greatly from the validation sample on pre-treatment covariates. Note

also, though, that the weighting approaches (even with a misspecified model)

generally yield substantially better confidence interval coverage than does

the naive approach. This aligns with the pattern in Figure 3.1, in which

the naive estimator becomes increasingly biased as the samples become less
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similar on the covariates. Next, note that the weighted estimator with correctly

specified weights tends to have better coverage than the weighted estimator

with misspecified weights, though the coverage also decreases in the more

extreme cases of covariate differences between the samples. Still, the rate of

coverage decline for the weighted estimators by covariate differences is far

smaller than that of the naive estimator. Also, note that for the more plausible

scenarios (ASMD < 1), the coverage of the weighted estimators is still fairly

good, and far better than that of the naive estimator.

In the cases where the measurement error is not differential with respect

to the Xs (top row), the weighted estimators seem to have worse coverage

than the naive estimator, even though they are all unbiased. This is due

to the presence of large/extreme weights, which shift the point estimates

of µrct
0 further away from the truth and therefore increase the variability of

the weighted estimators, even though they are still unbiased. Trimming

extreme weights (especially in the less plausible scenarios where ASMD > 1),

resulted in better coverage across these settings. However, in cases where

the measurement error is not differential with respect to covariates, and the

transportability assumption is not believed to be violated, then the weighting

approach may not be preferable.

Overall, though, it appears that any weighting, whether by fitting a main-

effects-only model, the true selection model, or anything in between, greatly

improves the transportability of the control group error mean from the valida-

tion sample to the trial. When there are concerns about measurement error

corrections not transporting properly from an external validation sample to an
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intervention trial, these simulation results highlight that the weighting method

proposed in Section 3.4 can help reduce the bias and improve coverage due to

poor transportability.

3.6 Data Example

We now apply the methods described in Section 3.4 to a lifestyle intervention

trial, PREMIER, using OPEN, an external validation sample.

In PREMIER, 810 individuals were randomized to either one of two be-

havioral/dietary recommendations, or to standard care, to estimate the effect

of the intervention on blood pressure reduction (Svetkey et al., 2003). For

illustrative purposes, instead of blood pressure, we focus on self-reported

sodium intake, measured by 24-hour recall, as the outcome of interest. We also

combine the two intervention groups into one “treatment" group. PREMIER

is a rather unique intervention trial, in that urinary sodium intake was also

collected at each time point in addition to the self-reported intake, providing

an opportunity for us to evaluate the method performance. Note that this is

atypical for an intervention trial to collect. We use sodium intake at 18 months

followup as the outcome of interest (though note that in the original trial, the

primary time point of interest for analysis was 6 months), and we limit the

sample only to those who have both self-reported and urinary sodium intake

measures at 18 months (n = 670).

OPEN is an external validation study that measures both self-reported

sodium (via 24-hour recall) and urinary sodium (via a 24-hour urine sample)

on a sample of 484 study participants, with the goal of understanding the
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Table 3.3: Distribution of Covariates by Study

OPEN (n=484) PREMIER (n=810) ASMD

Male 0.54 0.38 0.33
Age
≤ 40 0.03 0.14 0.42
41-45 0.17 0.17 0.01
46-50 0.21 0.24 0.06
51-55 0.20 0.21 0.03
56-60 0.15 0.13 0.05
≥ 61 0.24 0.12 0.30

BMI 27.87 33.06 0.95
Black 0.06 0.34 0.81
Education

College 0.55 0.59 0.08
Grad School 0.32 0.32 0.00

structure and amount of measurement error among self-reported dietary out-

comes (Subar et al., 2003). Using PREMIER and OPEN, we will demonstrate

that the measurement error of dietary sodium intake is differential with re-

spect to pre-treatment covariates, and that the distribution of these factors

also differ between the intervention trial and the validation study. Therefore,

the transportability assumption is violated, and µ̂naive
0 , which is estimated in

OPEN, is a biased estimate for µrct
0 in PREMIER.

Table 4.1 describes the distribution of covariates across the two studies,

along with the ASMD of each covariate between the two studies. Observe

that BMI differs greatly between the two studies. Additionally, the OPEN

population appears to be older, more male and less racially diverse than

PREMIER.

In order to implement the methods described in Section 3.4, we form
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a “stacked" dataset, comprised of data from PREMIER and OPEN, which

contains variables for sample membership (S), treatment (A), self-reported

dietary sodium intake (Y), urinary sodium intake (Z), and the following

common covariates (X): age category, sex, race, BMI and education. Certain

covariates, like age and education, are categorized to ensure consistency in

measures across datasets, and race is utilized as a dichotomous variable,

indicating if individuals identify as Black or not. Again, note that typically

Z would be coded as missing when S = rct; however, the unique nature of

PREMIER allows us to observe Z in the trial.

By comparing the difference in outcome means by measurement type in

PREMIER, it appears that the self-reported dietary sodium measures under-

report the true sodium intake in both treatment arms, and bias∆̂ at 18 months

is estimated to be 0.028 (see Supplemental Table B.2). While this difference

is not significant (see Supplemental Table B.3), we still proceed to assess

the feasibility of transporting the error mean under control from OPEN to

PREMIER for illustrative purposes.

We fit a linear model to determine which covariates significantly impact the

measurement error under control conditions, using data from both PREMIER

and OPEN (see Supplemental Table B.4). The error under control appears

to be differential with respect to sex and race, and also weakly differential

with respect to education. Given the output of this model, and the covariate

distributions shown in Table 4.1, we therefore have reason to believe that the

transportability assumption is violated.

Next, we fit a sample membership model using all five covariates, which
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includes covariates that impact both the measurement error and sample mem-

bership, as well as covariates that just differ between the two samples. To

fit the model, we use generalized boosted models (GBM), an algorithm that

allows for flexible, nonlinear relationships when modeling study membership

by a large number of covariates (McCaffrey, Ridgeway, & Morral, 2004). We

examine the distributions of predicted sample membership probabilities (see

Supplemental Figure B.3), which have an ASMD = 1.47. This is unsurprising,

given the large differences between the two samples’ distributions of race and

BMI. There are some outliers in the resulting validation sample weights that

are more than ten times the average of the weights. We therefore implement

weight trimming to account for the extreme weights, setting all validation

sample weights in the top decile to the 90th percentile weight value (Lee,

Lessler, & Stuart, 2011) (see Supplemental Figure B.4 for the distribution of

the trimmed weights in the validation sample).

Lastly, we use the weights to estimate µ̂
weighted
0 . Table 3.4 shows both the un-

weighted and weighted estimates, along with the estimate of µrct
0 in PREMIER

(which again, is usually not estimable when only self-reported outcomes are

collected). Observe that for the outcome at 18 months, the absolute bias of the

µ̂0 estimate, biasµ̂0 , decreases by about 80% after implementing the weighting

method.

In the data example, note that the ASMD of the sample membership

probabilities between OPEN and PREMIER is quite large (1.47), and that

some of the covariates are extremely different from one another. Even after

weighting, OPEN is still a bit dissimilar from PREMIER by BMI and race
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Table 3.4: Estimated Error Mean under Control Conditions in the Validation Sample,
and Associated Bias, by Weighting Method

6 months 18 months

Method µ̂0 µrct
0 biasµ̂0 µ̂0 µrct

0 biasµ̂0

Unweighted -0.228 -0.001 -0.228 0.077

Weighted -0.326 -0.227 -0.099 -0.321 -0.305 -0.016

(see Supplemental Figure B.5). Additionally, by fitting the selection model

using GBM, we are able fitting a model somewhere between the true form

and the main-effects-only form. We therefore see that these results reflect the

simulation findings under rather extreme cases, suggesting that the weighting

may help to a certain extent, but that the differences between the validation

sample and trial may lend to sub-optimal performance.

3.7 Discussion

When using self-reported measures as outcomes in a lifestyle intervention

study, it is important to correct for any potential measurement error in order

to make accurate inferences on the effect of the treatment in the study popu-

lation. While measurement error is a well documented issue, particularly in

nutritional epidemiology, there is still much need for increased method imple-

mentation in applied research studies, as well as improved methodology for

different types of error (Brakenhoff et al., 2018; Jurek, Maldonado, Greenland,

& Church, 2006). We highlight the importance of considering transportability

when utilizing external validation studies to correct for outcome measurement

error. Using externally estimated measurement error may introduce additional
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biases to the ATE estimate in cases where validation samples are dissimilar

from the primary intervention study of interest. We show that weighting

the validation sample to better resemble the intervention study can reduce

such biases, and improve upon the transportability of the measurement error

estimated in the external sample. However, in some extreme cases, it may

still be inappropriate to transport if the validation sample is vastly different

from the trial on a set of observed characteristics. Additionally, it is important

to remember that while researchers are often concerned about measurement

error, it will only lead to a biased ATE estimate when the outcome error is

differential with respect to treatment and the error means are thereby different

across treatment groups. Such bias would prompt the usage of external vali-

dation data for outcome measurement error correction, and thus the concerns

about transportability (see Table 3.2).

There are several limitations to the work presented in this paper. First, we

assume that the measurement error model structure (i.e. the model relating

the measurement error to the covariates) in both the intervention study and

the validation sample are the same. It is possible that such relationships may

differ between studies, even though in practice, this would be untestable

without observing the outcome without measurement error in the trial itself.

Further research is needed to understand transportability and to apply the

methods proposed in this paper when relaxing this assumption. Second, we

assume in this work that we are able to fully observe all covariates that impact

the outcome measurement error structure in both the intervention study and

the validation sample. Due to data availability, certain important variables

83



may be unobserved in practice, either in one of the datasets, or in both, which

may hinder the performance of these methods. Sensitivity analyses should

be adapted and applied to address these concerns (Nguyen, Ebnesajjad, Cole,

& Stuart, 2017). Lastly, as seen with PREMIER, transportability may vary by

time-point with longitudinal outcomes, warranting further investigation into

how transportability and measurement error may vary over time.

This work has focused on the use of external validation samples only,

and further research is needed to evaluate the differences in transportability

between internal and external validation samples. In some cases, internal

validation samples may still be preferable when possible to incorporate into

study design, particularly such that true outcome measures can be obtained

under different treatment conditions. When it is infeasible to collect internal

validation data, researchers designing external validation studies should still

consider the possible relevant trial study populations to which the validation

sample will be applied to. Taking such steps when designing validation

studies will also help ensure better transportability when using information

from external data sources to correct for outcome measurement error.
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Chapter 4

Implementing Statistical Methods
for Generalizing Randomized Trial
Findings to a Target Population

Ackerman et al. (2019)

4.1 Introduction

Randomized controlled trials (RCTs) are considered the gold standard for

estimating the average causal effect of a drug or intervention in a study sam-

ple. Experimental study designs allow researchers to study the treatment of

interest under highly controlled and ideal circumstances, and the randomiza-

tion of treatment assignment removes confounding, providing strong internal

validity. RCTs often have great influence on evidence-based decisions, par-

ticularly in the presence of conflicting study results (Weisberg, Hayden, &

Pontes, 2009). However, while RCTs have strong internal validity, they often

have weaker external validity, making it difficult to generalize trial results

from a “non-representative" study sample to a broader population (Imai, King,
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& Stuart, 2008; Shadish, Cook, & Campbell, 2002). In particular, when the

distribution of a factor that modifies treatment effects in the trial differs from

the distribution of that factor in the population, the sample average treatment

effect (SATE) will not equal the target population average treatment effect

(TATE) (Cole & Stuart, 2010; Lesko et al., 2017). This makes it challenging

for policymakers to accurately draw population-level conclusions from trial

evidence.

Differences between the sample and population may be particularly pro-

nounced in studies of substance abuse treatment. Susukida, Crum, Stuart,

Ebnesajjad, and Mojtabai (2016) documented prominent differences between

substance use disorder (SUD) treatment-related trial participants and a popu-

lation of SUD treatment seekers across ten trials supported by the National

Drug Abuse Treatment Clinical Trials Network (NIDA-CTN). Most of those 10

trials studied the effectiveness of buprenorphine/naloxone (Bup/Nx-Detox)

detoxification for opioid dependence, and Susukida et al. (2016) found that

the SUD trial participants were more likely to have more than 12 years of

education, be employed full time, and to have had a greater number of prior

treatments than the general population of SUD treatment seekers. Some of

these factors have been associated with more positive attitudes towards SUD

treatment (Moradveisi, Huibers, Renner, & Arntz, 2014), which may lead to

different levels of adherence and thus different effectiveness of the interven-

tions. Therefore, differences in these covariates between the trial samples and

populations could lead to limited generalizability. When generalized to the

target population, Susukida, Crum, Ebnesajjad, Stuart, and Mojtabai (2017)
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found that most significant trial results became statistically insignificant, a

shift that could be attributed largely to treatment effect heterogeneity. The

issue of generalizability has been discussed across many other disciplines

as well, such as medicine (Rubin, 2008), social work (Stuart, Ackerman, &

Westreich, 2017; Zhai et al., 2010), and child development (Dababnah & Parish,

2016), reinforcing the importance of developing guidelines and methods for

handling the poor external validity of RCTs.

Given increasing concern about potential lack of generalizability of RCT

findings, statistical methods have recently been proposed to estimate pop-

ulation average treatment effects using RCT and population data. While

thinking about generalizability is important throughout the study design

and implementation processes (Flay, 1986; Insel, 2006; Kern, Stuart, Hill, &

Green, 2016), these methods are meant to be implemented after the study is

already conducted. In this paper, we provide an introductory overview of

several post-trial statistical methods to generalize average treatment effects

to a well-defined target population. These methods rely on the existence of

individual-level data for the target population, or a representative sample of it

(Stuart, Cole, Bradshaw, & Leaf, 2011). The paper proceeds as follows: Section

4.2 describes the notation and assumptions. Section 4.3 describes methods for

assessing and improving upon the generalizability of RCT findings. Section 4.4

provides guidance for preparing data and implementing the described meth-

ods using our R package, “generalize." We illustrate the use of “generalize" in

Section 4.5 using data from an RCT related to methamphetamine dependence

and a nationally-representative survey of SUD treatment admissions. Finally,
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Section 4.6 discusses factors that researchers should take into consideration

when defining target populations and implementing the appropriate methods,

as well as some limitations and areas for future research.

4.2 Causal Effects, Notation and Assumptions

Suppose a trial of n participants is conducted, and researchers are interested

in generalizing the trial results to a well-defined target population of size

N. Define S to be an indicator of trial membership: Si = 1 indicates that

individual i is in the trial, while Si = 0 indicates that they are in the population

but not a trial participant. Note that since we are discussing generalizability,

S simply indicates trial membership, and all individuals in the trial are still

considered to come from the target population of interest, even when the trial

and population data sets are disjoint. If the study sample is totally separate

from the target population, (e.g. a trial is conducted in a sample in Los Angeles

and researchers wish to extrapolate its findings to a population in New York)

then it becomes a matter of transportability instead of generalizability (Lesko

et al., 2017; Pearl & Bareinboim, 2011).

Let Y denote the outcome of interest, Yi(1) denote the potential outcome for

subject i under treatment, and Yi(0) denote the potential outcome for subject i

under control. The causal effect for an individual is defined as the difference

in potential outcomes under treatment and control conditions, Yi(1)− Yi(0)

(Rubin, 1974). The challenge of causal inference is that, in practice, it is not

possible to observe both Yi(1) and Yi(0) for individual i, as, at any particular

point in time, each individual receives either treatment or control, not both. It
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is therefore common to estimate the average treatment effect (ATE), defined

as the mean over the individual level causal effects (Kern et al., 2016). The

sample average treatment effect (SATE) is defined as

SATE = E[Y(1)− Y(0)|S = 1]

and can be unbiasedly estimated in an RCT by 1
n ∑N

i=1(Yi(1) − Yi(0)|Si =

1). However, the estimand of interest here is the target population average

treatment effect (TATE), which is defined as

TATE = E[Y(1)− Y(0)|S = 0]

If the data were available, this could be estimated by 1
N ∑N

i=1(Yi(1)−Yi(0)|Si =

0). Since the intervention is assumed be unavailable to the population at the

time of the trial, outcomes under treatment are not observed in the population

and therefore this quantity can not be calculated directly. This challenge mo-

tivates the generalizability methods presented in Section 4.3. In addition to

the common structural assumptions required for randomized trials’ internal

validity, several additional assumptions are needed when estimating the TATE

using data from a trial and a target population. We assume the following:

1. All members of the target population have a nonzero probability of

being selected for the trial.

2. There are no unmeasured variables associated with sample selection and

treatment effect given the observed variables.

3. When considering the set of pre-treatment covariates associated with

94



treatment effect, the ranges of such effect modifiers in the target popula-

tion are covered by their respective ranges in the trial.

4. In the trial, treatment assignment is independent of sample selection, as

well as of potential outcomes, given the pre-treatment covariates.

Assumption 1 is similar to the positivity assumption for drawing causal

inference in non-experimental studies. Assumption 2 is comparable to the

assumption of “unconfounded treatment assignment" in non-experimental

studies. This is a strong assumption that is unrealistic in some settings; while a

trial may measure all variables related to treatment effect, a data set represent-

ing the target population may be limited in the scope of variables measured.

Assumption 3 regarding coverage should be highly considered when defining

the target population. For example, if the age range in a trial is 18-30, there is

no evidence from the trial to estimate the population average treatment effect

for 50 year olds. Assumption 4 is satisfied by nature of the randomization in

RCTs.

4.3 Methods

In this section, we first describe the probability of trial participation and its

use, then we discuss how to assess the generalizability of a trial, followed

by an overview of several methods for estimating the population average

treatment effect.
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4.3.1 Probability of Trial Participation

Traditionally used in non-experimental studies for assessing balance between

treatment groups and for matching (Rosenbaum & Rubin, 1983; Rubin, 2001),

propensity score-type methods are also highly useful for generalizability.

Here, they are used to model the probability of trial sample membership

based on a set of baseline covariates. The probabilities are then used to

assess differences between the trial sample and the population (Section 4.3.2),

and also to construct weights to estimate the TATE (Section 4.3.3.1). Trial

participation probabilities can be estimated using several methods; here, we

focus on three: logistic regression, Random Forests, and Lasso. Estimation

using logistic regression involves specifying a sample selection model based

on a linear combination of the pre-treatment covariates of interest and then

obtaining the predicted values. Random Forests are a decision tree-based

regression method that have shown good performance for propensity score

estimation (Lee, Lessler, & Stuart, 2010). Lasso is a penalty approach that

places constraints on the model coefficients and aids in model selection by

allowing certain coefficients to shrink to zero (Tibshirani, 1996). Both Random

Forests and Lasso are quite flexible models of trial membership and do not

require specification of the specific model form. All three of these estimation

methods are supported by the statistical package described in the Appendix.

4.3.2 Assessing the Generalizability of a Trial

Prior to generalizing existing study results to a target population, it is im-

portant to assess how similar or different the study sample is to the target
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population. One way to do so is to calculate the absolute standardized mean

difference (ASMD) of each covariate between the trial sample and target pop-

ulation. A larger ASMD indicates greater differences between the covariate

distribution in the trial and the population, whereas a smaller ASMD indicates

that the trial is more similar to the population on that factor. As detailed fur-

ther below, this metric can also be used to help assess the success of the trial

weighting methods described below. However, while this method may reveal

covariate-by-covariate differences, it does not assess the joint distribution of

the covariates.

Another metric of similarity is a generalizability index proposed by Tip-

ton (2014), which utilizes the trial participation probabilities and therefore

captures differences between all of the observed covariates at once. Tipton’s

generalizability index functions like a “histogram distance" to describe how

similar a trial sample is to a random sample drawn from the target population.

The index, β, is defined as follows:

β =
∫︂ √︂

fs(s) fp(s)ds

where fs(s) and fp(s) are the distributions of trial participation probabilities

in the trial sample and target population given a set of common covariates, re-

spectively. Estimation of involves binning the trial and population data based

on the distribution of their trial participation probabilities and comparing the

proportions of each data set that fall within each bin. Tipton’s generalizability

index has several appealing properties: it is bounded between 0 and 1, does

not require any distributional assumptions and has an informative magnitude.
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An index of 1 signifies that the trial sample is like a random sample drawn

from the target population, whereas an index of 0 indicates no overlap be-

tween the trial population. Typically, samples with indices greater than .8 are

considered highly similar to the population, whereas indices less than .5 are

considered dissimilar (Tipton, 2014), which may inform whether generalizing

the study results to that target population is appropriate at all.

4.3.3 Estimating Population Treatment Effects

After assessing differences between the trial and population, there are several

approaches for estimating the TATE. We now detail three broad classes of

methods for estimating the TATE: one set based on using the probability of

trial participation to equate the trial sample and population, one set based on

flexible outcome models used to predict outcomes in the population, and a

third that combines both together.

4.3.3.1 Weighting by the Inverse Odds of Trial Participation

One proposed method weights the trial sample by the inverse odds of trial

participation, which assigns greater weight to individuals in the trial with

greater probability of being in the target population. In doing so, this ap-

proach weights the sample to be more similar to the target population. This

is similar to the construction of ATT weights using propensity scores in non-

experimental settings (Stuart, 2010). The weights are defined as follows:

wi =

{︄
0 if Si = 0
1−êi

êi
if Si = 1
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where êi is defined as the predicted probability of individual being a trial

participant, and can be calculated using the methods described in Section 4.3.1.

The TATE is then estimated by fitting a weighted least squares regression

model using the trial data (Kern et al., 2016).

4.3.3.2 Outcome Model Based Approach

Another set of approaches estimate the TATE by modeling the outcome in a

flexible way. Machine learning algorithms have become increasingly popular

in estimating causal effects, as, compared to parametric regression models,

they implement more flexible models that do not require linearity or additivity

assumptions (Kern et al., 2016). Bayesian Additive Regression Trees (BART)

is one such algorithm that has been used to estimate treatment effects (Hill,

2011). The algorithm operates as a “sum of trees," fitting many regression

models that each have a small contribution to the overall model. In the context

of generalizability, BART is used to fit the outcome model on the trial data

and then estimate the TATE by predicting outcomes under treatment and

control in the target population. Draws from the posterior distribution of the

individual causal effects are then averaged across the population data set to

obtain the TATE estimate (Kern et al., 2016).

4.3.3.3 Combining weighting and outcome modeling: TMLE

Lastly, Targeted Maximum Likelihood Estimation (TMLE) is a method that

combines both strategies. It models both the outcome and the trial partici-

pation using pre-treatment covariates, and is robust to whether or not one

of those models is incorrect (Gruber & Van Der Laan, 2009; Rudolph, Díaz,
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Rosenblum, & Stuart, 2014). In the generalizability context, the outcome

model is first used to predict outcomes under treatment conditions in both the

trial and population data, which are then essentially offset by a function of

the participation probabilities, generated by the selection model. The updated

predicted outcomes in the full data are then used to estimate the TATE.

4.4 Preparing Data for Method Implementation

In order to implement the methods described in Section 4.3, several data pre-

processing steps must be taken. First, it is important to identify a data set that

describes the target population of interest and measures an overlapping set of

covariates with the trial data that may impact treatment effect heterogeneity

and/or trial membership.

Next, trial and population data must be harmonized across that common

set of covariates. This may involve categorizing or dichotomizing certain

variables across data sources to make measures comparable. It may be useful

to identify which data source has fewer variables, and then try to find the max-

imal overlap with the variable list of the more detailed data source. Data on

outcomes and treatment will be missing in the population data set and should

be coded as such. The final combined “stacked" data should contain variables

for outcomes and treatment in the trial that are missing in the population, a

binary indicator for trial participation to distinguish those enrolled in the RCT

from those who are not, and the set of overlapping covariates (see Figure 4.1).

Once the data are formatted in this manner, the methods described in

Section 4.3 can be implemented using “generalize," a package developed for
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Figure 4.1: Format of “stacked" data set for implementing generalizability methods

statistical software R (R Core Team, 2017). Currently available on Github

(Ackerman, 2018), “generalize" allows researchers to assess and generalize

trial findings to a well-defined target population (see Appendix C for code).

4.5 Data Example

We now apply the methods discussed to a trial related to methamphetamine

dependence. Trial data were obtained from the CSP-1025 trial of the NIDA-

CTN data repository (Johnson, 2015). The phase 2, multi-site, placebo-controlled

RCT aimed to determine if topiramate, a therapeutic shown to reduce al-

cohol and cocaine use (Johnson et al., 2007; Kampman et al., 2004), could

reduce methamphetamine use relative to placebo in individuals with metham-

phetamine dependence. 140 participants were randomized to either topi-

ramate or placebo. For this illustrative example, the outcome of interest is

methamphetamine use reported during follow-up. No significant differences

between treatment groups were found for this outcome in the initial report
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of the trial (Elkashef et al., 2012) . Data from the Treatment Episode Data

Set: Admissions (TEDS-A) of 2014 were used to represent the population

of substance abuse treatment seekers. Managed by the Substance Abuse

and Mental Health Services Administration (SAMHSA), TEDS-A consists of

annual data regarding all publicly-funded admissions to substance abuse

treatment programs in the United States, as required by state law. For better

relevance to the CSP-1025 trial, we subset TEDS-A to only include records

where methamphetamine was listed as the primary substance abuse problem

at time of admission, resulting in 135,264 records in the population dataset.

Eight common covariates were identified across the trial and target popula-

tion data sets: age, sex, race, ethnicity, marital status, education, employment

status and prior methamphetamine use in the past week. To ensure that mea-

sures across each data set were comparable, variables were categorized and

dichotomized when needed. For example, the binary variable indicating any

prior methamphetamine use in the past week was determined by a variable

in the trial that measured the actual number of days of methamphetamine

use in the month prior to the study, and a categorical variable in TEDS-A that

reported either 1) no methamphetamine use in the past month, 2) 1-3 times in

the past month, 3) 1-2 times in the past week, 4) 3-6 times in the past week, or

5) daily.
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4.5.1 Results

Table 4.1 describes the distributions of pre-treatment covariates in the trial

sample and in the target population. The trial sample was older, more pre-

dominantly male, less racially and ethnically diverse, and more educated

than the target population of individuals in treatment for methamphetamine

dependence. A larger proportion of trial participants reported using metham-

phetamine in the prior seven days than did individuals in the target popula-

tion. Since none of the trial participants were between the ages of 12 and 15,

members of the target population in that age range were excluded from the

target population to avoid violating the coverage assumption (Assumption 3).

Table 4.1: Distribution of Covariates in the Trial vs. Population and their Absolute
Standardized Mean Difference (ASMD)

CSP-1025
(trial)

TEDS-A-2014
(population)

ASMD
(unweighted)

ASMD
(weighted)

Age
12-14 0.00 0.01 1.11 1.11
15-17 0.00 0.02 4.12 4.12
18-20 0.02 0.04 0.15 0.07
21-24 0.04 0.12 0.45 0.07
25-29 0.14 0.20 0.19 0.11
30-34 0.12 0.21 0.26 0.11
35-39 0.24 0.15 0.22 0.16
40-44 0.18 0.10 0.20 0.22
45-49 0.17 0.08 0.24 0.21
50-54 0.07 0.05 0.09 0.20
> 55 0.01 0.03 0.09 0.40

Sex
Male 0.64 0.54 0.20 0.01
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Table 4.1: Distribution of Covariates in the Trial vs. Population and their Absolute
Standardized Mean Difference (ASMD) (continued)

CSP-1025
(trial)

TEDS-A-2014
(population)

ASMD
(unweighted)

ASMD
(weighted)

Race
Black 0.02 0.04 0.14 0.14
White 0.83 0.74 0.25 0.09
Native Hawaiian 0.03 0.01 0.10 0.16
Other 0.10 0.18 0.27 0.08

Ethnicity
Not Hispanic/Latino 0.86 0.78 0.23 1.07
Unknown/Not Given 0.04 0.01 0.16 0.25

Marital Status
Married/Partnered 0.23 0.09 0.32 0.08

Education
9-11 years 0.10 0.29 0.63 0.14
12 years 0.40 0.45 0.10 0.31
13-15 years 0.33 0.17 0.34 0.16
> 15 years 0.15 0.03 0.33 0.05

Employment
Not in labor force 0.07 0.38 1.25 0.22
Part-time 0.25 0.07 0.41 0.17
Unemployed 0.24 0.45 0.48 0.10

Methamphetamine Use in Past Week
Yes 0.91 0.42 1.72 0.40

The distributions of the log(trial participation probabilities) in the trial

and target population varied somewhat by method of calculation as well

(Figure 4.2). Here, probabilities calculated using logistic regression depicted

greater differences between the trial and target population, while probabilities

calculated using Lasso and Random Forests suggested that the trial was

slightly more similar to the target population.
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Figure 4.2: log(Trial Participation Probabilities) by Method and Sample Membership

The TATE estimates are shown in Figure 4.3. In the trial sample, there was

no significant effect of treatment on decreasing reported methamphetamine

use in follow-up (see ‘Unweighted’ estimate). The TATE estimates obtained

across all methods suggested a similar non-significant conclusion, indicating

that the original findings from within the trial sample still hold when gen-

eralized to the target population of interest. It is important to also note that

the distribution of the pre-treatment covariates in the trial resembled those in

the target population much more closely after weighting the sample by using

Random Forests to predict sample membership (Table 4.1).

4.6 Discussion

When recruiting fully representative samples or altering study design to

strengthen external validity is infeasible, statistical methods for estimating

target population effects are helpful tools that allow researchers to better
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Figure 4.3: Average Treatment Effect of Topiramate on Methamphetamine Use Re-
ported in Followup by Generalizability Method

estimate population average treatment effects post-hoc. The application of

these methods to real-world data highlights several limitations and challenges.

First, identifying the right data to represent the target population is crucial,

and depends on both the policy question at hand and the availability of

population data related to the subject matter of the trial (e.g., from a nationally

representative survey). Limited covariates available in population-level data

sets poses problems of satisfying Assumption 2: that there are no unmeasured

variables related to treatment effect and trial participation, once we adjust for

the observed factors. Sensitivity analyses have been recently proposed to test

how sensitive TATE estimates are to unobserved effect modifiers, and should

be utilized in cases of concern over data availability (Nguyen, Ebnesajjad,

Cole, & Stuart, 2017).

Second, it is important to note that while TEDS-A consisted of 135,264

admissions records, the CTN trial consisted of only 140 participants. Trying
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to generalize from a small sample to a very large population may impact

the performance of the generalizability methods discussed, and is subject to

further ongoing research.

Lastly, choosing the most appropriate generalizability method is not al-

ways trivial, nor it is obvious when or when not to generalize a trial’s results

at all. For example, the CTN’s mission is to determine the effectiveness of in-

terventions in diversified patient populations, and so the CTN trial described

in this paper may actually be more generalizable by design than other RCTs.

While the Tipton generalizability index provides a useful summary of dif-

ferences between a trial and target population based on the predicted trial

participation probabilities, one should also assess the balance of the covariates

post-weighting, and consider the importance of the variables included in the

selection model in terms of how related they are to effects (Kern et al., 2016).

In this paper, we highlighted and implemented several methods to estimate

population average treatment effects, providing practical considerations for

researchers to follow. Assessing and improving the external validity of RCTs

is an important step in improving how clinical findings are used in practice

(i.e., determining whether to train providers to administer a new intervention

based on its potential effect in their population). While data availability

and quality may be scarce, the methods discussed and the accompanying R

package are useful tools to evaluate the generalizability of a trial’s results, and

should be carefully implemented prior to drawing population-level inferences

from trial data.
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Chapter 5

Conclusion

This dissertation work has focused on several ways to acquire and utilize

different types of external data to improve RCT inferences. After highlighting

challenges in finding suitable target population data to make RCT general-

izations, Chapter 2 described an opportunity to use complex surveys, and

demonstrated that it is crucial to incorporate the complex survey weights

when estimating the PATE. Omitting the survey weights can be thought of

as generalizing to an entirely different population, one that has the demo-

graphics of the survey sample rather than the target population of interest.

While the demographic differences between a survey sample and its intended

target population may not be that large for some analytic survey datasets,

it can be noticeable for others, particularly when surveys are designed to

heavily over- or under-sample certain groups. Chapter 3 elaborated on best

practices for using external validation studies to measure and properly cor-

rect for measurement error in self-reported trial outcomes. Directly applying

such measurement error corrections to a continuous trial outcome may in-

troduce additional biases to the ATE estimate when the error is differential
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with respect to a set of covariates, and those covariates differ in distribution

between the trial and validation sample. In such cases, propensity score-type

weighting methods can help address this transportability concern; however,

under extremely large differences, it may still be inappropriate to transport

corrections from an external validation sample to a trial outcome.

In both Chapters 2 and 3, important questions around data compatibility,

transportability and data synthesis were raised, accompanied by the devel-

opment and application of statistical methodology to enhance one’s ability

to supplement a trial with external sources of data. Chapter 4 then provided

practical guidance on seeking and harmonizing such data for generalization

purposes, and introduced user-friendly software for method implementation.

Each component of this dissertation aimed to address challenges that arise in

practice when using RCTs for population-level decision making by providing

methods and tools to improve upon one’s ability to do so.

Several opportunities for future work present themselves from this disser-

tation research. One commonly raised challenge, for both making generaliza-

tions and for making measurement error corrections, is the public availability

of high quality external data. Some data issues are too great to be fixed by

statistical methodology alone, and the ability to implement the methods de-

veloped and discussed in this dissertation depends on the quality and breadth

of external data. For instance, if one wishes to generalize findings from a

trial where participants are all over the age of 65, yet the target population

dataset consists of individuals between the ages of 18-40 only, then that par-

ticular population dataset is simply unsuitable for the research question at
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hand. Datasets derived from electronic health records (EHR) are promising

and expansive sources that may also help address some of these positivity

concerns, especially when researchers are interested in generalizing effects

from RCTs to particular hospital-based patient populations. Given that EHR

and other administrative databases are not necessarily collected with research

intentions, further research should be conducted to assess the appropriateness

of EHR data for RCT-to-population generalizations.

Similarly, transporting can be challenging when a key variable that moder-

ates treatment effect (for generalizability) or recall bias (for measurement error)

is partially or fully unobserved between the trial and external data. Sensitivity

analyses for generalizing RCT findings with unobserved effect modifiers have

been proposed, and should be a key component of any application with this

concern (Chan, 2019; Nguyen, Ackerman, Schmid, Cole, & Stuart, 2018). Addi-

tional work is needed to extend such sensitivity analyses when using complex

survey population data, pertaining to partially unobserved moderators in

both the transportability sample membership model and the generation of the

survey weights. Future software development for generalizability should also

consider incorporating functionality for carrying out such sensitivity analyses.

Finally, this work focused on transportability when addressing issues of

internal and external validity in randomized trials separately. An exciting

direction of this work would be to tackle both issues together methodologically,

similar to how Beesley and Mukherjee (2019) handle sample selection bias

and outcome misclassification in EHR association studies. Furthermore, there

is an ongoing debate on the trade-offs between study design and validity
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(Westreich, Edwards, Lesko, Cole, & Stuart, 2019), and future research would

benefit from addressing both internal and external validity, in experimental

and non-experimental studies alike.

The methodological contributions of this dissertation were demonstrated

through applications in randomized trials related to substance use disorders,

nutrition and cardiovascular health. Additionally, the issues of generalizabil-

ity and measurement error addressed have also been documented in trials

spanning other disciplines such as medicine (Rubin, 2008), child development

(Dababnah & Parish, 2016), social work (Stuart, Ackerman, & Westreich, 2017;

Zhai et al., 2010) and education (Tipton & Olsen, 2018). I hope this work on

transportability will continue to have a broad impact on public health, public

policy-making and social good.
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Appendix A

Supplemental Material for Chapter
2

R Code

All code for the simulation and data example can be found in the following

GitHub repository: https://github.com/benjamin-ackerman/generalizability_

svys

Derivation of Population Estimand E[Y(a)] for single binary X

E[Y(a)] = ∑
x

E[Y(a)|X = x]P(X = x) Total expectation

= ∑
x

E[Y(a)|X = x, S = 1]P(X = x) S |= Y(a)|X

= ∑
x

E[Y(a)|A = a, X = x, S = 1]P(X = x) A |= Y(a)|X, S = 1

= ∑
x

E[Y|A = a, X = x, S = 1]P(X = x) Consistency

= ∑
x

E[Y|A = a, X = x, S = 1]P(X = x|S = 1)
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× P(S = 1)
P(S = 1|X = x)

Bayes thm

E[Y(a)] = ∑
x

E[Y|A = a, X = x, S = 1]P(X = x|S = 1)

×
(︄

P(S = 2|X = x)P(S = 1)
P(S = 1|X = x)P(S = 2)

)︄

×
(︄

P(S = 2)
P(S = 2|X = x)

)︄
multiplying by 1

Double Bootstrap

In order to account for uncertainty in the survey when using it for gener-

alizations, we propose using a double-bootstrapping approach to estimate

the variability of the PATE estimates. Similarly to how a bootstrap involves

sampling with replacement many times and looking at the distribution of

estimates across bootstrap runs, we sample both the trial and the survey with

replacement in each bootstrap run. Within each bootstrap iteration, we re-

sample the trial with replacement (sample size equal to that of the trial). We

also re-sample the survey using a stratified approach described by Valliant,

Dever, and Kreuter (2013). We define survey strata by deciles of the survey

weights. For stratum h with sample size nh, we sample with replacement

mh = nh − 1 subjects. We adjust the survey weight dk of subject k to equal

d∗k = dk
nh

nh − 1
m∗

hi

where m∗
hi is the number of times subject k is sampled for that given bootstrap

run. Therefore, if the subject is selected once, their new weight is equal to
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Figure A.1: Empirical coverage of the transportability estimators using the double
bootstrap approach to estimate the variance.

dk
nh

nh−1 . If they are selected twice, their new weight is equal to dk
2nh

nh−1 , and

so forth. Figure A.1 compares the empirical 95% coverage of the transported

estimators using this double bootstrap approach on a subset of the simulation

scenarios to the standard sandwich variance estimator used for Figure 2.3.

Note that the results across the different approaches are quite similar, though

the double bootstrap yields slightly better coverage when the trial differs more

from the target population (bottom row).
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Figure A.2: Relationship between γ2, the scaling parameter for survey selection, and
the ASMD of survey selection probabilities between the survey sample and the target
population.
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Appendix B

Supplemental Material for Chapter
3

R Code

All code for the simulation and data example can be found in the following

GitHub repository:

https://github.com/benjamin-ackerman/ME_transportability

Derivation of Standard Error for µ̂
weighted
0

Recall that

µ̂
weighted
0 =

∑nv
i=1 wi(Yi − Zi)

∑nv
i=1 wi

Let Y∗ and Z∗ be the weighted vectors of Y and Z in the validation sample.

Since Y and Z are paired measurements and are not independent, var(Y∗ −

Z∗) = var(Y∗) + var(Z∗)− 2cov(Y∗, Z∗).
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According to Price (1972),

cov(Y∗, Z∗) =

[︁
∑nv

i wi(Yi − Ȳ∗)(Zi − Z̄∗)
]︁

∑nv
i wi

where

Ȳ∗ =
∑nv

i=1 wiYi

∑nv
i=1 wi

Z̄∗ =
∑nv

i=1 wiZi

∑nv
i=1 wi

var(Y∗) = cov(Y∗, Y∗)

var(Z∗) = cov(Z∗, Z∗)

Therefore, se
µ̂

weighted
0

=
√︁

var(Y∗ − Z∗)/n and can be used to construct a

95% confidence interval.

Supplemental Tables and Figures

Table B.1: Scaled coefficients for covariates by model type

X1 X2 X3 X4
S model γ1 0 1

2 γ1 2γ1
Y model 0 γ2 2γ2

1
2 γ2
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Figure B.1: Degree of Misspecification (DoM) of fitting the main effects model under
different true S model forms. As expected, when the true model is the main effects
model, there is no misspecification, and the most misspecified model is the model
with the most terms. Also note that the degree of misspecification increases when the
true S model form depends on the more influential covariates.
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Figure B.2: The relationship between the ‘scale’ parameter (γ1) and the ASMD be-
tween the true selection probabilities across the trial and the validation data. There’s
slight variation across the different true selection models, though this could be due to
simulation variability.
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Figure B.3: Predicted Probabilities of Trial Membership by Sample
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Figure B.4: Distribution of the trimmed weights in OPEN validation sample
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Figure B.5: Love plot comparing the covariate distributions in the intervention trial
PREMIER (pink) and validation sample OPEN (blue), pre-and-post weighting the
validation sample
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Table B.2: Self-reported and Urinary Sodium Outcomes by Study and Treatment
Group

OPEN PREMIER

6 months 18 months

Control Control Treatment Control Treatment

Self-Reported (Y) 8.220 7.850 7.640 7.840 7.690
Urine (Z) 8.450 8.070 7.970 8.140 8.020
µs

a -0.227 -0.228 -0.323 -0.299 -0.327

Table B.3: T-test comparing measurement error by treatment group in PREMIER

Timepoint bias∆̂ 95% CI p-value

6 months 0.1108736 (0.0162, 0.206) 0.0217971
18 months 0.0282937 (-0.065, 0.122) 0.5517550

Table B.4: Regression Coefficients for modeling effect of covariates on measurement
error term

term estimate std.error statistic p.value

Intercept 5.90 0.41 14.53 0.0000000
log(sodium urine) 0.24 0.05 4.74 0.0000029
Sex 0.20 0.04 5.33 0.0000002
Age 41-45 0.06 0.10 0.65 0.5178708
Age 46-50 0.06 0.10 0.63 0.5302275

Age 51-55 -0.07 0.10 -0.78 0.4365246
Age 56-60 -0.06 0.10 -0.61 0.5419625
Age > 60 0.00 0.09 0.03 0.9789308
BMI 0.00 0.00 1.21 0.2275847
College Education 0.09 0.05 1.72 0.0864365

Grad School Education 0.10 0.05 1.84 0.0668818
Black -0.28 0.07 -3.89 0.0001163
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Appendix C

Supplemental Material for Chapter
4

In this appendix, we demonstrate the implementation of the methods de-

scribed in Section 4.3 on the data example described in Section 4.5 by using the

R package “generalize." The “generalize" package contains two core functions:

assess and generalize. Assess evaluates similarities and differences between

the trial sample and the target population based on a specified list of common

covariates. This is done in a few ways:

1. Covariate table: assess provides a summary table of covariate means

in the trial and the population, along with absolute standardized mean

differences (ASMD) between the two sources of data.

2. Trial participation probabilities: assess estimates the probability of trial

participation based on a specified vector of covariate names and sta-

tistical method, and summarizes their distribution across the trial and

target populations. For this, logistic regression is the default method,

but estimation using Random Forests or Lasso is currently supported by
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the package as well.

3. Generalizability index: assess utilizes the estimated trial participation

probabilities to calculate the Tipton generalizability index described in

Section 4.3.2.

4. Target population “trimming": assess can check for any violations of

the coverage assumption (Assumption 3). If the parameter trim_pop is

set to equal TRUE, then assess returns a “trimmed" data set excluding

all individuals in the target population with covariate values outside

the ranges of the respective trial covariates, and reports how many

individuals in the population were excluded.

After assessing the generalizability, the generalize function can be used to

implement the TATE estimation methods described in Section 4.3.3. Weighting

by the inverse odds using logistic regression is the default method, though

weights based on other models (Lasso or Random Forests) or using BART

or TMLE are available for use as well. We now demonstrate how to use the

“generalize" package to compare the CSP-1025 trial to the TEDS-A-2014 popu-

lation, and then to estimate the TATE for the outcome “methamphetamine use

in followup." Note that in the code below, the stacked data set will be referred

to as “meth_data," and that these results are purely illustrative.

First, we install and load the package from Github using the “devtools"

package (Wickham & Chang, 2017):

devtools :: install_github("benjamin -ackerman/generalize")
library(generalize)
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For convenience, we define a vector of covariate names:

covariates = c("age", "sex", "race", "ethnicity", "maritalstatus",
"education", "employment", "methprior")

Next, to assess the differences between the trial (CSP-1025) and the popula-

tion (TEDS-A-2014), we use the assess function, estimating the trial participa-

tion probabilities using Random Forests. To check the coverage assumption,

we set the parameter trim_pop to equal TRUE:

assess_object = assess(trial = "trial", selection_covariates =
covariates ,

data = meth_data , selection_method = "rf", trim_pop = TRUE)

summary(assess_object)
## Probability of Trial Participation:
##
## Selection Model: trial ~ age + sex + race + ethnicity +
## maritalstatus + education + employment + methprior
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## Trial (n = 137) 0 0.002019 0.01075 0.011820 0.01739 0.04932
## Pop (n = 126344) 0 0.000000 0.00000 0.001618 0.00134 0.05630
##
## Estimated by Random Forests
## Generalizability Index: 0.604
## ============================================
## Covariate Distributions:
##
## Population data were trimmed for covariates to not exceed trial
## covariate bounds
## Number excluded from population: 8923
##
## trial population ASMD
## age18 .20 0.0219 0.0454 0.113
## age21 .24 0.0365 0.1241 0.266
## age25 .29 0.1387 0.2072 0.169
## age30 .34 0.1241 0.2132 0.218
## age35 .39 0.2409 0.1492 0.257
## age40 .44 0.1825 0.1067 0.245
## age45 .49 0.1679 0.0775 0.338
## age50 .54 0.0730 0.0503 0.104
## age55. 0.0146 0.0264 0.073
## sexMale 0.6350 0.5386 0.193
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## raceBlack 0.0219 0.0433 0.105
## raceNative.Hawaiian 0.0292 0.0129 0.144
## raceOther 0.1022 0.1828 0.209
## raceWhite 0.8321 0.7411 0.208
## ethnicityNot.Hispanic.Latino 0.8613 0.7856 0.185
## ethnicityUnknown.Not.Given 0.0365 0.0070 0.355
## maritalstatusMarried.Partnered 0.2263 0.0943 0.452
## education12 0.4015 0.4602 0.118
## education13 .15 0.3285 0.1717 0.416
## education16. 0.1460 0.0291 0.695
## education9 .11 0.1022 0.2862 0.407
## employmentNot.in.labor.force 0.0657 0.3689 0.629
## employmentPart.time 0.2482 0.0701 0.697
## employmentUnemployed 0.2409 0.4526 0.425
## methprior 0.9124 0.4243 0.988

The assess function creates an object of the class "generalize_assess." The

summary of a "generalize_assess" object returns the selection model, the distri-

bution of the trial participation probabilities by data source, and the method of

trial participation probability estimation. It also returns the calculated Tipton

generalizability index, the number of individuals excluded due to coverage

violations, and a table of the covariate distributions. Since we set trim_pop =

TRUE, all of the results generated by assess used the "trimmed" data set.

Lastly, we estimate the effect of treatment on reported methamphetamine

use at followup ("methfollowup") by using the generalize function. Here, we

estimate the TATE using weighting by the inverse odds, where the probabil-

ities are estimated by Random Forests. Since there were a large number of

individuals violating the coverage assumption (n=8923), we again "trim" the

target population here:
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generalize_object = generalize(outcome = "methfollowup", treatment
= "treat", trial = "trial", selection_covariates = covariates

, data = meth_data , method = "weighting", selection_method = "
rf", trim_pop = TRUE)

summary(generalize_object)
## Average Treatment Effect Estimates:
##
## Outcome Model: methfollowup ~ treat
##
## Estimate Std. Error 95% CI Lower 95% CI Upper
## SATE -0.1260684 0.1149249 -0.3513211 0.09918434
## TATE -0.1218059 0.1162635 -0.3496825 0.10607059
##
## ============================================
## TATE estimated by Weighting
## Weights estimated by Random Forests
##
## Trial sample size: 137
## Population size: 126344
## Population data were trimmed for covariates to not exceed trial
## covariate bounds
## Number excluded from population: 8920
##
## Generalizability Index: 0.606
##
## Covariate Distributions after Weighting:
##
## trial (weighted) population ASMD
## age18 .20 0.0170 0.0454 0.136
## age21 .24 0.0856 0.1241 0.117
## age25 .29 0.2464 0.2072 0.097
## age30 .34 0.1754 0.2132 0.092
## age35 .39 0.1892 0.1492 0.112
## age40 .44 0.1635 0.1067 0.184
## age45 .49 0.0854 0.0775 0.029
## age50 .54 0.0332 0.0503 0.078
## age55. 0.0043 0.0264 0.138
## sexMale 0.5565 0.5386 0.036
## raceBlack 0.0208 0.0433 0.111
## raceNative.Hawaiian 0.0127 0.0129 0.002
## raceOther 0.1219 0.1828 0.158
## raceWhite 0.8430 0.7411 0.233
## ethnicityNot.Hispanic.Latino 0.9356 0.7856 0.366
## ethnicityUnknown.Not.Given 0.0050 0.0070 0.024
## maritalstatusMarried.Partnered 0.1340 0.0943 0.136
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## education12 0.4789 0.4602 0.037
## education13 .15 0.2620 0.1717 0.239
## education16. 0.0312 0.0291 0.012
## education9 .11 0.1972 0.2862 0.197
## employmentNot.in.labor.force 0.1584 0.3689 0.436
## employmentPart.time 0.1104 0.0701 0.158
## employmentUnemployed 0.6345 0.4526 0.365
## methprior 0.8574 0.4243 0.877

The generalize function creates an object of the class "generalize." The

summary of a "generalize" object returns a table with the SATE and TATE

estimates, along with their standard errors and 95% confidence intervals (or

credible intervals, when BART is used). When weighting is the specified

method of TATE estimation, a covariate distribution table is printed as well,

where the covariate means in the trial are weighted by the trial participation

weights.
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