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NOTE.

Tue following pages are printed from the stereotype plates
of the Appendix to the author’s Munual of Spherical and
Practical Astronomy, without any change in the numbering
of the pages or of the tables. The text, therefore, com-
mences with p. 469 and ends with p. 566; and the tables
are numbered IX.. IX. A., X. and X. A., as they stand in the
original work.

As the Method of Least Squares ix applicable in almost all
the physical sciences where numerical results are to be de-
duced from observations. and is here treated from funda-
mental and general principles, it is thonght that this scparate
publication of the Appendix will supply the want that has
for a long time been felt of a suitable text-book on this sub-
ject for the use of students of practical science generally, and
more especially of classes in our scientific schools.

81. Loris, January 1, 1868.






APPENDIX.

METHOD OF LEAST SQUARES.*

1. A xvMBER of observations being taken for the purpose of
determining one or more unknown quantities, and these obser-
vations giving discordant results, it is an important problem to
determine the most probable values of the unknown quantities.
The method of least squares may be defined to be that method
of treating this general problem which takes as its fundamental
principle, that the most probable values are those which make the sum
of the squares of the residual errors a minimum. But, to understand
this definition, some degree of acquaintance with the method
itself is necessary.

# The first published application of the method is to be found in LecENDRE, Nouvelles
méthodes pour la détermination des orbites des cométes, Paris, 1806. The development,
however, from fundamental principles is due to Gavss, who declared that he had
used the method as early as 1795. See his Theoria Motus Corporum Celestium, 1809,
Lib. II. Sec. IIL.; Disquisitio de elementis ellipticis Palladis, 1811; Bestimmung der
Genauigkeit der Beobachtungen (v. L1NDENAU und BoOHNENBERGER'S Zeitschrift, 1816, 1.
s. 185); Theoria combinationis observationum erroribus minimis obnoxiee, 1823 ; Supple-
mentum theoriz combinationis, &c., 1826: all of which have been rendered quite access-
ible through a French translation by J. BERTRAND, Méthode des moindres carrées. Mé-
moires sur la combinaison des observations, par Cu. Fr. Gavuss, Paris, 1855.

For a digest of the preceding, together with the results of the labors of Besser
and Hansex, see Excke, Ueber die Methode der kleinsten Quadrate, Berliner Astron.
Jahrbuch for 1834, 1835, 1836 : in connection with which must be mentioned espe-
cially the practical work of GErriNe, Die Ausgleichungsrechnungen der practischen
Geometrie, Hamburg, 1843.

See also Laprace, Théorie analytique des probabilités, Liv. 1I. Chap. IV.; Poissox,
Sur laprobabilité des résultats moyens des observations, in the Connaissance des Temps for
1827; ENcke, in the Berlin Jahrbuch for 1853 ; Bessew, in Astron. Nach., Nos. 358,
359, 299; Hawsex, in Astron. Nach., Nos. 192, 202 et seq.; PEIRCE, in the Astron,
Journal (Cambridge, Mass.), Vol. I No. 21; Liagre, Caleul des probabilités et théorie
des erreurs, Bruxelles, 1852,
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470 APPENDIX.

ERRORS TO WHICH OBSERVATIONS ARE LIABLE.

2. Every observation which is a measure, however carefully it
may be made, is to be regarded as subject to error; for expe-
rience teaches that repeated measures of the same quantity, when
the greatest precision is sought,* do not give uniformly the same
result. Two kinds of errors are to be distinguished.

Constant or reqular errors are those which in all measures of the
same quantity, made under the same circumstances, obtain the
same magnitude; or whose magnitude is dependent upon the
circumstances according to any determinate law. The causes of
such errors must be the subject of careful preliminary search in
_all physical inquiries, so that their action may be altogether pre-
vented or their effect removed by calculation. For example,
among the constant errors may be enumerated refraction, aber-
ration, &c.; the effect of the temperature of rods used in mea-
suring a base line in a survey ; the error of division of a graduated
instrument when the same division is used in all the measures;
any peculiarity of an instrument which affects a particular mea-
surement always by the same amount, such as inequality of the
pivots of a transit instrument, defective adjustment of the colli-
mation, imperfections of lenses, defects of micrometer serews, &c.,
to which must be added constant peculiarities of the observer,
who, for example, may always note the passage of a star over a
thread of a transit instrument too soon, or too late, by a coustant
quantity, or who, in attempting to bisect a star with a micrometer
thread, constantly makes the upper or the lower portion the
greater; or who, in observing the contact of two images (in
sextant measures, for instance), assumes for a contact a position
in which the images are really at some constant small distance,
or a position in which the images are really overlapped, &e. &c.

Thus, we have three kinds of constant errors:

1st. T'heoretical, such as refraction, aberration, &e., whose effects,
when their causes are once thoroughly understood, may be cal-
culated a priori, and which thenceforth cease to exist as errors.

* The qualification, “when the greatest precision is sought,” is important; for if,
e.g., we were to determine the latitude of a place by repeated measures of the meri-
dian altitude of the same.fixed star with a sextant divided only to whole degrees, all
our measures might give the same degree. The accordance of observations is, there-
fore, not to be taken as an infallible evidence of their accuracy. It is especially
when we approach the limits of our measuring powers that we become sensible of the
discrepancies of observations.
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The detection of a constant ervor in a certain class of observa-
tions very commonly leads to investigations by which its cause
is revealed, and thus our physical theovies are improved.

2d. Instrumental, which are discovered by an examination of
our instruments, or from a dizcussion of the observations made
with them. These may also be removed when their causes are
fully understood. either by a proper mode of using the instru-
ment, or by subsequent computation.

3d. Pur sonal, which depend upon peculiarities of the observer,
and in delicate i inquiries become the subject of special investiga-
tion under the name of * personal equations.”

We are to assume that, in any inquiry, all the sources of con-
stant error have been carefully investigated, and their effects
eliminated as far as practicable. When this has been done,
howerver, we find by experience that there still remain discrepan-
cies, which must be referred to the next following class.

Irreqular or accidental errors are those which have irregular
causes, or whose effects upon individual observations are gov-
erned by no fixed law connecting them with the circumstances
of the observations, and, therefore, can never be subjected
a priori to computation. Such, for example, are errors arising
from tremors of a telescope produced by the wind ; errors in the
refraction produced by anomalous changes of density of the
strata of the atmosphere; from unavoidable changes in the
several parts of an instrument produced by anomalous variations
of temperature, or anomalous contraction and expansion of the
parts of an instrument even at.known temperatures; but, more
especially, errors arizing from the imperfection of the senses, as
the imperfection of the eye in measuring very small spaces, of
the ear in estimating small intervals of time, of the touch in the
delicate handling of an instrument, &c.

This distinction between constant and irregular errors is,
indeed, to a certain extent, rather relative than absolute, and
depends upon the sense, more or less restricted, in which we
consider observations to be of the same nature or made under the
same circumstances. For example, the errors of division of an
instrument may be regarded as constant errors when the same
division comes into all measures of the same quantity, but as
irregular when in every measure a different division is used, or
when the same quantity is measured repeatedly with different
instruments.
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After a full investigation of the constant or regular errors, it
is the next business of the observer to diminish as much as pos-
sible the irregular errors by the greatest care in the observations;
and finally, when the observations are completed, there remains
the important operation of combining themggo that the outstand-
- ing, unavoidable, irregular errors may have the least probable
effect upon the results. For this combination we invoke the
aid of the method of least squares, which may be said to have
for its object the restriction of the effect of irregular errors within
the narrowest limits according to the theory of probabilities, and,
at the same time, to determine from the observations themselves
the errors to which our results are probably liable. It is proper
to observe here, however, to guard against fallacious applications,
that the theory of the method is grounded upon the hypothesis
that we have taken a large number of observations, or, at least, a
number sufficiently large to determine the errors to which the
‘ohservations are liable.

CORRECTION OF THE OBSERVATIONS.

8. When no more observations are taken than are sufficient
to determine one value of each of the unknown quantities
sought, we have no means of judging of the correctness of the
results, and, in the absence of other information, are compelled
to accept these results as true, or, at least, as the most probable.
But when additional observations are taken, leading to different
results, we can no longer unconditionally accept any one result
as true, since each must be regarded as contradicting the others.
The results cannot all be true, and are all probably, in a strict
sense, false. The absolutely true value of the quantity sought by
observation must, in general, be regarded as beyond our reach;
and instead of it we must accept a value which may or may not
agree with any one of the observations, but which is rendered
most probable by the existence of these observations.

The condition under which such a probable value is to be
determined, is that all contradiction among the observations is to be
removed. This is a logical necessity, since we cannot accept for
truth that which is contradictory or leads to contradictory results.

The contradiction is obviously to be removed by applying to
the several observations (or conceiving to be applied) probable
corrections, which shall make them agree with each other, and
which we have reason to suppose to be equivalent in amount to
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the aceidental ervors severally.  But let us here remark that we
do not in this statement by any means imply that an observer is
to arbidrardy assume a syvstem of” correetions which will produce
accordance: on the contrary, the method we are about to con-
sider is designed to remove, as tar as possible, every arbitrary
consideration, and to furnish a set of principles which shall
always guide us to the most probable results. The conscientious
observer, having taken every carve in his observation, will set it
down. however discrepant it may appear to him, as a portion of
the testimony collected. out of which the truth, or the nearest
approximation to it is to be sifted.

Admitting. therefore, that the observations give us the best,
as indeed the only, information we can obtain respecting the
desired quantities, we must find, a system of corrections which
shall not only produce the desired accordance, but which shall
alzo be the mosl probable corrections, and further be rendered most
probuble by these observations themsclres.

THE ARITHMETICAL MEAN.

4. In order to discover a principle which may serve as a basis
for the investigation, let us examine first the casc of direct ob-
servations made for the purpose of determining a single unknown
quantity.

Let the guantity to be determined by direct observation be
denoted by z. (Suppose, for example, to fix our ideas, that this
quantity is the linear distance between two fixed terrestrial
points.) If but one measure of z is taken and the resultis a,
we must accept as the only and, therefore, the most probable
value, z = a. Let a second observation, taken under the same
or precisely equivalent circumstances, and with the same degree
of care, so that there is no reason for supposing it to be more in
error than the first, give the value & Then, since there is no
reason for preferring one observation to the other, the value of
7 must be so taken that the differences # — a, x — b shall be
numerically equal; and this gives

r=4@+"b)

This result must be regarded as the only one that can be inferred
from the two observations consistently with our definition of
accidental errors; for positive and negative accidental errors of
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equal absolute magnitude are to be regarded as equal errors and
as equally probable, since, from the care bestowed on the obser-
vations and the supposed similarity of the circumstances under
which they are made, there is no reason a priori for assuming
either a positive or a negative error to be the more probable.

Now let a third observation be added, giving the value c.
Since the three observations are of equal reliability, or, as we
shall hereafter say, of equal weight, we must so combine «, b, and
¢ that each shall have a like influence upon the result; in other
words, z must be a symmetrical function of «, b, and ¢. If we
first consider @ and b alone, then ¢ and ¢, then b and ¢, we shall
find the values

1 (a + ), i+ o), ¢ +09,

with each of which the additional observation ¢, b, or @ is to be
combined. Each combination must result in the same sym-
metrical function, which, whatever it may be, can be denoted by
the functional symbol . We must, therefore, have

z =4 [}(a+b)c]
=+ [3(a+0)0]
=4 [$(b+ ¢), 4]

Introducing the sum of «, b, and ¢, or putting

s=a-+b-c
these become
z=4 [ —0c),c]=4+[sc]
:—‘q’[%(s_b)’ b]:‘l’[sa b]
=4 [2(s—a)a] =4[s,a]

But s is already a symmetrical function of a, b, and ¢, and there-
fore these equations cannot all result in the same symmetrical
function unless ¢, b, a, in the respective developments of the
functions, disappear and leave only s. Hence we must have

T =4(8)

Now, to determine 4, we observe that, as it must be general,
its nature may be learned from any special but known case.
Such a case is that in which the three observations give three
equal values, or a = b =¢; and in that case we have, as the
only value, z = a, or

a=43a)
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and, consequently, the symbol 4 signifies here the division by 3.
Hence, generally,

Pt b+ec

3

In the same manner, if it had been previously shown that for
m equally good obscrvations the most probable value is

x=a+b+c+....—f—n

m

it would follow that for an additional observation p we must
have

_a+b+eH4....4n+p

o m 4 1

for, putting s =a 4+ b + ¢ +...4 n + p, we shall have

Na

‘”:"[;}7 (s—p),p]z-t [s, ] =+ (8), &e.

But we have shown that the form is true for three observed
values: hence, it is true for four; and since it is true for four
values it is true for five; and thus generally for any number.*

The principle here demonstrated, that the arithmetical mean
of a number of equally good ob=scrvations is the most probable
value of the observed quantity, iz that which has been universally
adopted as the most simple and obvious, and might well be
received as axiomatic. The above demonstration is chiefly
valuable as exhibiting somewhat more clearly the nature of the
assumption that underlics the principle, which is that, under
strictly similar cirennistances, positive and negative errors of the
sanwe absolute amount are equully probable.

5. If now o/, n’, w’....n are the m observed values of a
required quantity z, and if z, denotes their arithmetical mean,
the assumption of z, as the most probable value of z gives
n'— zy, 0! — x4, 0" — x,, &c., as the most probable system of cor-
rcetions (subtractive from the observed values) which produce
the required accordance. But the equation

x:n’—l—n”-{-n"’—}—....-{-n‘"" )

0 m

% ExckE, Berliner Astron. Jahrbuch for 1834, p. 262.
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may also be put under the form
(W —xz) + " — ) + (W — ) + ... (™ — x) =0

that is, the algebraic sum of the corrections is zero.

This is, however, not the only characteristic of the system of
corrections resulting from the use of the arithmetical mean. Let
us examine the sum of the squares of the corrections. For
brevity, let us denote the corrections, or, as they will be here-
after called, the residuals, by the symbol v: so that

V=0 — @y, V=" — @, V"= n" — xz, &e.

and also denote the sums of quantities of the same kind by
enclosing the common symbol in rectangular brackets: so that

[v] ="+ o'+ v" + &e.
[vw] = v'v' + V"V + """+ &e.

a notation usuaﬂy employed throughout the method of least
squares. We have

[(]=0 2

[w] = (0 — xp)* + (0" — x)* + (" — Z)* 4 ...
= [nn] — 2 [n] &, + may?

But since we have also

and

-
m

Zo
this equation becomes
o] =[] — 2 [2] 21 4 DT
: ®
= [nn] — [ ]
Let z; be any assumed value of z, giving the residuals
v,=n'—2x, V=" —x, v, = n"" — x,, &e.
then, as above,
[vw,] = [nn] — 2 [n] 2, + maz?
Substituting in this the value of [nn] given by (8), we find

[vw,] = [vv] - [—n]—z — 2 [n] &, + mx?
:[vv]—|—m([—n;l——ael)2 @
m
= [vv] + m (2 — x,)*
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This equation determines the sum of the squares of the residuals
for any assumed value of @, Since the last term is always posi-
tive, we sce that this sum for any value of « differing from the
arithetien]l mean xy is always greater than [vr].  llence it is a
second characteristie of the arithmetical mean, that it makes the
sum of the squares of the residuals a minonwin.

6. Observations may be not only dircet, that is, made directly
upon the quantity to be determined, but also indirect, that is, made
upon some quantity which is a function of one or more quanti-
ties to be determined. Indeed, the greater part of the observa-
tions in astronomy, and in physical science generally, belong to

the latter class. Thus, let vy, z..... be the quantities to be
determined, and .} a function of them denoted by f, or
' M=f(z,yz....) (5)

and let us suppose an observation to be made upon the value of
J. We then have but a single equation between z,y, z.... and
the obzerved quantity M, and the problem is as yet indetermi-
nate. Various svstems of values may be found to satisty the
equation, either exactly or approximately. Let us, however, sup-
pose that the most probable system (as yet unknown) is expressed
by x=p,y=¢q,2=r...., and let the value of the function,
when these values are substituted in it, be denoted by V, or put

V=rfm¢r-.-9 (6)

then M — V is the residual error of the observation. In like
manner, if a number of observations of the same kind be taken,
in which the observed quantities M’, M, M’ ... are functions
determined by the same elements p, ¢, r,...., and if V', V",
V... .are the values of these functions when p, ¢, r....are
gubstituted in them, then M’ —V'/, M/ V' M"" V" .. ..
are the residual errors of the observations. If there are p
unknown quantities and also g observations, and no more, there
will be g equations between the known and unknown quantities,
which will fully determine the values of these unknown quanti-
ties: so that the probable values p, ¢, ....are, in that case,
those determinate values which exactly satisfy all the equations,
and, consequently, reduce every one of the residuals M’ —V’,
M —V, &e. to zero. But, if there are more than y observations,
the determinate values found from g equations alone will not
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necessarily satisfy the remaining equations, in consequence of
accidental errors in the observations. The problem, then, is to
determine from ALL the observations, or from all the equations, the
most probable system of values of the unknown quantities, or, which is
the same thing, the most probable system of residual errors. In the
case of direct observations, we have seen that the most probable
value of the unknown quantity was that which made the alge-
braic sum of the residuals zero; but this principle followed from
taking the arithmetical mean of the same quantity, and is ob-
viously inapplicable in the present case. The second principle,
that the most probable value is that which makes the sum of the
squares of the residuals a minimum, is of a more general
character, and might be assumed at once, as at least a plausible
principle, to serve as the basis of the solution of our problem;
but it will be more satisfactory to justify its adoption by the
calculus of probabilities.

THE PROBABILITY CURVE.

7. Although accidental errors would seem at first sight to be
of a capricious and irregular nature which would exclude them
from the domain of mathematics, yet, upon examination from
theoretical considerations, confirmed, as will be shown, by expe-
rience, we shall find that they are subject to remarkably precise
laws. In the first place, we remark that they are subject to the
following fundamental laws: 1st. Errors in excess and in defect
—t.e. positive and negative, but of equal absolute value—are
equally probable, and in a large number of observations are
equally frequent. 2d. In every species of observations, there is
a limit of error which the greatest accidental errors do not
exceed : thus, if [ denotes the absolute magnitude of this limit,
all the positive errors are comprised between 0 and — J, and all
the negative errors between 0 and — [, and, consequently, all the
errors are distributed over the interval 2. 8d. The errors are
not distributed uniformly over this interval 27, but the smaller
errors are more frequent than the larger ones,

Thus the frequency of an error of a given magnitude may be
regarded a8 a function of the error itself: so that, if we denote
an error of a certain magnitude by 4, and its relative frequency
in a given large number of observations by ¢4, this function
should obtain its maximum value for 4 = 0, and become zero
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when J = = [ If, then, we denote the probubility* of an crror
< by u, or put
y=¢d )

we may regard this as the equation of a curve, taking 4 as the
abscissa and y as the ordinate.  The nature of this curve will be
acceurately defined when we have discovered the form of the
function ¢J. but we can see in advance that a curve such as
Fig. A is required to satisfy the conditions already imposed upon

Fig. A.
b

ME 0 PE N

this function. For its maximum ordinate must correspond to
4 =0; it must be symmetrical with reference to the axis of y,
since equal errors with opposite signs have equal probabilities;
and it must approach very near to the axis of abscisse for values
of 4 near the extreme limits, although the impossibility of as-
signing such extreme limits of error with precision must prevent
us from fixing the point at which the curve will finally meet the
axis.

8. The number of possible errors in any class of observations
is, strictly speaking, finite ; for there is always a limit of accuracy
to the observations, even when we employ the most refined
instruments, in consequence of which there is a numerical suc-
cession in our results. Thus, if 1”7 is the smallest measure in a

# That is, if the error 4 occurs z times in m observations, y — od = w
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given case, the possible errors, arranged in their order of magni-
tude, can only differ by 1”7 or an integral number of seconds.
Hence, our geometrical representation should strictly consist of
a number of isolated points; but, as these points will be more
and more nearly represented by a continuous curve as we increase
the accuracy of the observations, and thus diminish the intervals
between the successive ordinates, we may, without hesitation,
adopt such a continuous curve as expressing the law of error.
We shall, therefore, regard 4 as a continuous variable, and ¢4
as a continuous function of it.

Now, by the theory of probabilities, if ¢4, o', ¢4 .......
are the respective probabilities of all the possible errors 4, 4,
P L. we have*

od ;o 4 @d" 4 ... =1

when the number of possible errors is finite. But the assumed
continuity of our curve requires that we consider the difference
‘between successive values of 4 as infinitesimal, and thus the
number of values of ¢4 is infinite, and the probability of any
one of these errors is an infinitesimal. To meet this difficulty,
let us observe that if a finite series of errors 4, 4’, 4. .. be ex-
pressed in the smallest unit employed in the observations, these
errors, arranged in the order of their magnitude, will be a series
of consecutive integral numbers; the probability of the error 4
may be regarded as the same as the probability that the error
falls between 4 and 4 - 1; and the probability of an error be-
tween 4 and 4 + i will be the sum of the probabilities of the
errors 4, 4+ 1,4+ 2,..... 4+ (¢ —1). If i is small, the pro-
bability of each of the errors from 4 to 4 + ¢ will be nearly the
same as that of 4: so that their sum will differ but little from
ipd. As the interval between the successive errors diminishes,
this expression becomes more accurate ; and hence when we take
d4, the infinitesimal, instead of i, we have ¢4.d4 as the rigorous
expression of the probability that an error falls between 4 and
4 + dd. Hence, it follows, in general, that the probability that
an error falls between any given limits @ and b is the sum of all

* For if there are n errors equal to 4, n’ equal to 4, &ec., and the whole number

!
of errors is m, the probabilities of the errors are respectively ¢4 = l, od' = i, &e.,
m m

and the sum of these is ﬁn—"j-_— e ey
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the clemeuts of the form ¢J.dJ between these limits, or the

integral
6
f ed.dd
a

and this integral, taken between the extreme limits of error, and
thus embracing all the possible errors, will be

1
fﬁ ed.dd =1

We have heretofore assumed that the function ¢ is to be 7ero
tor J= =/ It must also he added that, since the probability
of any error greater than =/ is also zero, we should have to
determine this function in such a manner that it would be zero
for all values of J from + I to + o and from — I to — =. The
obvious impossibility of determining such a function leads us
to vxtend the limits = / to = =, and to take

T o
f ed.di=1 (8)

—w
This will evidently be allowable if the integral taken from
—=/to = = is s0 small as to be practically insignificant. Besides,
the extreme limits of error can never be fixed with precision, and
it will suffice if the function ¢ J is such that it becomes very small
for those errors which are regarded as very large.

9. Returning now to the general case of indirect observations,
Art. 8, in which we suppose a quantity M = f(z, y, 2,....) to be
observed, let 4, 4, 4" .... be the errors of the several observed
values of M, and ¢, ¢d', ¢4’ .. .. their respective probabilities;
then, the probability that these errors occur at the same time in
the given series being denoted by P, we have, by a theorem of
the caleulus of probabilities,*

P=od.od.od". ..... 9)

The most probable system of values of the unknown quantities

# If a single action of a cause can produce the effects a, @/, a”, .. .. with the re-
spective probabilities p, 7/, p”, . ... the probability that two successive independent
actions of the cause will produce the effects o and o’ is pp’; and similarly for any
number of effects. Thus, if an urn contains 2 white balls, 3 red ones, and 5 black
ones, the probability that in two successive drawings (the original number of balls
being the same at each drawing) one ball will be white and the other red is 75 X ;.

Vor. I1.—31
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%, 4, Z....will be that which makes the probability P a maxi-
mum. Consequently, since z, y, z.... are here supposed to be
independent,* the derivative of P relatively to each of these
variables must be equal to zero; or, since log P varies with P,
the derivatives of log P must satisfy this condition, and we shall
have

14P_, 1P _ 4,
P dx P dy
which, since
log P = log ¢4 -+ log ¢4’ 4 log ¢4" +.....
give the equations
ad ad”
: ’A — A — 4" —t..... =0
+ o T ¥4+
4"
’A — ’/.1’ — oA ... =0
» 4
’A—+ ’A'M—l-gp'd”.—di-{— """ —0
dz dz :
&e. &e.
in which we have put
ded
4 = 11
od.dd an

The number of equations in (10) being the same as that of the
unknown quantities, these equations will serve to determine the
unknown quantities when we have discovered the value of the
function ¢’4, as will be shown hereafter. -

Since the functions ¢4 and ¢’4 are supposed to be general, and
therefore applicable whatever the number of unknown quanti-
ties, we may determine them by an examination of the special
case in which there is but one unknown quantity, or that in
which the observed values M, M’, M".... belong to the same

quantity. In that case, the hypothesis that z is the value of this
quantity gives the errors

A:M——.’l.‘, A':M'—.’L‘, AN =M"—x

* That is, subject to no restrictions except that they shall satisfy the observations,

or the equations M = f (%, ¥, 2,....). For the case of *conditioned” observations,
see Art. 53 of this Appendix.
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whence

and the first equation of (10) becomes
=)+ (M — )+ ¢ (M — ) ... =0 12

Thiz being general for any number m of observations, and for
any observed values M, M’ M., .. let us suppose the special

case

M=2M"..... =M—mN

Since the arithmetical mean of the observed quantities is here
the most probable value of z, we have

1
r= (MM M)

1
= [M + (n— 1) (M — mdV))
=M—(m—1)N
whence
W = e T}
M—-z=M—zx..... = — N

and, consequently, (12) becomes
¢lim =N+ —1)¢(—DN)=0

¢m—1DN]_ ¢ (=)
(m — 1N —N

or,

That is, for all values of 71, and therefore for all values of (m —1)N,

/ — DN ; "(— N
‘we have %’”_—I%}J equal to the same quantity S%f\f—)'

4 .
Hence we have generally % equal to a constant quantity, and,

denoting this constant by %, we have

o4 =rKd
or, by (11),

ded

T —kd4.dd

od
Integrating,

log 94 = 4 kd*+ log =

whence

o4 = x ellas

in which e is the base of the Napierian system of logarithms.
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Since ¢4 must decrease as 4 increases, 3k must be essentially
negative : representing it, therefore, by — A2 our function becomes

¢d = x e—hhaa

To determine the constant x, let this value be substituted in (8),

which gives ‘
f+mue—hhAAdA —1

—c

Putting
t—hd (13)
this integral becomes
. + oo
5 gt =1

The known value of the definite integral in the first member is
/7 (see Vol. L p. 153); whence

_h
b —‘l/—ﬂ.:
and the complete expression of ¢4 becomes
od = l_/h_ﬂ e—nh AA (14)

The constant h must depend upon the nature of the observa-
tions, and will be particularly examined hereafter. If we here
take it as the unit of abscisse in the curve of probability, the
equation (7) becomes

y _ %_ e—AA
by which the curve may be constructed. The values of y for a
few values of 4 are as follows:

4 y Diff, 4 y Diff. |
0.0 | 0.5642 1.6 | 0.0436
02 | 05421 | — '8%% 18 | 00221 | — 0215
04 | 04808 | — 0813 2.0 | 00103 | — 0118
06 | 03936 | 0 22 | 00045 | — 0058
BOBS | . o — 0027
08 | 02975 | — 991 24 | 0.0018
1.0 | 0.2076 08 2.6 | 0.0007 | —-0011
— 0739 — 10005
12 | 01837 | _'ofed 2.8 | 0.0002
14 | 00795 | 222 3.0 | 0.0001 | — 0001
16 | 0.0436 : % | 0.0000
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The curve, Fig. A, in Art. 7. is constructed from this table ; but,
to exhibit its character more distinetly, the scale of the ordinates
1s four times that of the abscisswe (which, indeed, corvesponds to
the case of A =2).  We see that the curve approaches very near
to the axis for moderate values of 4, and that the assumption ot
= x instead of finite limits of J can involve no practical error.
It is evident that the axis X1V is an asymptote to the curve.

The differences in the above table indicate that the curve
approaches the axiz most rapidly at a point whose abscissa is
between 0.6 and 0.8, The exact position of this point, which
ix o point of inflexion, is found by putting the second differen-
tial coetlicient of y equal to zero, which gives

d‘y_ 2 s 444 AR
C-l_.l:g___l,r.‘e —}————1/7:8 =20
whence
1
4= 2 = 0.7071

The ordinate Jm is drawn at this point. 'We shall have occa-
sion to refer to it again hereafter.

THE MEASURE OF PRECISION.
10. The constant L requires special consideration. Since the

: 1
exponent of ¢ in (14) must be an abstract number, 7 must be a
concrete quantity of the same kind as 4. In a class of observa-

tions in which 4 is small for a given probability ¢4, % will be

small, and . will be large. Thus, & will be the greater the more/

precise the nature of the observations, and is, therefore, called by
Gavss the measure of precision. If in one system of observa-
tions the probability of an error 4 is expressed by

h

— p—hhAA
ve©

and in another, more or less precise, by

7
L e—NAA
V'r

the probability that in one observation of the first system the
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error committed will be comprised between the limits — § and
+ ¢ will be expressed by the integral

f+ k. e—MhAA g4

iV

and, in like manner, the probability that the error of an observa-
tion in the second system will be comprised between — ¢’ and
+ 0" will be expressed by

f+6, " e— WAL g4
Ly V™

These integrals are evidently equal when we have hd = I/¢’. If,
for example, we have A’ = 2h, the integrals will be equal when
0 = 20’; that is, the double error will be committed in the first
system with the same probability as the simple error in the
second, or, in the usual mode of expression, the second system
will be twice as precise as the first. "'We shall presently see how
the value of A can be found for any given observations.

THE METHOD OF LEAST SQUARES.

11. The preceding discussion leads directly to important prac-
tical results. 'Wehave seen (Art. 9) that to find the most probable
values of z,7,2. ... from the observed values of M=f (z,y,2,....)
we are to render the probability P= ¢4.¢4'.¢4".... a maxi-
mum, that is, by (14),

P fmp—%mo—hh(AA + AN L AATL ... ' (15)

must be a maximum; and this requires that the quantity
A4+ 44+ 474" +. ... should be a minimum. Thus, the prin-
ciple that the most probable values of the unknown quantities are those
which make the sum of the squares of the residual errors a minimum, is
not limited to the case of direct observations, but is entirely
general.

The principle is readily extended to observations of unequal
precision. For if the degree of precision of the observations
M, M', M".... be respectively h, I/, I’"...., and we compare
these observed quantities with the values V, V/, V", .. ., computed
with the most probable values of z,y,z. . .., whereby we obtain
the residual errors M —V =4, M’ —V’= 4'. ..., it is the same
thing as if we had taken observations of equal precision (repre-
sented by 1) upon the quantities AM, ¥ M', '’ M". ..., and had
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compared them with the computed quantities AV, 2/ V7 V7,
whereby we should have tound the crroes AW — AV = hd,
KM —RKV!'= kS ... in which case we should have to reduce
to a minimum the quantity

RBP4 Wods 4 B

that is, each error being multiplicd by its measure of precision, and
thereby reduced to the sanic dogree of preciscon, the sum of the squares
ur the raduced errors ninst be @ miadmam.

In what precedes is involved the whole theory of the method
of least squares. I proceed to develop its practical features.

THE PROBABLE ERROR.
12. From the preceding articles it follows that the probability
that the error of an observation falls between J and J + JJ is
expressed by

h

— e—hhaa g1

1 T
and the probability that it falls between the limits 0 and « is
expressed by

A=a
_h_ e—hhaa ] |

1 7Ya=0
and this integral expresses the number of errors that we should
expect to find between the limits 0 and ¢ when the whole num-
ber of errors is put = 1 [equation (8)). If we put ¢t = /d, the
integral takes the form

1 = ah
— § e—%dt
VEJSe=0
The whole number of crrors, both positive and negative, whose
numerical magnitude falls between the given limits is twice this

integral, or
- f ‘tat (16)
V= t=80

The value of this integral (which may be computed by the
methods of Vol. I. Art. 113) is given in Table IX. The number
of errors between any two given limits will be found by taking
the difference between the tabular numbers corresponding to
these limits. Since the total number of errors is taken as unity
in the table, the required number of errors in any particular case
iz to be found by multiplying the tabular numbers by the actual
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number of observations. Thus, if there are 1000 dbservations,_
we find that

between t =0 and ¢t = 0.5 there are 520 errors.
“ =05 “ t=10 « ¢« 892 «
w t=10 “ t=15 « “ 128 o«
« =15 “ t=20 « « 29 «
« =20 % t—= o0 “ ¢« 5«

18. The degrees of precision of different series of observations
may be compared together either by comparing the values of 4,
or by comparing the errors which are committed with equal
facility in the two systems. The errors to be compared must
occupy in the two systems a like position in relation to the ex-
treme errors, and we may select for this purpose in each system
the error which occupies the middle place in the series of errors arranged
in the order of their magnitude, so that the number of errors which are
less than this assumed error is the same as the number of errors which
exceed it. The error which satisfies this condition is that for
which the value of the integral (16) is 0.5. Denoting the cor-
responding value of ¢ by p, we find, by interpolation from Table

"%

p = 0.47694

2 p 1

If then we denote by r the error which, in any system of obser-
vations whose degree of precision is A, corresponds to the value
t = p, or put

and we have

p=hr h::i (18)

there will be a probability of } that the error of any single obser-
vation in that system will be less than r, and the same proba-
bility that it will be greater than r; which is sometimes expressed
by saying that it-is an even wager that the error will be less than r.
Hence r is called the probable error.

We may, therefore, compare different series of observations
by comparing their probable errors, their degrees of precision
bemg, by (18), inversely proportional to these errors.

14. In order to apply Table IX. in determining the number
of errors in a given class of observations, we must know the
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measure of precision %, or the probable crror r: thus, if we
wish the number of errors less than @, we enter the table with

a
the argument { = ah, or ¢ = 7'0

For greater convenience, we can employ Table IX. A, which

. . ; a "

gives the same funetion with the argument -, For example, if
r

there are 1000 observations whose probable error is r = 2/,
and we wish to know the number of errors less than @ — 17 , we

take from Table IN. A, with the argument (—; = 0.5, the number

0.26407, which multiplied by 1000 gives 264 as the required
number.

The following example from the Fundamenta Astronomie of
BesseL will serve to show how far the preceding theory is sus-
tained by experience. In 470 observations made by BrapLEY
upon the right ascension of Nirius and Allair, Bessen found the
probable error of a single observation to be

r = 0".2637
Hence, for the number of errors less than 0”.1 the argument of
Table IN. A will be 0—26%( = 0.3792; and for 0.”72, 0.3, &c., the

successive multiples of 0.3792. Thus, we find from the table

for 0”.1 with arg. 0.3792 the number 0.20187

“ 0.2 “ 0.7584 i 0.39102
“0.3 & 1.1376 “« 0.55710
“ 0 4 # 1.5168 # 0.69372
“ 0.5 ¢ 1.8960 “ 0.79904
“ 0.6 & 2.2752 # 0.87511
“ 0.7 s 2.6544 ¢ 0.92661
“w 0.8 & 3.0336 s 0.95926
“« 0.9 « 3.4128 “« 0.97866
“1.0 ke 3.7920 # 0.98946

s & 1.00000

Subtracting each number from the following one, and multiply-
ing the remainder by 470, the number of observations, there were
found
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Between blgroih%ftf:::ys. ‘N%%%fei;:gzi.by
0.0 and 0”.1 95 94
0.1 « 0.2 89 ’ 88
0.2 « 0.3 78 8
08 « 0 4 64 58
04 «“ 0.5 50 51
05 “« 0.6 36 36
0.6 « 0.7 24 26
0.7 « 0.8 15 14
0.8 « 0.9 9 10
0.9 « 1.0 5 7

over 1.0 5 8

The agreement between the theory and experience, though
not absolute, is remarkably close. The number of large errors
by experience exceeds that given by the theory, and this has
been found in other cases of a similar kind ; which shows at least
that the extension of the limits of error to = co has not intro-
duced any error. The discrepancy rather indicates a source of
error of an abnormal character, and calls for some criterion by
which such abnormal observations may be excluded from our
discussions and not permitted to vitiate our results. Such a
criterion has been proposed by Prof. PrircE, and will be con-
sidered hereafter.

THE MEAN OF THE ERRORS, AND THE MEAN ERROR.

15. The selection of the probable error as the term of com-
parison between different series of observations is arbitrary,
although it seems to be naturally designated by its middle posi-
tion in the series of errors. There are two other errors which
have been used for the same purpose.

The first is the mean of the errors, these being all taken with
the positive sign. In order to find its relation to the probable
error, let us first consider a finite series of errors

4,4, 4,.....
with the respective probabilitieg

_z_d 20,’ 2a"

? :

m m m
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so that in m observations there will be 2a errors (numerically)
equal to J, 2a’ equal to J', &c., the probability of a positive crror

. oa .
4 being —. The mean of all these errors, cach being repeated
a number of times proportional to its probability, is

2ad L2 2" 4 s, @ a'
I e - e B S L 24,2 n____
" o +2A + .

When the number of errors is infinite, the probability of an
error J is to be understood as the probability that it falls
between J and J + dd, which is ¢d.dJ (Art. 8), and the above
formula for the mean of the errors becomes the sum of an infi-
nite number of terms of the form 2J¢J.dd. Hence, putting

7 = the mean of the errors,

we have
_(72h | _apan g, 1 19
=) e =5 (19)
or, by (18),
r
5= pl/ﬁ o= 118297’ (20)
r = 0.84537

Another error, very commonly employed in expressing the
precision of observations, is that which has received the appella-
tion of the mean error (der miitlere Fehler of the Germans), which
iz not to be confounded with the above mean of the errors. Its
definition is, the error the square of which is the mean of the squares of
all the errors. Hence, putting

e = the mean error,

we have
(=t AR A L 21
or, by (18),
— - — 14826
= Pl/ ’ } 2]
r=0.6745¢

When we put A=1, we have ¢ =1/} The mean error is,
therefore, the abscissa of the point of inflection of the curve of
probability (Art. 9). In the figure, p. 479, OM is the mean error,



492 APPENDIX.

OP the probable error, OF the mean of the errors, and Mm, Pp,
Ek, their respective probabilities.

THE PROBABLE ERROR OF THE ARITHMETICAL MEAN.

16. The error above denoted by r is the probable error of any
one of the observed values of the unknown quantity z. We are
next to determine the relation between this and the probable
error r, of the arithmetical mean of these values.

If 4, 4, 4"....are the errors of the observed values, the
most probable value of z is that which renders the probability

P — prp—imo—hh(aA + AN+ AAY 41.0)

a maximum (Art. 11), and, consequently, the sum 44 + 4’4
4+ ....a minimum. But this sum is rendered a minimum by
the assumption of the arithmetical mean z, as the most probable
value (Art. 5), and hence the quantity P expresses the probability
of the arithmetical mean if 4, 4/, 47....are the errors of the
observations when compared with this mean. The probability
of any other value of z, as x,+ 8, will be

Pl— prg—ime—mh{(a—8p+ (A—8p+ e}

— hmp—3tm g—hn {[AA]—2[A]5 +m8s

Since [d] =4 + 4+ 4" 4 .... =0 (Art. 5), and [44] = mee
(Art. 15), this expression may be put under the form

P’ — Jy» g—km g —mhh (ec + 85)
and at the same time we have

P — hnp—%tmeg—mhhee
so that
Pz Pl— 1yg~mkhss

that is, the probability of the error zero in the arithmetical mean
is to that of the error d as 1:¢—"#%, Tor a single observation,
the probability of the error zero is to that of the error & as
1:e—*%, Hence the measure of precision (Art. 10) of the
single observation being A, that of the arithmetical mean of m
such observations is iy/m; from which follows the important
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theorem that the precision of the mean of a number of observations
Hiereases as the square root of their number.*

U, then, 7 is the probable error of a single observation, and T
that of the arithmetical mean, we must have

#
o P 23
°=m (23)
and from the constant relation between the mean and the proba-
ble error (22),
€

€ =

24

1m

DETERMINATION OF THE MEAN AND PROBABLE ERRORS OF GIVEN
OBSERVATIONS.

17. The principles now explained will enable us to determine
the mean errors of any given scries of directly observed quanti-
ties. Let n, n/, n’’....be the observed values; z, their arith-
metical mean; », 7/, v/, ... the residuals found by subtracting
r, from each observed value: so that

— U § (7 e/ |
v=n— 1, v=n"—zx, vV =n"— =z, &e.

If x, were certainly the true value of r, so that v, v/, ¢/’ ....were
the actual or (az we may say) the frue crrors, and, consequently,
identical with J, J’, 4" ... ., we should have, according to the
above, mez = [JJ] = [vv], and hence

()
m

and this must always give a close approximation to the value of e.
But the relation mss = [4J] was deduced from a consideration
of an infinite series of errors which would reduce the mean
error of z,to an infinitesimal, according to the principles assumed,
and thus make v, v/, ’/....identical with 4, 4, 4”7 ... A better
approximation to the value of ¢, where the series is limited, is to
be obtained by considering the mean error of z, itself, and conse-
quently, also, the mean errors of the residuals v, v/, v"/..... If
then we suppose the true value of x to be z,+ &, we shall have
the true errors

4d=v—3, 4 =v—34 4" =" — ¢, &e.

* See, in connection, Arts. 21 and 25.
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whence, observing that [v] = 0,
[44] = mee = [vv] — 2 [v] & 4 mo?
== [vv] + md?
Thus the approximate value mee = [vv] requires the correction
md? the value of which depends upon the value we may ascribe

to 0. As the best approximation, we may assume it to be the
mean error g: so that, by (24),

ee
mo? —= msoz = m ——¢e
m

which gives
mee — [w] + ee

ee:——m e—-—\/( [vv] ) (25)

m—1

whence

and consequently, also, by (22),

r—g \/ ( [r] ) g = 0.6745 (26)

m—1

Thus from the actual residuals the mean and the probable error
of a single observed value are found. Hence, by (28) and (24),
the mean and probable errors of the arithmetical mean will be
found by the formuls

=Armos) ey @

ExamrLE.—Let us take the following measures of the outer
diameter of Saturn’s ring observed by BessEL at the Konigsberg
Observatory with the heliometer, in the years 1829-1831.* The
measures, denoted by n, are all reduced to the mean distance of
Saturn from the sun, and are here assumed to have the same
degree of precision.

* Astron. Nach., Vol. XII. p. 169.
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{ n 3 ‘ vy n v vv
38791 | — 0”40 i 0.1600 89”41 | 4 010 | 0.0100
[89 32 40 .01 .0001 89 40 | + 0 .09 | .0081
3%.93 | —0 3% 1444 89 86 |+ 0 .05 | .0025
| 39 31 0 .00 | .0000 89 .20 | —0 .11 | .0121
03917, —0 .14 . .0196 89 42 |40 11| .0121
189 041 —0 27 . 0720 30 .30 | —0 .01 | .0001
|89 57 |40 .26 .0676 39 41|40 .10 | .0100
139 46 |4+ 0 .15 .0225 89 43 | 40 .12 | .0144
39 .30 i — 0 .01 | .0001 39 43 |4+ 0 .12 | .0144
39 .03 | —0 28 0784 39 .86 |+ 0 .05 | .0025
39 3540 .04 .0016 39 .02 | —0 .29 | .0841
39 25 —0 .06 | .0036 89 .01 | —0 .30 | .0900
139 141 —0 .17 .0289 38 86 | —0 45| .2025
{89 47 | 40 .16 | .0256 89 .51 | 40 .20 | .0400
139 .20 —0 .02 .0004 89 .21 | —0 .10 | .0100
39 .32 | 40 .01 | .0001 39 .17 | —0 .14 | .0196
30 40 |+ 0 .09 | .0081 39 .60 | 4+ 0 .29 | .0841
39 33 |4 0.02 | .0004 39 54 | 4+ 0 .23 | .0529
39 28 , — 0 .03 | .0009 39 45 | 40 .14 | .0196
39 .62 [+ 0 .31 | .0961 89 .72 | 40 41 | .1681

z, = 39 .308 [vv] = 1.5884

Hence, since m = 40, we have, by (25) and (26),

— \/ ( 1.5884 ) 0”202

r= O".202 X 0.6745 =0".136
and consequently, by (23) and (24), or (27),

’
R P s . Sy

V/(40) ’ v/ (40)

That is, the probable error of a single observation was 077.136,
and that of the final result z, = 39’/.308 was only 0//.022.

18. The preceding method of finding the probable error from
the squares of the residuals is that which is most commonly
employed ; but when the number of observations is very great,
it is desirable to abridge the labor, if possible. A sufficient
approximation can be obtained by the use of the first powers of
the residuals as follows.

The number of observations being very great, we shall pro-
bably have as many positive as negative residuals. If v/, v/,
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v ... are the positive and v, v,, v, ... the negative residuals,
and if the true value of z is z, 4 9, the true errors will be
o — 8,0 — 8,0 — 8 ..., and — v, — 8, —v,— 8, —v,—0,.....
If they are all taken with the positive sign only, the errors are, there-
fore,

vV—2060v'—6v"—4.... and v, + v, +8v; 45 .....

the mean of which, upon the hypothesis of an equal number of
positive and negative residuals, is the same as that of the series

! / rr
v, v, "L Uy Vgy Vg v ve

Hence, denoting the sum of the numerical values of the residuals
by [v], and the mean of the actual errors by 7, as in Art. 15, we
have

_ [
TS
and hence, by (20),
_ [
r=0.8453 L2 (28)
and consequently, also, by (22),
— [v]
e =12533 4 (29)

In the example of the preceding article we find the mean of the
‘residuals taken with the positive sign to be 0/7.1555, which by
(28) gives r = 07,1555 X 0.8453 = 0/.131, which is perhaps a
sufficient approximation to the value found above. In this
example, however, we have 22 positive residuals, 17 negative
ones, and 1 zero: so that the hypothesis upon which the formula
(28) was founded is not strictly applicable. In a larger number
of observations we should expect a closer agreement with the
hypothesis, and more accordant results.

‘We may, however, employ the first powers of the residuals
more strictly according to the theory of probabilities. In a
limited series each residual is to be regarded as liable to a pro-
bable error 7/, and their mean is to be regarded as the mean of
the errors of the residuals themselves, rather than as the mean
of the errors of the observations. Hence the formula

P — 0.8453 [V
m
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gives the probable error of a residual. The relation betweon
r’ and r (= the probable error of an ob=erved quantity «) ny be
found ax follows.  Each observed a may be supposed to be the
result of observing the mean quantity 2, inercased by an oh-
seved error v The probable error of n = z, + ¢ ix, therefore
(by a principle hereafter to be proved),

—_— 2 2N 5' 1-2 2
=1y {l +r)—'\(7‘n“+7")
whence
ey M
— \m—1
or
r = 0.8453 [v] (30

y [m(on—1)]

which agrees with the formula given by C. A. F. PETERs.*  Ac-
cording to this formula. we find in the above example r = 077,138,

DETERMINATION OF THE MEAN AND PROBABLE ERRORS OF FUNCTIONS
OF INDEPENDENT OBSERVED QUANTITIES.

19. Suppose, first, the most simple function of two independ-

ent observed quantities z and z;, namely, their sum or difference

X=z+ Xy

and let the given mean errors of z and z, be e and ¢,.  Although
the number ot observations by which z and z, have been found
may not be given, we may assume it to have becn any large
number m, and the same for each of the quantities; the degrees
of precision of the two series being inversely proportional to ¢
and z. The true errors of the assumed observations may be
assumed to be—

forz, 4,74, 4"........
forxz, 4,4, 4" ......
and the errors of X, consequently,
4+ 4, gt S 4= 4".....

Denoting the mean error of X by E, we have, by the definition,

ME*= (4 &= 4 + (& = 8/ + (" 4" +.....
= [44] = 2 [J4,] + [4,4]

#* Astron. Nuach., Vol. XLIV. p. 82.

Vor. I1.—32
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Ina greaf number of observations there must be as many posi-
tive as negative products of the form 44, and such that we shall
probably have [44,] = 0; and since we also have me = [44],
me? = [4,4,], this equation gives

Br=¢ 4o @1
If we have
X=xa g o,

and the mean errors of z, x,, z, are ¢, ¢, ¢,, we have by the pre-
ceding equation the mean error of z = z, = /(¢ 4 ¢?), and by
a second application of the same equation, considering z =+ z, as
a single quantity, the mean error of X will be found by the
formula

o R (31%)
and the same principle may be thus extended to the algebraic

sum of any number of observed quantities.
In consequence of the constant relation (22), if r, r, 7,....

are the probable errors of z, x,, z, .... and R the probable error
of X=zx+2 +x,..... , we shall have
Rr=r*fr?++r2+4+.... (32)

Exampre 1.—The zenith distance of a star observed in the
meridian is

& =21° 17 20".3 with the mean error e = 2".3
and the declination of the star is given
0 =19° 30" 14”.8 with the mean error ¢; = 0".8

Required the mean error £ of the latitude of the place of obser-
vation, found by the formula ¢ = ¢ 4- 6. We have, by (31),

E = /[(23) + (0.8)?] = 2".44

Hence

¢ =40° 47" 85”.1 with the mean error E — 2".44

Exampre 2.—The latitude of a place has been found with the
mean error ¢ == 0/.25, and the meridian zenith distance of stars
observed at that place with a certain instrument has been found
to be subject to the mean error ¢, = 0/,62: what is the mean
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error E of the declinations of the stars deduced by the formula
d=-¢—727 Wehave

E=y L0.25) 4 (0.62)*] = 0".67
20, Let us next consider the function
X e i

and suppose r has been observed with the mean error ¢, and a is
a given constant. Every observation of z with the error =+ J
gives .Y with the error = «J: o0 that the mean crror of .I'must be

E=ae

In general, by combining this with the preceding principle, if
we have ]
X =ax + ax, + azx, + ...

and if the mean errors of z, z,, 7, ....aree ¢, €&, ...., and F
that ot .I, we zhall bave

E* = a%* 4 a*s + a)je 4 ... = [a%7] (33)
and the same form may be used for probable crrors.

ExavpLE.—Ax an example illustrating the application of both
the preceding principles, suppose that in order to find the rate
of a chronometer we find at the time { its correction -+ 12* 13°.2
with the mean error 0°.3, and at the time ¢ the correction
— 127 21*.4 with the same mean error 0.3, and the interval ¢ —¢
= 10 days. The rate in the whole interval is

12» 2144 — 12~ 132 =— -+ 8.2
with the mean error, according to Art. 19,
VI0.8) + (0.3)7] = 0°42
The mean daily rate is then

8.2 0°.82
Tt
with the mean error, according to Art. 20,

042 _ 042
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21. If z, %, x,....are the several observed values of the
same quantity, their arithmetical mean being

xo“zi(x;{—xl—{?x2—|-...)

and if r is the probable error of each observation, what is the
probable error r, of z,? By Art. 19, the probable error of the
samz 4+ 2, + x, + ... .8

VE P )=y ) =ry/m
and the probable error of %th of the sum is, by Art. 20,

1 r
TD:EXrl/m:——

as has been otherwise proved in Art. 16.

22. Let us now take the general case in which & is any func-
tion. whatever of the observed quantities z, z;, 7,, . . . . expressed
by

X = (m, Xy Ty ava4)

Let the variables be expressed in the form
z=a-+ 2, = a, + 2, Ly= @y + 2, . ...

a, a, a,... being arbitrarily assumed very nearly equal to
x, T, ,... respectively, and such that 2/, z/, 2,/ ..... may
be so small that their squares will be insensible. The given
mean errors e, &, ¢ ... may then be regarded as the mean
errors of 2/, z/, 2,/ .... The function X developed by TAYLOR'S
theorem is

ix , dXx
@,

2

ax
X:f(a,al,az.'...)—kzzx'—}— x, 4+ ...

and the mean error of X will be that of the quantity

dX‘L., i (_l{xl, n ax
2 dx

dz dx, 1

x4+ ...
or, by (33),

1 2
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or, if r, r, r,... are the probable errors of », v, 2,..., and R
that of .,

L L ERRR

This formula is, indeed. but approximative. sinee we have
ueglected the terms involving the higher powers in the develop-
ment of .1"; but the mean errors of these small terms will be in-
sensible it we suppose that the errors e ¢. ¢, ... ave so small
that the differences between the observed values x, 2. x, ..
and the true values are of the same order as the quantltles
.x/’. .« ..., which will always be the case where proper care
lms been taken to reduce the accidental errors of observation to

their siuallest amount. If the given function ix implicit, as
0 =7 (X, & @,0-..)

we =hould still by differentiation obtain the differential coefli-
cients. and then find the mean error of X by (34).

ExaympLe.—The local apparent time at a place in latitude
¢ = 33° 5% 53" wa=z found (Vol. I. Art. 145) from the sun’s
zenith distance 7 = 73° 12’ 25", when the declination was
0 = — 22° 507 27" to be t = 2" 47" 39".4. "What is the probable
error of this result, supposing the probable errors of the data

to be—

Probable error of ¢ =r = 0".5

“ W g=p=10 .8
« “ {=r,=3.
The formula
0 = — cos £ - 8in p 8in ¢ 4 cos ¢ cos J cost

expresses ¢ as an implicit function of ¢, 6, and . We find
(Vol. I. Art. 35)

dt 1
@ 7 cos ¢ tan 4
dt 1
Eﬁ— - cos ¢ tan ¢
dt 1

as cos ¢ sin 4
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where 4 is the azimuth and g the parallactic angle. We find
from the data 4 = + 40° 1/, ¢ = 32° 51/, whence

dt dt dt
o 1.532 2 —1.680 Z =120
¢ ds ’ de + Bl

de
and the probable error of 1 is, by (34*)
R — /[(0.5 X 1532)? + (0.6 X 1.680) - (3.5 X 2.001)"] = 7".12

or, in seconds of time,
R = 0247

28. To complete this branch of our subject, it is to be observed
that the preceding demonstrations apply only to the case where
the quantities entering into combination are independent; but
when they are melely different functions of the same observed
quantities, the above formule are incomplete. Let us suppose
thatwe have X and X/, different functions of the same observed
quantities x, x,, Z5 . ..., O

X = f (L By By w5 vn s )
X =fl(z, 2y xpy oe-.- )

the mean errors of z, x,, z, ... being ¢, ¢, ¢, ....; and that we
wish to find the mean error % of the function,

Y — F(X, X7

If any single observation of z, 2, «, .... is affected by an error
8, 8,, 0,, . ... respectively, the corresponding errors in X and X’
will be—

Errorin X, 4 =a¢ + ap, + a0, +....
i X, d=dé+ a6, +a)o,+ ....

in which @, a,, @, ....are the differential coefficients of X, and
aya’y a) ... the differential coefficients of X/, with reference,
to x, x;, %y, .... The corresponding error in ¥ will be

A”:A.A-—I—A’A'

in which A and A’ are the differential coefficients of ¥ with re-
ference to X and X’. The square of the mean error E will be
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the mean of the squares of all the values of J” which result
trom all the possible values ot d, 4., d,. ...
Substituting the values ot J and J'y we have

I = (da + L&Y 8 + Cla, + Laf) s, 4.
which we may brietly express as follows:

L= ad 4 3 4 4 e

It the number of values of S is denoted by m, the mean of all
the values of "% will be

71

—I—r’ m

{41 1 , .07
L =i " -

m_zuiﬁ“l_"

In consequence of the varions signs of 64, d,, &e., the mean
value of each of these uantities will be zero; and the mean
values of 0% 07, &c. are & ¢ &¢. Hence the formula becomes
simply
Er=(da 4 L'd' P+ (da,+ A'a/)e?+....

or

E: :AZ(az-z_I_ ,,z-z + )+ A2 ((l’252+ a/" + ””)} (35)

+ 2. 1’(aas ——alalc-:1 +..

To illustrate by a very simple example, let

K =22 X' =3z
and suppose ¢ = 0.1; then, to find the mean error & of
Y=X4 X

we cannot take & = 1/[(0.2)* 4- (0.3)*] as we should if X and X’
were independent, but by the above formula we must take

as in fact we find dircctly, in this simple case, by first substi-
tuting in Y the values of &4 and X"
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WEIGHT OF OBSERVATIONS.

24. Observations of the same kind are said to have the same
or different weight according as they have the same or different
mean (or probable) errors. We assume a priori that observations
will have the same weight when they are made under precisely
the same circumstances, inclading under this designation every
thing that can affect the observations; but whether this condi-
tion has in any case been realized can only be learned, @ pos-
teriori, from the mean errors revealed by the observations them-
selves.

In order to obtain a numerical expression of the weight, let
us suppose all our observations to be compared with a standard
fictitious observation the mean error of which is any assumed
quantity ¢,. Let the actual observations be subject to the mean
error e. Let it require a number p of standard observations to
be combined in order to reduce the mean error of their arith-
metical mean to that of an actual observation, that is, to e; or,
according to (24), let
€1

VP

then one of our actual observations is as good, that is, has the
same weight, as p standard observations, and the number p may
be used to denote that weight. If, in like manner, other obser-
vations of the same kind are subject to the mean error ¢, and
we have

B ==

or pet=c¢ (36)

plelz
one of these observations has the weight of p’ standard observa-
tions, and the weights of the observations of the two actual
series may be compared by means of the numbers p and p’.
The weight of the fictitious observation is here the wunit of
weight ; but this unit is altogether arbitrary, since it is only the
relative weights of actual determinations that are to be con-
sidered.

It follows immediately, since we have

—_—n2
_El

& = pe? = p'e’*
or

=t @7
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that the weiyhts or two vhservations are reciprocally proportional to the
squares of their mean crrors.

The measure of precision (Arvt. 10) and the weight are to be
distinguished from each other: the former varies inversely as
the mean crror, the latter inversely as the square of this error.

25. To sind the most probable mean of a number of obscreations of
dificrent weghts—Let o' 2", w/ ... be the given obscerved
values: p/s p”. p'" ... their vespective weights. Dy the pre-
ceding definition of the weight, the quantity #’ may be considered
as the mean of p’ observations of the weight unity, »’” as the
mean of p’/ observations of the weight unity, &c. We may,
therefore, conceive the given series of observed quantities re-
solved into a series of standard observations, all of equal weight,
and then apply to the latter series the principle of the arithme-
tical mean. The whole number of equivalent standard obscrva-
tions will be p" 4 p”" + p’"" 4 ....; the sum of the p’ standard
observations will be p’#’; the sum of the p’’ standard observa-
tions will be p’’#’", &c.: hence the desired mean z, will be

. plnl+ p”n”+ plllnlll+ o
0 p/_}_pu_'_pm_*_”_

(38)
or, more briefly,

— Lt 38*
T ol
This formula shows that although the above demonstration
implies that p’, p’/, p'"" ... . are whole numbers, yet any numbers,
whole or fractional, may be used which are in the same propor-
tion; for f being any arbitrary factor, whole or fractional, we
may write for (38) the following:

. fplnl +fpllnlr +fp"'n"'+ e
U] fp/ +fpll +fpll/+ .

and then fp’, fp”’, fp’" .... may be regarded as the weights.
The value of z,is here an arithmetical mean only in the con-
ventional sensc implied in the substitution of fictitious observa-
tions with uniform weights for the given observations. It may
be called the general mean or the probable mean.
The weight of this general mean, referred to the unit of p/,
Plyniis =g pt b PP Al
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The mean error of the general mean will be expressed by

€. €
& = 1 - 1
oyt Vi
where ¢, is the mean error corresponding to the unit of weight.
If ¢, isnot given, we shall have to find it from the observations
themselves. Taking the difference between z, and each of the
given quantities, we have the residuals

'DI: nl_‘_ xm U”: nll_ xo, 'U,”_ nHI___ x’ e

If ¢, ¢/, ¢’ . .. are respectively the mean errors of w’,n, n'",...,
we shall have, as in Art. 17,

e ="V 4 ¢
whence
p/sl2 = 512 :plvlvl + pl‘eoz
and, in like manner,
E 2 _plrvllv/l + p/l 2

- s Vl/ 2
= p""" + p"'e
&e.

The number of given values #/,n” ... being = m, the sum of’
these equations is

= [pov] + [p] &

which combined with the above value of ¢, gives

a=1f ( [1””’]) (353
and consequently, also,

e \/( = ?;][p]) L

Exampre.—Let us suppose that the observations of Saturn’s
ring in Art. 17 had been given as in the following table, where
the mean of the first seven observations of Art. 17 is given
= 397179 with the weight = 7, the mean of the next following
four = 8977.285 with the weight = 4, &ec.
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P n v ve pov
7 897179 | —07.129 |.016641 1165
4 285 —0 .028 529 21
5 204 —0 014 196 10
4 407] 40 .099 | 9801 392
1 410 40 .102 | 10404 104
3 320 +0 .012 144 4
3 377 40 .069 761 148
4 310| + 0 .002 4 0
3 127 —0 .181 | 32761 983
6 AR 40 140 | 19600 1176
| [p] =40 |x,= 39 .308 [pvv] = .3998

Here the general mean z, found by (38) of course agrees with
that found before. For the mean error corresponding to the
unit of weight (which in this case is that of an observation as
given in Art. 17), we have, by (39), since m = 10,

17 .3998
=Ll —)=0"211
TN ( 9 )

and for the mean error of x,, by (40),

0=+ ( 3998 ): 07.033
9 x 40

which agree sufficiently well with the former values. A perfect
agreement in the mean errors is not to be expected, since our
formule are based upon the supposition that we have taken a
sufficient number of observations to exhibit the several errors
to which they are subject in the proportion of their respective
probabilities; and this would require a very large number of
observations.

26, In the application of the preceding formule, it must be
observed that when the weights of different determinations of
the same quantity are inferred from their mean errors, we must
be certain that there are no constant errors (that is, constant
during the observations which compose a single determination)
before we can combine them together according to these weights,
unless the constant errors are known to affect all the determina-
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tions equally and with the same sign. For example, if ten
measures of the zenith distance of a star are made at one cul-
mination, giving a mean error of 07.4, and five measures at
another, giving a mean error of 0.8, the weights according to
these errors would be as 4 to 1. But if it is known that the
errors peculiar lo o culmination (and affecting equally all the indi-
vidual observations at that culmination) exceed 17, it would be
better to regard the observations as of the same weight, since
there would be a greater probability of eliminating such peculiar
errors by taking the simple arithmetical mean. If, however, the
observer, from considerations independent of the observations,
can estimate the weight of determinations made under different
circumstances, then it is evident that these weights will serve
for the combination, if the mean accidental errors of the several
determinations are sensibly equal.

But if from the different circumstances we have deduced
weights for the several determinations, and at the same time the
mean errors (deduced from a discussion of the discrepancies of
the observations composing each determination) are widely dif-
ferent, it is not easy to assign any general rule for reducing the
weights which shall not be subject to some exceptions. In such
cases, practical observers and computers have resorted to em-
pirical formuls, involving some arbitrary considerations, more or
less plausible.

In many cases we can proceed satisfactorily as follows. Let

¢ — the mean accidental error of a single observation,

7 = the mean error peculiar to a determination which rests
upon m such observations,

¢ = the total mean error of such a determination,

then, e and 7 being supposed to be independent, we shall have
62
2 2
¢=_—+1 (41)

If then 7 can be obtained from independent considerations, this
formula will give the value of e, and, consequently, the weight
for each determination, and the combination may then be made

by (38). For an example of a discussion according to these
principles, see Vol. I. Art. 236,
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INDIRECT OBSERVATIONS,

27, I proceed now to the application of the method of least
squares to the solution of the general problem of determining
the most probable values of any number of unknown quantities
ot which the observed quantities are funetions.  The observa-
tions are then said to be indirect.  The particular case of direct
observations, already considered, iz, however, included in this
general problem; being the case in which the number of un-
known quantities iz reduced to one, and this one ix directly
observed.

The general problem embraces two classes of problemns, which
must be diztinguished from euch other. In the first class, the
unknown quantities are independent, in the sense that they are
subject to no conditions except those established by the observa-
tions: so that, before taking the observations, any assumed system
of values of these quantiries has the same probability as any
other system. In the second class, there are assigned, a prior,
certain conditionswhich the unknown quantities must satisfy at the
same time that they satisfy (as nearly as possible) the conditions
established by the observations. Thus, for example, if the three
angles of a plane triangle are to be determined from observations
of any kind, we have, a priori, the condition that the sum of
these angles must be equal to two right angles, and all the
svstems of values which do not satisfy this condition are excluded
at the outset. This cluss will be briefly considered hereafter,
under the head of ** conditioned observations ;" but our attention
will be chiefly directed to the first class, which includes most of
the problems occurring in astronomical inquiries.

Again, the equations which the observations are to satisfy may
be linear or non-linear; the observed quantities may be explicit or
implicit fanctions of the required quantities; but, for simplicity,
we consider first the case of linear equations, to which all the
others may always be reduced.

EQUATIONS OF CONDITION FROM LINEAR FUNCTIONS.

28. Let us suppose the equations between the known and
unknown quantities are of the form

ar +by +cz4 ...+ 1=V
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in which @, b, ¢,....l are known quantities given by theory for
each observation, V is the quantity observed, and z, y, z....are
the quantities to be determined. For each observation, we have
a similar equation, and thus a system such as the following :

dr +by +cz 4. + U =V

a’z + by + "2 ... + =P

a”’x + b/l(’y‘ + c’I’Z _{__ ....... + l/”:V”I (42)
&e. &ec.

the number of these equations being greater than that of the
unknown quantities (Art. 6). If our observations were perfect,
all these equations would be satisfied by the same system of
values of z, y, z...; but, being imperfect, let M, M"", M'"........
denote the values obtained by observation for V/, V", V...
When these values are substituted in the second members of (42),
there will, in general, be no system of values of z, y, z....which
satisfies all the equations at the same time, and we can only
determine that system which is rendered most probable by the
observations. Let us therefore denote by N/, N'/, N'''.... the
values which the first members of our equations obtain when
any hypothetical or assumed system of values of z, y, z.... 18
substituted in them ; and put

v— N — MI, o — NV — M", oM — N — M’", o

then v/, v/, v'"’....are the errors of the observations according
to this hypothesis. Finally, let us put

nI: lf_ MI, n!I: ll/_ M/l, n/N: ZHI_MHI’ e

then our equations may be thus expressed :

ax + b}y +dz + ...+ 0 =0

a'z + by 'z + ... 0" ="

&% A 0y A e A 0 = (48)
&e.. &e.

If our observations were perfect, we should be able to find
values of x, y, 2.... which would reduce all the quantities v/, v"/,
v’ ....to zero. It is usual, therefore, to write zero in the second
members : »

ade +Vy +dz +.... 40 =0

a'r + b0y +c' .. 40 =0

a’r 40"y + A =0 (45%)
&e. &e.
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and these are called the cquations of condition, since they expross
the conditions which the unknown quantities are required to
satisty as nearly as possible.  We muy, however, with more rigor
rey mul (43) as our equations of condition, and treat them as
expressing the general condition that the unknown quantities
shall be such as to give the most probable system of errors
aES SN A

Now, according to Art. 11, the most probable system of values
of .y ... iand. consequently, the most probable system of
errors) is that which makes the sum of the squares of the errors
a minimum: thus, we are to reduce to a minimum the function

[“.] — + e 'r+ vlllvlll+

Regarding [»r] as a function of the variables z, y, z... (which we
must remember are here independent), the condition of minimum
reqiiires that its derivatives taken with reference to each variable
shall each be zero: that is,

ape] dfvv] dwvw]
dz =~ dy e
or
N "
L = 7 + v v vime =0
dx dx dx
dvl dvll " dvlll
- —_ " 4. =0
dy + T dy + (44
s Ul
v’——-—i—v d” +v"d”—+....==0
dz dz
&c.

(which we might have obtained directly from (10) by substituting
¢'d=1I i, and dividing by the constant k). But, by differ-
entiating the equations (48) with reference to z, y, z.... succes-
sively, we have

d_vl —a .d_v’ b iv_l_ p—
de ~ 7 dy 7 dz
Ig " I
W w, Ty, P
dx dy dz
&e. &e. &e.

so that (44) are the same as the following :
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av 4+ adv "+ =0

bl,ul _{_ bllvll + b/ll,ullf + IP— 0

v v M =0 (44%)
&e.

The number of these equations is the same as that of the un-
known quantities; and if we now substitute in them the values
of v/, v/, v'"". .. from (43), we have the final or, as we shall call
them, the normal equations, which determine the most probable
values of z, ¥, z....

NORMAL EQUATIONS.

29. We see by (44*) that to form the first normal equation we
multiply each of the equations of condition (43) or (43*) by the
coefficient of x in that equation, and then form the sum of all
the equations thus multiplied. The resulting equation is called
the norral equation in z.* The sum of the equations of condi-
tion severally multiplied by the coefficients of y is the normal
equation in y, &c. To abbreviate the expression of these sums,
we put

[aa] = d'd’' + a"a" +--a"d" + ....
— K NI 1" peer

[ab] = &'t + a"b" + a""V" + ....

[ac] =d'¢ + a"¢" + a’d" +....
&e. &e.

then the normal equations are

[aa] x 4 [ab]y 4 [ac]z +.... 4 [an] =0

[ab] & + [60] y + [be] 2 + ... + [bn] =0

[ac] z + [bc]y +[ec] 24 .... + [en] =0 (45)
&e. &e.

80. The formation of such normal equations is one of the
most laborious parts of the computations involved in the method
of least squares, especially when the number of equations is very
great. It is important to have a means of verification, or
“control,” to insure their accuracy, before proceeding with the

next important process of elimination. A very simple and
effective control is the following.

* The ““normal equation in z” is so called because it is the equation which deter-
mines the most probable value of z when the other variables are reduced to zero, or
when z is the only unknown quantity ; and so of the others.
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Form the sums of the coetlicients of the unknown quantitics
in the several equations, namely,

@ 4V 4 =4

A =
(‘l”’ + bltl + clll + . —_ 3"' (*“‘)l
&e.

It we multiply each of these by its «. and add the products, we
have

[an] + [bn] + [en] 4 .... = [sn] €

Alzo. multiplying cach of (46) by itz @, and adding, then each
by its b, and adding. and =0 on, we have

[(I(l] - [4111] -+ [111‘] + .= [(1.“]

[ab] + [bb] + [be] + .... = [bs] i«

[ac] + [be] + [ee] + ... = [es ()
e,

Tl equations (47) must be satisfied when the absolute terms of
the normal equations are correct, and (48) when the coetlicients
ot the unknown quantities are correct.

31. The normal equations will give determinate values of
2. i, z.....provided they are reallv independent. If, however.
any two of them become identical by the multiplication of cither
of them by a constant, the number of independent cquations is,
in tuct, one less than that of the unknown quantities, and the
problem becomes indeterminate. This difficulty does not arise
from the method by which the normal equations are formed, but
from the nature of the given equations of condition. In any
sich case, additional ob=ervations are necessary, for which the
cocflicients have such varied values as to lead to independent
equations.  Even when two equations cannot be reduced pre-
cisely to a single one by the introduction of a constant factor, if
they can be made very nearly identical, the problem is still prac-
ti~ally indeterminate. The indetermination will become evident
in the actual elimination in practice when any one of the un-
known quantities comes out with so small a coefficient that small
errors in the observations would greatly change this coefficient.
(See Art. 52.)

Vor. IL—33
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32. By whatever method the elimination is performed, we
shall necessarily arrive at the same final values of the unknown
quantities; but, when the number of equations is considerable,
the method of substitution, with GAuss’s convenient notation, is
universally followed; but, for the present, leaving the reader to
choose his method, I proceed to explain the principles by which
the mean errors of the values of z, 7, z.. .. are determined.

MEAN ERRORS AND WEIGHTS OF THE UNKNOWN QUANTITIES.

88. Since we have put w/=10'—M',n"" =1"—M", &e. (Art.28),
the mean error of #/,n//,n’"’.... is also that of M', M"", M'",....;
that is, the mean error of n’, #//,n'".... is to be regarded as the
mean error of an observation. If the elimination of the normal
equations were fully carried out, each unknown quantity would
be finally expressed as a linear function of »/, »’/,n’",...., and the
mean errors of the latter being given, those of the unknown
quantities would follow by the principle of Art. 20. It results,
however, from the symmetry of the normal equations that several
forms may be obtained for computing directly the weights of the
unknown quantities, and from these weights the mean errors
can aftel Wards be found.

34. Fzrst m_ethad' of computing the weights of the unknown quantities.
—For simplicity, let us first suppose all the observations to be
of equal weight; or the mean errors of 2/, n’/, /"’ to be equal.
Let

e = the mean error of an observation,

e, = the mean error of the value of x found from the normal -
equations,

p,= the weight of the value of z, the weight of an observa-
tion being unity;

then (Art. 24)

3

m

2=

2
z

m

Now, let us suppose the elimination to be performed by the -
method of indeterminate coeflicients. Let the first equation of
(45) be multiplied by ¢, the second by ¢, the third by @', &e.,
and the products added. Then let the factors @, @', @' ..
(whose number is the same as that of the unknown quantities)
be supposed to be determined so that in this final equation the
coefficients of all the unknown quantities shall be zero, except
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that of . which shall be unity.  The conditions for determining
these factors are, theretore,

[aa] @ 4+ [ab] @ + [ac] Q" +....=1

[ab] @ + (W] Q) + [be] Q" 4 ....==0

[ec] @ + [e] ¢ + [] Q" +....=0 (49
&e. &e.

and the final equation in .« is

T4 [an] Q4+ [bn] Q@+ [en] Q" 4....=0 (50)
Comparing (45 and (49), we sce that the coefficients of
0. Q. " ... are the same as those of ». . z..... but that the

absolute terms are — 1 in 4 instead of [vn] in (45), and zero
in=tead of [#r]. [rn]. &e. Ience. if the elimination of (45) were

carried out. and the values of ., v, z.... determined in terms of
a'sw' w L the values of @ . @.... would be found from
tiese by merely putting [an] == — 1. and [bn] = [«], &c. = 0.

This is alzo evident from (5U). I shall now show that @ is the
reciprocal of the required weight of .

The final value of z being a linear function of . «”', 0. ...,
the equation (50) may be supposed to be developed in the form

r4an'+ad'n" 4+ " .= 0 (51)

inwhicha’. a”.a’..... are funetions of @/ 4/ ... a0 ... ke,
aud these functions are immediately found by developing [an],
[hn]. xe. in(50); for we then have, by comparing the coeflicients
of (50) and (51,

'—d QY Q4 Q...

" =a" QLY Q4R ... (52)
alll= aIIIQ + b/llQl + CHI Q/I + e
&c. &c.

Multiplying each of these equations by its @, and adding all the
products, we obtain, by (49),

do +a'e + a"d" ... =1
Multiplying each of (32) by its 4, and adding, we obtain, by (49),
blal + b”ﬂ:" + b”’a’"’ + e — 0

and so on for as many equations as there are unknown quantities.
These relations are briefly expressed thus:

[aa] =1 [ba] =10 [ca] =0, &e. (58)
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If, then, each of (52) is multiplied by its «, and the results are
added, we find, by (53),

foe] =a” + 2+ o+ ....= @ (54)

But, by Art. 20, when ¢ is the mean error of each of the quan.
tities n/,n'/,n’”,...., the mean error of x found by (51) is

e, = ¢ /[oa]
Hence

pz_ 2—[0,0.]—Q ( )

as was to be proved.

Hence we have a first method of finding the weights. In the
Jirst normal equation write —1 for the absolute term [an], and in the
other equations zero- for each of the absolute terms [bn], [en], &e.; the
value of x then found from these equations will be the reciprocal of the
weight of the value of = found by the general elimination.

This rule is to be applied to each of the unknown quantities
in succession, so that the reciprocal of the weight of y is that
value of y which will be found by putting [6n] =—1, and
[an] = [en] = &ec. = 0; the reciprocal of the weight of z is that

value of z which will be found by puttlng [en] = — 1, and
[an] = [bn], &c. =0; &e.

It is evident, moreover, that although we have deduced the
rule by the use of indeterminate multipliers, it must hold good
whatever method of elimination is adopted.

35. Second method of computing the weights of the unknown quan-
tities.—If we write the normal equations thus,

[aa] x 4 [ab]y + [aclz +-.... 4+ [an] = 4

[ab] x + [6b]y + [bc] 2 +....+ [bn] = B

laclz +[be]y+[ec]z+.... 4 [en]=C
&e.. &e.

and perform the elimination, we shall obtain z,, z.... in terms
of [aa], [ab], &e., and of A4, B, C, &ec.; and if in the genel al values
thus found we make A=B=C, &c = 0, these values will be
reduced to those which would be found by carrying out the
elimination with zero in the second members of the normal
equations. If we suppose the elimination performed by means
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of the indeterminate fuctors (), ¢, ... already employed, the
final equation for determining x will be

O [an]Q + [n]Q + [en]Q"+ .. .. =QA + Q@B Q"'+ ...

where the coeflicient of 1 is the reciprocal of the required weight
of w. But, whatever method of elimination is cmployed, the
coefficient of .t in this general value of  will necessarily be the
same: and henee we derive the second method of determining
the weighws: Write L. B, (' &e., instead of 0, tn the second members
of the mormal equations. and carry out the elimination (by any method
at plessuve)s then the final values of x, y. z.... are those terms i the
general values which are indcpendent of L. By ("....; the weiylt of «
s the reciprocal or the cogiicient of A in the gancral value of x; the
areight of y s the reciprocal of the cocfiicicnt of B in the geirel value
of o &e,

36, Third methad of computing the weights of the unknown quantitics.
—Let us suppose the climination to be performed by the method
of substitution, still retaining 4. B, ('.... in the second members,
ax in'the preceding article.  The finul equation in z, according
to this method, ix found by substituting in the first normal equa-
tion the values of 4, z.... given by the other ecquations. These
subsztitutions do not affect the coeflicient of A, which remains
unity, so long as no reduction is made after the substitutions.
Thus, the final equation in z is of the form

Rr—=T-+ A -} termsin B, C,....

in which 7" is the sum of all the absolute quantities resulting
from the substitution, and is a function of [aa], [ab],....[an].
Hence the value of z is

x:%-{—%—{—termsin B, C....

in Which% is the final value of =z which results when A =B

=(....=0,and % is necessarily the quantity denoted by € in

the preceding articles. Therefore R is the weight of z, and
hence we have a third method of finding the weights : Let the first
normal equation (the equation in z, Art. 29) be taken as the final
cquation for delermining z, and <ubstitule in il the values of y, z.... i
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terms of x as found from the remaining equations ; then, before freeing
the equation of fractions or introducing any reduction factor, the coeffi-
cient of x in this equation is the weight of the value of x. In the same
manner, substitute in the second normal equation (the equation in y)
the values of x, z.... in terms of y as found from the other equa-
tions; the coefficient of y is then the weight of the value of y; and so
proceed for each unknown quantity.

According to this method we determine each unknown quan-
tity, together with its weight, by a separate elimination carried
through all the equations, in each case changing the order of
elimination, until every unknown quantity has been made to
come out the last. The algorithm of this process, with Gavss’s
convenient system of notation, will be given hereafter (Art. 45).

37. To find the mean error of observation.—The weight of = being
found, we have the ratio of ¢, to ¢, but we have yet to determine
g, which, in general, cannot be assigned a priori, but must be
deduced a posteriori, that is, from the observations, and conse-
quently from the equations of condition. The residualsv’,v"”" v'""....,
in (43), are those which result when the most probable values of
z,9, z.... (namely, those resulting from the normal equations)
are substituted in the first members. The actual or true errors
(Art. 17) of observation are, however, those values of the first
members of (43) which result when the #rue values of z, y, z,....
are substituted.

Let z + ax, y + ay, z 4+ az,.... be the true values which, sub-
stituted in the equations of condition, give the true residuals
w,u u'". ... ; so that we have

a (x+ax)4+0 y+ay)+cd @4+ a2)F....0 =o

a" (x4 ax) 4+ 0" (y + ay) + ' (2 + 82) +....0" ="

a’(x + ax) + 6" (y.+ ay) + "z 4 az) +....0"=u" (56)
&e. &e.

If these equations be multiplied by o/, a”, a'"...., respectively,
the sum of the products is

[aalz 4 [ab]ly +[aclz +....-4 [an] }—[au]
+ [aa] az + [ab] Ay 4 [ac] az +-.... o

which by the first of (45) is reduced to

[aa] ax + [ab] ay + [ac] a2z 4.... — [au] =0
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In the sme manner, multiplying cach of the equations (56) by
1ts by e &ew suceessively, we form the other equations of the
following group:

[aa] sx 4 [ab] sy + [ac] a2 4-.... — [au] =0

[ab] sx 4 [bb] ay + [he] Az 4....— [bu] =0 .

[wed aw + [heJay 4+ [ee] az oo —[en] =0 LT
L. &e.

These being of the same form as the normal equations (45), we
s that the value of ar resulting from them will be of the same
form as that of z resulting from (45), with only the substitution
of — u for «: hence. by (51),

Ar — W — U — W — =0 (58)

Aguin, multiplying (56) by ¢/, ¢/, /"...., respectively, the sum
ot the products is, by (44*), reduced to

[on] = [eu]
and in the same manner, from (43),
[vn] = [vv]
[vu] = [ow] = [vn] (59)

The sum of the products obtained by multiplying the equations
(43) respectively by «/, w/,u'"... .8

whence

[av]z + [buly + [cu] 2 +.... + [2u] = [vu] = [vv]
and from (56), in the same manner,

[av]x +[buly  [cu]z +....+[nu]}:[uu]
+ [au] ax 4 [bu] Ay + [cu] a2z 4 ....

which two equations give
[uu] = [w] + [au] az + [bu] Ay + [cu] Az +.... (60)

Now, [uu] being the sum of the squares of the true errors of the
observations, its value is, as in Art. 17, = mee, if we put

m = the number of observations,
= the number of equations of condition.
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Consequently, if we could assume az, AY....to vanish, we should
have

and this will usually give a close approximation to the value of
¢, but it will give the true value only in the exceedingly impro-
bable case in which the values of z, y, z.... are absolutely true,
whereas they are to be regarded only as the most probable ones
furnished by the observations. This formula, then, must always
give too small a value of ¢, since it ascribes too high a degree of
precision to the observations. We must, therefore, add to [vv]
the quantities [au] az, [bu] ay, &c., as in (60); but, as we cannot
assign any other than approximate values of these quantities, let
us assume for them their mean values as found by the theory of
mean errors. The mean value of [au] ax will be found by mul-
tiplying together '

[au] — a'u I a’u’ + "y I

and Ar = o + ou" + U 4.

observing that the errors u/,u’/,u'”...., when we consider only
their mean values, are to be regarded as having the double sign

+; so that the mean value of the product will contain only the
terms a’a/ W o/, '’ a/'w’ u', &e. Hence we take

[au] AL =— a/alulul + al’allulfull + alllalllulllulll + .

and substituting in this the mean value of w/u’, wu", &c., which
in each case is es, we have

[au] Az = (d'a’ + a"a" + a"'a” +....)ee
or, finally, by (53),

[au] ax = e

In the same manner, it must follow that ee is the mean value of
each of the terms [bu] ay, [cu] az, &e. If then we put

z = the number of unknown quantities,
the equation (60) becomes

mee = [vv] + pee
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whence

o] ey

- m-—p

(61)

It is to be observed that when there is but one unknown
quantity, or g = 1, this general form is reduced to the simple
one (25), already given tor direet observations.

Flomlly, 9, By foue - = denoting the weights of z, y, z.... found
by any of the preceding methods, we have

€ £
£, = e = —— &e. 62
1P, vy i

38. ExaypLE.—Let us suppose the following very simple equa-

tions of condition to be given :*

rT— y+22— 8=0
Sr 42y —bz— 5=0
dr 4+ y+ 42 —-21=0
— z+4+3y+32—14=0

If but the first three of these equations had been given, the

problem Would have been determinate. We should find from

7)‘

13
them = = T, y= 8= and we should have to accept these

values as final one.s with no means of judging of their accuracy,
or of that of the observations upon which the cquations are sup-
posed to depend. A fourth obscrvation having given us our
fourth equation, we find that the values of z,y, z derived from
the first three will not satixfy it, for when they are substituted in

. 8 .
it the first member becomes — 7 instead of zero. If we deter-

mine the values of r, y, and z from any three of the equations,
and substitute these values in the fourth, we shall find a residual.
Euch one of the four systems of values of the unknown quantities
thus found satisfies three equations exactly, and the fourth
approximately; but, all the observations being subject to error,
the most probable system of values can seldom satisfy any one
of the equations exactly. Hence the necessity of a principle of
computation which shall lead as directly as possible to such a
probable system of values; and this principle is furnished by the
method of least squares.

* Gavss, Theoria Motus, Art. 184.
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We are, then, by Art. 29, to deduce from these four equations
three normal equations, and the values of x, y, z which exactly
satisfy these are to be regarded as the most probable values.

To form the first normal equation, we multiply the first of the
above equations of condition by 1 (= a’), the second by 8 (= a'),
the third by 4 (=a’’), and the fourth by — 1 (=), and add the
products. We thus find [aa] = 27, [ab] = 6, [ac] = 0, and
[an] = — 88.

To form the second normal equation, we multiply the first
equation of condition by — 1 (= ¢’), the second by 2 (= 4’), the
third by 1 (= 6’”), and the fourth by 8 (= &™), and add the pro-
ducts. We thus find [ab]=6, [66]=15, [bc] =1, [bn]=—T0.

The third normal equation is formed by multiplying the first
equation of condition by 2 (= ¢’), the second by — 5 (= ¢’’), the
third by 4 (= ¢’”’), and the fourth by 3 (= ¢"), and adding the
products. We find [ac] = 0, [bc] = 1, [ec] = 54, [en] = — 107.

Hence our normal equations are

27x + 6y — 88 =10
6x + 15y 4- 2z— 70=20
y + 54z — 107 =0

the solution of which gives, as the most probable values,

19899
2
L
87
2
2 12707 5016
6633

In order to determine the mean, and hence also the probable,
errors of these values, let us first determine their weights accord-
ing to the preceding methods. '

First. By the method of Art. 34, we first write — 1,0,0, for
the absolute terms of the three normal equations, and we have
the three equations for determining the weight of z,

27 4+ 6 — 1=0
62 + 15y + 2 =0
¥ -+ 542 =0

in which accents are employed to distinguish the particular
values from the above general ones. These give
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. S0
"~ 19899

which is the reciprocal of the required weight. Hence,

In a similar manner, to find the weight of y, we take the
equations

2T by —0
6.1"’-{— 15y 4+ 27— 1=0
y' 4 542" =0
and find
i 54
Y'=—
1O
whence
"p'= ‘534l == 13.648

And to find the weight of z, the equations

2T 4 6y )
6xlll+ 15ylll+ zl’ — 0
¥+ 542" — 1 =0

which give

w4l
2211
and
p=22 53007
i 41

Secondly. By the method of Art. 85, we write our normal
equations thus:
2Tz 4 6y e BB=
6xr 4+ 15y + z— T70=28
Y+ b4z — 107 = C

and, carrying out the elimination as if 4, B, and C were known
guantities, we find

19899 — 49154 4+ (809)4 —324 B4 6 C
787y — 2617 — 12 A+ (54)B — ¢
6633z — 12707 4+ 24— 9 B4 (123)C
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and, therefore,

e OO ook Bh sl e DO
19899 == 309
__ 2617 « « « _ 23_7
= 37 h=%
e 12707 143 3 (€4 S 6633
“ = 5633 P =158

the same as by the first method.

Thirdly. By the method of Art. 86, to find x and its weight
we eliminate y and z from the equation in x (the first normal
equation) by means of the other equations, employing successive
substitutions. The last normal equation gives

1 107
FETRY TR

which being substituted in the second gives

809 3673
6: ——y——— =0
Tt R Y TN
The value of y from this, namely, ‘
324 3673
V=509 T 09

being substituted in the first normal equation, and no reduction

being made, gives
19899 49154

809 © 7 809

where the coefficient of z is the weight, and the value of z is the
same as before found.

To find y and its weight, we make the second the final equa-
tion. From the first and third we find -

6 88
T
1 107
FET YT
which substituted in the second give
BT 2017
Y T s <

where the coeflicient of y is its weight.
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Finally, to find ¢ with its weight, we make the third aormal
equation the final one.  From the first two we find

0 404
V=717 128
which sybstituted in the third gives
6633 12707
123~ 128

where the coctlicient of’ & is its weight, and its value is the same
as was before found.

By a little uttention, it will be perceived that the three methods
involve essentially the same numerical operations.

We uare next to find the mean errors of z, y, and z; for which
purpose we must first find the mean error of an observation,
assuming here, for the suke of illustration, that the absolute terms
of the given equations of condition are the observed quantities,
and that they are subject to the same mean error. Substituting
in these equations the above found values of z, y, and z, we
obtain the residuals as follows:

l No. l v v
1 — 0.249 0.0620
2 — 0.068 .0046
3 -+ 0.095 .0090
4 1 —0.069 0048
m == -1:, = 3, {’UU] = 0.0804
[0 g.0804
m— .

Hence, by (61),
e = 1/0.0804 = 0.284

which is the mean error of an observation, so far as this error
can be inferred from so small a number of observations. (See
the next article.) Consequently, the mean errors of z, y, and z

are as follows:
&

= — 0.057
4
g — 0.077
i VP,
— 5 —0.089

R
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Multiplying these errors by the counstant 0.6745, we shall have
(Art. 15) the probable errors as follows:

Probable error of an observation — 0.192

& o x = 0.038
144 113 y — 0'052
“ “ z = 0.026

39. It has already been remarked in the foregoing pages, and
the remark is especially important in the present connection,
that the method of least squares supposes in general a great
-number of observations to have been taken, or a number suffi-
ciently great to determine approximately the errors to which the
observations are liable. Theoretically, the greater the number
of observations the more nearly will the series of residuals ex-
press the series of actual errors, and, consequently, the more
correct will be the value of ¢ inferred from these residuals. In
practice, therefore, no dependence should be placed upon the
mean or probable errors deduced from so small a number of
observations as we have. employed, for the sake of brevity and
clearness, in the preceding example. Nevertheless, the method
is, even in this case, the best adapted for determining the most
probable values of the unknown quantities deducible from the
given observations, and also their relative degree of precision.
Thus, in this example, the degrees of precision (denoted by hy
Art. 10) of z, y, and #z, being inversely proportional to the mean
errors, or directly proportional to the square roots of the weights,
are nearly as the numbers 5, 3.7, and 7.3, so that from the four
given observations z is about twice as accurately found as y,
while the precision of z falls between that of y and 2. But we
can place but little dependence upon the result which assigns
0.284 as the mean error of observation, and 0.057, 0.077, 0.039
as the mean errors of z, y, and z, because this result is derived
from too small a number of observations.

EQUATIONS OF CONDITION FROM NON-LINEAR FUNCTIONS.

40. Let the relation between the observed quantities V’, V",
V7., .. and the unknown quantities X, ¥, Z.... be, for the ob-
servations severally,

£V, XY Z....)=0

IV, XY, 7, ) =0

VT, XY, 2, =0 (62)
&e.
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Let the values of V7, V77 177 [ found by observation, be
Ao M s These values being substituted, we shall
have the equations

o, N2 ...)=0

PN XY 7 ) =0

IMT XY, 2 ...) =0 (64)
&e.

from which the values of .IT 1T Z....are to be found. But, as
we cannot cftfeet the direet solution of these equations according
to the method of leust squares so long as they are not linear, we
resort to the following indireet process, by which linear equations
of condition are formed. Let approximate valuesof X, Y, Z....be
found. either by some independent method or from a sufficient
number of the equations (64) treated by any suitable process, and
denore these approximate values by .Y, Yy, Z,.... Let the most
probable values be

X=1x + Y=Y +y, Z=20,4+2......

then z, y, z....are the corrections required to reduce our ap-
proximate values to the most probable values; in other words
I, i, z....are the most probable corrections of the approximate
values, and the method of least squares is now to be applied in
finding these corrections.

Substitute the approximate values X, Y, % ...in (63), and
find, by resolving the equations, the corresponding values of
17, V' ....which denote by V', Vy/’.... These will be func-
tions which may be thus generally expressed :

V) =F (X,Y,7Z,....)
V” - F" (X, Y, Z,....)
&c.

Now, the values of V’, V”’....which result when the most pro-
bable values X, + =, Y, + J, Zo—!— z are substituted, and which
are yet unknown, being denoted by IV, ‘N”....we have

N—r'(X+$;Y+II/aZo+Z )
N'=F" (X, +x Y+ vy, 2+ 2,....)
&e.

and by Tavror’s Theorem, when we neglect the higher powers
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of z, y, z.... which are supposed to be very small quantities, we
have

avy avy avy
x, “Tar VT g,

d'l'foll d'l'f;)ll d'Voll

ix, x-{-dYO Y+ 7z, zZ4 ...
&e. &e.

N =V, + PRI

Nll =2 "7011 +

” 4 "
where Z; j; &e., ZIT: T; &e. are simply the values of the
derivatives of V/, V. . found by dlﬁ'erentlatlng (63) with
reference to each of the Varlables, and afterwards substituting
X, Y, &e. for XY, .. .. &e.
If now we denote the derlvatlves of V’ V7. ... withreference
to X'by o/, a’ . ...; their derivatives with reference to ¥ by &/,

b'"....&ec.: so that

=V +adx +¥y +cz +....
NII___"fOII_!_ (l".Z‘ + b”y__f— c/lz _I__ o

&e. &e.
and then also put
U, — NI . M’, v’l :Nl/_ M/I, &c.
nl — -V;), i M” n/! - 'VON — Mll’ &c'

our equations become

dr +by Lz ... n =

a”{I‘ + b"‘/ + cl!z + + ni/ _ 1)”

alllx _I_ bll/ + c’/lz _I_ __l_ nIII P v
&e &c

in which &, 8’... &, 8" ... 0w/, n'"... are all known quantities;
and v/, v"/.... are the residual errors of observation. These
equations of condition are precisely like those already treated,
and, being solved by the same method, give the most probable
values of z, ¥, z...., and hence, also, the most probable values
of X, Y, Z....

This process rests upon the assumption that the approximate
values X, ¥y, Z, . . . are already so nearly correct that the squares
of z, y, 2 ... may be neglected. But should the values found
for z, y, 2.... show that this assumption was not admissible, the
computation is to be repeated, starting with the last found values
Xo+ 2, Yy 4+ ¥y, 4+ 2 ... as the approximate values; and then
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the corrections which these last require will generally be so small
that their higher powers may be neglected without sensible ervor,
However, should this still not be the case, successive approxima-
tions, commencing always with the last found values, will at
length lead to values which require only corrections suitably
small.

Even when the given function is already linear, it is mostly
expedient to follow the general method just given: namely, to
substitute approximate values and form equations of condition
to determine theiv corvections.  This reduces 2y, 2 ... to small
quantitics, greatly simplifies the computations, and diminishes
the chance of crror.

TREATMENT OF EQUATIONR OF CONDITION WHEN THE OBSERVATIONS
HAVE DIFFERENT WEIGHTS.

41. The proces= above explained assumes that all the observa-
tions are subject to the same mean error, and hence arc all of
the same weight.  The more gencral case, in which the obser-
vations are of different weights, is cazily reduced to this simple
caze. For, let

dr 4+ by +cz4 ... 0=V

be an equation of condition of the weight p’; that is, one formed
for an observation of the weight p’. The mean error of an ob-
servation of the weight unity being e, the mean error of the

actual observation, and, therefore, also of #/, is ¢’ = 76’; Hence
the mean error of #/y p’ is, by Art. 20, equal to ¢’y p/, that is,
equal to ¢,. If, therefore, we multiply the equation by y/p’, so
that we have

AV Uyt T =0y )

it becomes an equation in which the mean error of the absolute
term is the mean error of an observation of the weight unity.
Hence we have only to multiply each equation of condition by
the square root of its weight in order to reduce them all to the
same unit of weight; after which the normal equations will be
found as in other cases.

The mean error of observation, found by (61) from the equa-
tions of condition thus transformed, will be that of an observa-

Vor. II.—34
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tion of the weight unity, and the weights of the unknown quan.
tities will come out with reference to the same unit.

ELIMINATION OF THE UNKNOWN QyANTITIES FROM THE NORMAL
EQUATIONS BY THE METHOD OF SUBSTITUTION, ACCORDING TO
GAUSS.

42. By means of a peculiar notation proposed by Gauss, the
elimination by substitution is carried on so as to preserve.
throughout the symmetry which exists in the normal equations.
In order to explain this method, it will be expedient to suppose
a limited number of unknown quantities. I shall take but four,
but shall give the process in so general a form that it may readily
be extended to any number.

The unknown quantities will be denoted by

x} y’ 2’ w’
and their coefficients in the equations of condition by
a b, ¢, d,

respectively, with sub-numerals denoting the number of the
equation or observation upon which it depends, and by

Ny, Ny Ny, &e.

the absolute terms of the 1st, 2d, 3d, &e. equations respectively :
so that the m equations of condition (here supposed to be
reduced to the same weight by Art. 41) will be

ax +by 4-cz +dw +n =0
a4 + by + ez +dw 4 n, =0
ax + by + ¢z +dw +n, =0 (65)

axr+by+cz+dw —[L.r.zm:O
and the four normal equations formed from these are
laalx + [ab]l y + [ac] z + [ad] w + [an] =0
[ab]x + [0b]y + [be] 2 + [bd] w + [bn] =0

laclz + [bely + [cc ]2z + [ed] w -+ [en] = O (66)
[ad] = + [bd] y + [ed] z - [dd] w + [dn] — 0
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The value of x from the first equation is
w00, o) [ad] o [an]
[aa] [aa] [aa] [aa]

It this is substituted in the other three equations, we shall pre-
serve the symmetry of the result by the following notation :

[66] — E—g% [ab]= [bb.1] [dd] — % [ad] = [dd.1]
) — (e =pen) | pg— o tan) = .1
i) — Fd ) —ppn) | o) — foed fon] = en. 13
[ec] — %Z"—a% [ac] = [ee.1] [an] — —[[% [an] = [dn.1]
[ed] — % [ad] = [cd.1]

The three equations thus become

[bb. 1]y + [bc.1]2 + [bd.1]w + [bn.1] =0
[be. 1]y +[ce . 1]z + [ed. 1]w + [en.1] =0 } (67)
[bd. 1]y + [ed. 1]z + [dd.1]w + [dn.1] =0

The presence of the numeral 1 is all that distinguishes these
from original normal equations in y, 2, and w. The elimination
of y will, therefore, be effected in the same manner as that of x.
Thus, from the first, we have

__ [be.1] z__[bd.l] w_&ﬂ
.13 [bb.1] [6b.1]

the substitution of which in the other two equations leads to the
following notation :

[be.1] o _ [be.1] T
[cc. 1] — [—b—b_l_] [be.1]) =[cc.2] | [en.1] 05 1] [bn.1]=[cn.2]

[be.1] - _[d.1] T
[cd. 1] — [ 1] [bd.1] =[cd.2] | [dn.1] 6. 1] [bn.1]=[dn.2]
[dd.1] _[e.d] [bd.1]=[dd.2]

[bb.1]
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and the resulting equations are

[cc.2]z 4 [ed .2]w + [en . 2] =0 } 68
[cd.2]z 4 [dd.2]w + [dn.2] =0 (68)
From the first of these we have
_ (2, [
T [ee.2] [ec . 2]

which, substituted in the second, leads to the following notation :

[dd.zj..E 2]] [ed . 2] = [dd.8]|[dn.2] — Fd "%[n 2] = [dn.3]

and the resulting equation is

[dd.8]w + [dn.8] = 0 (69)
whence
[n.3]

[dd.3]

Having thus found w, we substitute its value in the first of (68),
and deduce z. Then the values of 2z and w being substituted in
the first of (67), we deduce y ; and finally, substituting the values
Y, 2, and w in the first of (66), we deduce z. These latter substi-
tutions are made in the numerical computation, but it is not
necessary to write out here the formulse which result from the
literal substitutions, as it would not facilitate the computation.

It may be observed that all the auxiliaries [bb.1], [bc.1], [cc.2],
&c., may be expressed by the general formula

[oB. ﬂ]
[oa . x]

&, 3, y denoting any three letters, and p any numeral.

For the convenience of reference, the final equations employed
in the actual computation are brought together as follows, the
coefficient of that unknown quantity which is found from each
after the substitution of the values of the others being reduced
to unity :

(Br.»] — loy.x] = [Ar-(» + D]
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B L I 77 D
Tttt Gt At =

[aa]
[be.1] . [bd.1] ~ [bn. 1]

Yttt gt ="
2ol L(_d._“] - _[f_"'_ 0] o (70)
IR Ty
[dn.3]
Bt a0

As the number of unknown quantities increases, the number of
auxiliaries to be found increases very rapidly. If we include the
coeficients and absolute terms of the normal equations, the
whole number of auxiliaries is shown in the following scheme :*

No. of unknown quantities ......... 123 4156|178

No. of auxiliaries ............ooeuennn.. 2 | 7116 30| 50| 77 (112156

43. For the purpose of verification, it is expedient to repeat
the elimination in inverse order, commencing with the last
normal equation and ending with the first, which will bring out .
It will not be necessary to write out the formula for this inverse
climination, since when the form for computation has been once
prepared, it suffices to place in it the coefficients of the normal
equations in inverse order, and then to proceed with the numeri-
cal operations precisely as in the first elimination. The unknown
quantities coming out in the first elimination in the order w, z,
4. z, they will in the second come out in the order z, ¥, z, w.

This inversion has also the advantage of giving the weights of
all the unknown quantities with the greatest facility, as will
hereafter be shown.

44. A very complete final verification, or * control,” is obtained
as follows. Substitute the values of x, ¥, 2, w in the equations of
condition, and thus find the residuals v, v, v,....7,, or the
values which the first members assume. Form the sum

[ww] =vv, +ow, v, +.... + 00,

* The number of auxiliaries will be, in general,

i(i 1) (i + 5)
2.3

where i denotes the number of unknown quantities.
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which is also required in finding the mean error of observation
by (61). Also form the following new auxiliaries:

[an] = nn, + ngn, + nn, + ... +n.n

[nn] — E“"} — [nn.1] [nn.2] — EZ; gzz[nn.?)]
[nn. 1 —%—:%:[nn.ﬂ [nn. ]—52 g} [nn. 4]

then, if the whole computation, both of the normal equations
themselves and of the subsequent elimination, is correct, we.
must have

[vv] = [nn . 4] @)
To demonstrate this, we observe first that we have already, by (59),
[ww] = [vn]

If now we go back to the equations of condition, and multiply
each by its n, the sum of the products is

[an] % + (0] y + [en] 2 + [dn]w + [nn] = [on] = [ov]

If this equation be annexed as a fifth normal equation to the
group (66), and the successive substitutions are made in it as in
the others, beginning with z, it evidently becomes, successively,

[bn. 1]y + [en.1]2 4 [dn.1]w 4~ [nn.1] = [vv]
[en.2)z + [dn.2]w + [nn.2] = [w]
[dn.8]w + [nn.3] = [vv]
[nn.4] = [vv]
which last is the same as (71).

DETERMINATION OF THE WEIGHTS OF THE UNKNOWN QUANTITIES

WHEN THE ELIMINATION HAS BEEN EFFECTED BY THE METHOD OF
SUBSTITUTION.

45. By the general method explained in Art. 36, the elimina-
tion would have to be performed as many times as there are
unknown quantities. It is desirable to have more direct methods.
‘When there are but four unknown quantities, we can find their
weights from the auxiliaries occurring in two successive elimina-
tions in inverse order. In the first ehmmahon, according to the
order a, b, ¢, d, we find w by substitution in the last normal
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equation, and, the coetlicient of w being then [dd , 3], it follows, .
by Art. 36, that the weight of the value of o is

P, =1[dd.3]

In the inverse elimination. in the order d, ¢, b, a, the coeflicient
of & in the final equation, which would be denoted by [aa . 3],
will be the weight ot «, or

P, = [aa.8]

Now. it a third elimination were carried out in the order Z, Y, W, 2,
or«. b.d. ¢ (the third normal equation now taking the last place),
we should have the same auxiliaries as in the first elimination,
s0 far as those denoted by the namerals 1 and 2; and the equa-
tions (68) would still be the same, but in the following order:

[dd.2)w + [ed.2] z 4 [dn.2] = 0
[ed.2}w 4 [ec.2] 2+ [en.2] =0

The value of ' given by the first of these is

_[kd.2] _  [dn.2]
T [dd.2] " [dd.2]

which, substituted in the second, gives for the coefficient of z,

[cd . 2] . [ee . 2]

[eo.8] = Lee-2] — pagray (42 = [02:3) X o
Therefore we have [dd. 3]
p, = [ce.2] [d—d?]_

In the fourth supposed elimination, in the order d, ¢, a, b, the
auxiliaries denoted by 1 and 2 would be the same as in our
actually performed second elimination; but in the final equation
in y we should have for the coefficient of y the quantity

B [ab.2] - [bb . 2]
(0.8 = 000-2) — g gy (0021 = Lea- 81X 1o
and, therefore,
- [aa.3]
p,= [bb.2] [0 2]

Thus, when the elimination has been once inverted, we have
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found the weights of two of the unknown quantities directly,
and the weights of the other two in terms of the auxiliaries pre-
viously used, and in a form adapted for logarithmic computation.

46. In order to give the above method greater generality, so
that the reader may be ehabled to extend it to a greater number
of unknown quantities, we remark that the product of the form

— [aa] [bb.1] [cc.2] [dd.8] .....

has the same value whatever order may be followed in the elimi-
nation. This is the same as saying that it is a symmetrical func-
tion of a, b, ¢, d. .. which is, consequently, not affected in value
by the permutation of these letters.* Suppose, then, four orders
of elimination, in which each unknown quantity in turn becomes
the last, while the order of the remaining three quantities
remains the same ; and, to distinguish the auxiliaries which occur
in each ehmlnatmn let the letter which occurs in the last auxiliar y
be annexed to each of the others; the above constant product
may thus be expressed in the following four forms:

P = [aa], [bb.1], [cc.2], [dd.3]
= [aa], [bb.1], [dd.2], [cc.3]
= [aa], [cc.1], [dd.2], [bb.3]
= [bb], [cc.1], [dd.2], [aa.3]

Now, it is evident that each time a new unknown quantity is
made the last, we do not change all the auxiliaries, but only
those which involve the letter which has become the last in the
new order. It is readily seen, therefore, that if we annex a letter
to those auxiliaries only which have a different value from that

which is denoted by the same symbol in the first elimination, we
shall have, simply, '

= [aa] [6b.1] [ecc.2] [dd.3]
= [aa] [bb.1] [dd.2] [cc .3]
= [aa] [cc.1] [dd.2], [bb . 3]
= [bb1] [cc.1], [dd.2], [aa . 3]

# The quantity P is, in fact, nothing more than the common denominator of the
values of z, y, 2z, w, when these values are reduced to functions of the known quan-
tities and in the form of simple fractions; and this common denominator must evi-
dently have the same value whatever order of elimination is followed.
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from which we deduce

p, = [dd.3]

= [cc .3] = [ec.2]- EZZ ?:%
_ . lec.2] [dd.3] (72)
p, = [bb.3] = [bb.1]- oo 1] [,

[bb.1] [ec.2] [dd.3]
p, = [aa.3] = [aa]- [6b] [ec.1], [dd.2],

If this method is applied in the case of six unknown quantities,
we shall in each of two eliminations have the weights of three
of the unknown quantities by computing each time but one new
auxiliary, and, therefore, the weights of all six when the second
elimination iz the inverse of the first. In the case of but four
unknown quantities. by inverting the elimination we can find
the weights of z and y twice, and thus verify our work.

47. If we have but three unknown quantities, the weights are
determined at the same time with z, 4, and z themselves, by a
single elimination in the order q, b, ¢, in which z comes out first
with the weight

p, = [ec.2]

and then y and z, with the weights

7, = [0b.2] = .17 L2

[ec.1]
o [bb 1] [ec.2]
P = laa-2]=[ea] = o1,
in which
fee.1], = [ec] — [%;bi][ c]

INDEPENDENT DETERMINATION OF EACH UNKNOWN QUANTITY AND
ITS WEIGHT, ACCORDING TO GAUSS.

48. Let the four equations (70) be multiplied respectively
by 1, A’, A", A", and let these factors be determined by the
condition that in the sum of the products the coefficients of y,
z, and w &hall be zero. Also, let the last three equations of (70)
be multiplied respectively by 1, B”, B/, and let these factors
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be determined by the condition that in the sum of the products
the coeflicients of z and w shall be zero. Finally, let the last
two equations of (70) be multiplied respectively by 1, C’”, and
let " be determined by the condition that in the sum of the
products the coeflicient of w shall be zero. The conditions
which determine these factors are then

— [ab] ’
= [ar] 4
[ac] [bC < ]'] & n
0= [aa] [b6.1] 4 4

_ [ad] (6d.17 4, [ed'2] 11 4
O—[aa] +[bb.1]A+[cc.2]A +4

(73)
0— [bc.1] B
[bb.1]
_[bd.1] | [cd.2] ,, "
0= [bb.1] - [cc.2] alieal
e [Cd'z] "
0= [ec.2] +0

and the final values of z, y, 2, w, in terms of these factors, are
given as follows: '

_ [an] [bn.1] , [en.2] ,, , [4n.3] ,,
T ke Twagt T T
N __[bn.l]_l_[cn.2]B,,+ [dn.3]B,,,

C[b.1] 7 [ec.2] [dd.3]
_ [en.2] Ld_nﬂ -
T T ez TadgC

e i e [EHred]
[dd.3]

6]

49. As the equations (73) are above arranged, all the factors
A are determined from the first system of three equations; the
factors B from the second system of two equations, &e.; in each
case, by successive substitution. This method then enables us
to find each unknown quantity independently of the others.

Another form may be given to the computation of the auxiliary
factors. Since in the formation of the equations (74) we have
regarded [an], [bn], [en], &e. as independent, we must still so
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regard them when we invert the process and recompose the
vquations (70) from (v4). 1t then, we multiply the equations (74)

[ab] [we] [ud]
" [wa] [aa] [aa] 1
to recompose the first of (70), the coetlicient of [an] will be i
but the coctlicients of [bn. 1], [en. 2], &e. must severally be equal
to zero.  The same principle will apply when we recompose the
second equation of (70) from the last three of (74), &c. 1Ilence
we have

respectively by 1 and add the produets in order

— gy o Lab]
0=+ [aa)

— g [ab] 5, [ac]
R 7 R 7

— A [l’lb] nr Eﬂ " [_aﬂ
R 7 R R
0— pry [e1] (75)

o [6b.1]

— B []'(,‘,',H " [bdl]
0=B"+ [65.1] o+ [bb.1]

e [ed.2]
0=+ [ee.2]

According to this scheme, we first find 4’, B”, C"" from the
equations in which they occur singly; then, with these factors,
we find the values of 4/, B’”, from the equations involving two
factors, &c.

50. Again, let us write the 3d, 5th, and 6th equations of (75)
in the following order :

A" o [a_b] B" zx. Lﬂfﬁ]_ g 4 Lﬂﬂ

[aa] [aa] [aa]
1" [bc * 1] " [bd 1] .
sl [bb.l]C +[bb.1] =0
o Led.2] .
o+ [ec.2] 0

Comparing these with the first three of (70), we at once infer
that 4", B, (" are those values of z, ¥, 2z, respectively, which
we should obtain from our first three normal equations by putting
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w =1 and omitting the terms in n; or, going back to (66), that
A, B, O may be determined by the following conditions :

[aa] A™ + [ab] B" 4 [ac] " + [ad] =0
[ab] A" & [bb] B™ + [be] C"" + [bd] =0
[ac] A" + [be] B" + [cc]C" + [cd]=0
If now we multiply the normal equations (66) by 4'/, B"", """,
and 1, respectively, and add the products, the conditions just
given will cause z, y, and 2 to disappear, and the resulting equa-
tion in w must be identical* with (69): so that 4’’/, B'", C""’
must also satisfy the following condition :

[an] 4" + [bn] B + [en] " 4 [dn] = [dn.3]  (T6)
The second and fourth equations of (75) being written as follows,

[ab] [ae]

A ™ g ="
w o, L0 1]
& +[bb.1]_0

and compared with the first two of (70), we infer that A", B"
are those values of z and y which we obtain from the first two
normal equations by putting 2 =1, w = 0, and omitting the
terms in n; that is, A’/ and B’/ must satisfy the conditions

[aa] A" + [ab] B" + [ac] =0
[ab] A" + [60] B"” + [be] =0

Therefore, if we multiply the first three normal equations (66) by
A", B", 1, respectively, and add the products, z and y will dis-
appear, and, the resulting equation being identical with the first
of (68), we must also have

[an] A" + [bn] B” 4 [en] = [en. 2] W)
Lastly, it is evident that 4’ must also satisfy the condition
[an] A" + [bn] = [bn .1] (78)

From these relations we readily infer general formule for the
weights of the unknown quantities.

* The equation (69) is the last normal equation, unchanged except by the substitu-
tion of eguivalents for z, y, and z; and in the present article we eliminate z, ¥, and 2
by the use of factors, but do not change the last normal equation, since we multiply
it by unity.
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According to Art, 34, the reciprocal of the weight of r is that
value which we obtain for z it we put [an]=— 1 and [bn] = [en]
= [dn] = 0. But, under these conditions, the equations (76),
(T TS give

[dn.3]=—A", [en.2]=—4", [bn.1]=—4
In order, theretore, that the value of z given by the first equa-
‘ = 1 .
tion of i74) may become —, we have only to substitute — A4’",
— A7, — A’, — 1, respectively, for [dn.38], [en.2], [brn.1], [ar].

In the same manner, the weight of y being found by putting
[tn] = — 1 and [an] = [en] = [dn] = 0, we have to put

[dn.8] = —B", [en.2]=—B", [n.1]=—1

in the second equation of (74), in order that we may put —;— for y.
For the weight of z we have to put ’

[dn.3] = — C", [cn.2]=——1

in the third equation of (74).

For the weight of w, we have to put
1
in the last equation of (74), and change w to N

The final formulee for the weights are, therefore,

1 1 A4 A4 ATAT

P, [aa] +[bb.1]+[cc.2] [dd.3)

11 B"B" _ B"B"
'F,“[bb.l]'*‘[cc.zj [dd.3]

1 1 oo S
P [ec.2] ' [dd.3]

11

Po  [dd.3]

MEAN ERROR OF A LINEAR FUNCTION OF THE QUANTITIES Z, ¥, 2, W
50. Tb find the mean error of the function

X=fr+gy+ hz 4+ w1 (80)

when %, 3, 2, w are dependent upon, the same observations.


file:///bh.l
file:///dd.S
file:///dd.S

542 APPENDIX.

The quantities x, 7, 2, w not being directly observed, their
mean errors cannot be treated as independent, as was done in
the case of directly observed quantities in Art. 22. We might
proceed by the method of Art. 23; but, as we here suppose
z, Y, 2, w to have been determined from the normal equations
(66), we can obtain a more convenient method by the aid of the
auxiliaries which have been introduced in the general elimina-
tion. The quantities z, y, 2, w being functions of the directly
observed quantities n/, n’/, n’’/, ... the mean error of X can be
readily obtained by the principles of Art. 22, if we first reduce
X to a function of these observed quantities. For this purpose,
if the values of z, y, 2, w.deduced from (70) be substituted in X,
we shall have an expression of the form

X=k,[an] + k [bn.1] + k,[en.2] + K, [dn.8] 4+ 1 (81)

in which the coefficients &, %, k,, k, are functions of [aa], [ab],
&c. In order to determine these coefficients, let us substitute in
this expression the values of [an], [bn.1], &c. given by (70). We
find
X =—Taa] kgx — [ablhky— [aclke— [ad]kaw 1

— [06. 1] ky — [bc. 1] kg — [bd . 1T kw

—[ec.2] ke —[cd . 2] kw

—[dd.3] kw

which becomes identical with (80) by assuming

laa]ly=—f

@bk + (W 1] k= — g

Lac]k, + [be. 1]k, + [cc. 2]k, — — R (82)
[ad] k, -+ [bd.1] k, -+ [cd.2] k, -+ [dd.3] k, = — &

These equations fully determine the coefficients. We find
directly from the first, and then %, %, %, by successive substitu-
tions in the others.

Now, to find the mean error of X under the form (81), let the
mean error of each of the observed quantities n/, n'/, '’ .... be
denoted by e (these observed quantities being supposed of equal
weight, or, rather, the equations of condition being supposed to
have been reduced to the same weight), and let the correspond-
ing mean errors of

[an], [on.1], fen. 2], [dn .3], X,
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be denoted by
E, E, E, E, ()
Siee we have
fan] = a'n' 4 "0 F "W 4 L
we have, by Art. 22,
E?! = [aa]?
Again, we have

[hn.1] = [bn] — % [an] =E [(b _ [et] a)n]

[aa]
and hence
NS TR (O
Ex‘—‘g(b [aa]l)
— ey — = L1 m
=e(ma— " e+ o )
— =y — [
= =( 0] o] [ab] )
=[bb.1]¢
In a similar manner, we have, also,
E? = [cc. 2] ¢, E? =[dd.3]¢

The quantities 7. 4, z, w, being determined from the equations
i70). their mean errors involve those of the quantities [an], [bn.1],
[en.2]. [n.3], precisely as if the latter had been independently
observed quantities affected by the mean errors just determined.
Hence also in (81) we regard [an], [n.1], &ec. as independent;
and it then follows directly from the principles of Art. 22 that

(X =k?Ep + k2 E? + I} Ep + k2B
or
(X = (k7 [aa] + k2 [bb. 1] + k2 [cc.2] + k2 [dd.8]) & (83)

51. From the preceding article we may easily find the for-
mule (T4) and (79). The function X becomes z when we assume
f=149=h=1i=1=0; and then (81) gives z while (83) gives

¢’ and hence the weight = Z— This hypothesis gives in (82)

[24] k, = —1; and the remair;ing equations of (82) are identical
with the first three of (78) if we put [6b.1] &k, = —A4’, [cc.2] k,
= — A", [dd.8] k= — A""; and then (81)becomes identical with
the first of (74), and (83) with the first of (79). In a similar
manner we may deduce the remaining equations of (74) and (79).
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Exampre.—In order to exhibit the numerical operations which
the preceding method requires, in their proper order and within
the limits of the page, I select an example involving but three
unknown quantities. The following equations of condition were
proposed by Gauss (Theoria Motus Corp. Coel., Art. 184) to illus-
trate his method:

€Y r— y+2:= 3
@ 3z +2y—bz= 5
3) dr 4+ y+42=21
4 —2x 4 6y 4 62 =28

of which the first three are supposed to have the weight unity,
while the last has the weight ;. Multiplying the last by y1=1
(Art. 41), the equations of condition, reduced to the same Welght,

are—
(€H) r— y—+2:— 3=0
(2) 3z +2y—b5z— 5=0
3 4d4rx+4 y+4z2—21=0
4 —x+4+3y+38z—14=0

The next step is to form the coefficients [aa], [ab], &ec., of the
normal equations. In ‘the present example this can be done very
easily without the aid of logarithms; but, in order to exhibit the
work usually required in practice, T shall give the forms for.
logarithmic computation. The sums of the coeflicients of the
unknown quantities will be employed as checks, according to
Art. 30. Their logarithms, together with those of «, b, ¢, n, are
given in the following table:

log a log b log e log s logn

(1) | 0.00000 | 70.00000 | 0.30103 | 0.30103 | n0.47712
) | 047712 | 030108 | n0.69897 | —oo | n0.69897
(3) | 0.60206 | 0.00000 | 0.60206 | 0.95424 | n1.32222
(4) | n0.00000 | 047712 | 047712 | 0.69897 | n1.14613

It is important, where many operations are to be performed, to
write down no more figures than are necessary for the clear prose-
cution of the work. Hence, in combining the preceding
logarithms it will be found expedient to proceed as follows.
Write each log @ upon the lower edge of a slip of paper; then,
placing this slip so that log a shall stand over log 4, log b, log ¢,
&c., of the same horizontal line, in succession, add together the
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two logarithms mentally, and, with the sum in the head, take from
the logarithmic table the corresponding natural number (aq, ab,
ac, as, or un), which place in a column appropriated for the pur-
pose.  Then write log 6 in the same manner, and form bb, be, bs,
én, and so proceed to form all the coefficients of the normal

equations, as in the following table:

[aa] [ad] [ac) [as] [an] [65] [be]
+l+ =+ =+ =+ ]+ -
m| 1o I 20 2.0 30l 1.0 2.0
23| ao] 60 15.0 0.0 15.0] 4.0 10.0
3| w9 Lo 16.0 36.0 84.0] 10| 4.0
@] 1o 3.0 30| | 5.0]14.0 9.0 9.0
10.0! 4.ul 18.0| 18.0{ 38.0, 50 14.0&02.0 130 120
—27.0] — 6.0 0.0 +830 | —880 l+150] 10
[bs] [tm] fee] [es] [en] [sn] [nn]
T g b ] — ] e J e | | | - | + — +
(n 2.0 8.0 4.0[ 4.0 L. 6.0 9.0
2 0.0 10.0] 25.0 0.0[ 25.0 0.0 25.0
3] 9.0 21.0[ 16.0| 36.0 84.0 189.0| 441.0
(4)] 15.0 42.0] 9.0/ 15.0 42.0 70.0[  196.0
350 2.0 3.0 73.0 55.0] 0.0| 25.0{182.0]  0.0| 265.0
—220 | —70.0 |l+540l +550 | —107.0 | —265.0 [+ 671.0

Having ascertained that the results satisty the test equations
(43), we can write out the normal equations as follows:
27z + 6y e BB =10
6xr + 15y + 0=20
Yy + 542 — 107 =0

=

e

We proceed to determine the values of z, y, 2, according to
onr general formule, still carrying out the work with logarithms
for the sake of illustration. Here, again, system and concise-
ness are indispensable. The whole computation is given below
nearly in the form proposed by Excke. This form corresponds
to the group of equations (70). It is divided into three principal
compartments, corresponding, respectively, to the first three equa-
tions of (70), each beginning one column farther to the right. In
the first compartment the first line of numbers contains the values
of [aa], [ab], &c., the second line their logarithms, and the third
line the logarithms of the coefficients of the first equation. The
logarithms in this third line are formed by subtracting the first
log. in the second line from each of the subsequent ones, for this

Vor. IL—35
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purpose writing the first logarithm upon the lower edge of a slip
of paper.

In the second compartment, the first line contains the values
of [bb], [be], &e.; the second line, the quantities subtractive from
these, accmdlng to the formule in Art. 42. To form these sub-

tractive quantities, write the logarithm of L a] (which is here

9.34679) upon the lower edge of a slip of paper, and hold it sue-
cessively over log [ab] and each of the subsequent logarithms in
the same line; add the two logarithms mentally in each case, take
the corresponding natural number from the logarithmic table,’
and write it in its place below. Subtracting these numbers, we
have the values of [bb.1], [bc.1], &ec. The fourth line contains
the logarithms of these quantities; the fifth, the logarithms of the
coefficients of our second equation, formed by subtracting the
first logarithm of the preceding line from each of the subsequent
ones in that line. .

In the third compartment we have—first, the values of [ec], &e.;
secondly, the values of the subtractive quantities formed from
the last line of the first compartment as before; thirdly, the
remainders which are the values of [cc.1], &c. The fourth line
contains the values of the quantities which are subtractive from
the preceding and are formed from the last line of the second
compartment by adding the first logarithm of that line to the
logarithm immediately above it and to each of the subsequent
logarithms in the same line; the fifth line contains the remain-
ders which are the values of [cc. 2], &ec.; the sixth line, the loga-
rithms of these; and the last line, the Jlogarithms of the coeffi-
cients of our third equation.

For control, we carry through the operations upon [as], [bs],
&ec., precisely as upon the other quantities; and then, according
to the arrangement of the scheme, we should have, if we have
computed correctly, each sum containing s equal to the sum of
the quantities on its left in the same line, together with those of
the same order in a vertical column over the first number in this
line. Thus, we must have, in the present case,

[bs.1] = [bb.1] - [bc.1] [sn.1] = [bn.1] + [en.1]
[es. 1] = [ec.1] + [be.1] [sn.2] = [en.2]
[es. 2] = [cc.2]

relations easily proved by means of the formule of Art. 42 com-
bined with (48).



METHOD OF LEAST SQUARES.

r

547

The columns [sn] and [#n] are added to the third compart-
ment in order to form the guantity [#n. 8], from which the mean
error of observation is to be deduced, as will be shown hereafter,

fea] | (@] | fa]" | (e [an)
— 27.000 46000 | 0.000 |- 88.000 |— 88.000
L43186)  0.TTRIS|  — 151801 nl.94448
DoHTY —x 0.08715] n0.51812
e SN [e2] bl © [be) | [bn]
0.000 |+ 15.000 |4 1.000 |+ 22.000 '— 70.000
+21.305 {4+ 1.333 | 0.000 |+ 7.388 |— 19.556
—66.695 |- 13.667 |- 1.000 14.667 |— 50.444
ml824ou| 118566 0000000 1.16638] nl.70281
logz =uv.3u273 LSRG 0.08067) LABTIA
] fe) el | e} | ()
—50.444 1~ 54000 — 55.000 [— 107.000| — 265.0001 4 671,006
+ 1.916 0.000  0.000 0.000,— 107.555' 4 286.813
— 4528 | E340000 — 55000 |— T07.000 — 157,445 o 384,187
nlosavet-. 0T8 1073 |—  8.691)— 54,135/ -4 186.19]
logy =1.55033) - 53,027 557027 22103800 10 331013 197956
1.73181, 72.01414; Pk 197908
log (— 2) = n(1.28223 [rn. 3] = 4 ().0KT

After = has been found, its value is substituted in the second
equation of (70), and y is deduced. Then, the values of yand 2z
being substituted in the first equation, we find z.  The numerical
computations are given above in the margin.

Then, for the weights, by Art. 47, we have first to find the

additional auxiliary

[be]

[ec. 1], = [ee] — iea) (24
and by the formule of that article we have—
[%5] [be] lllog [bb.1] 1.183566|log [cc.2] 1.73181
+15.000 |4 1.000 |llog[66] 1176097 log [cc.1] 1.73289
117609,  0.00000° log [cc.1]a 1.78185
_ 8.82391
[ee] 1.43186| 1.13566 | 1.73181
+ 54.000 | 9.95957 | 9.99942 | log p,
-+ 0.067 | 999996 | 1.13508
[cc.1a] = + 53.933 | 1.39089 | log p,

log p,
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The final result is then

# = 4 24702 with the weight 24.597
y— -+ 35508 « «  13.648
2= 4 19157 « «  53.927

Tt only remains to substitute the values of z, y, and z in the
original equations of condition, to form the residuals v, and from
these to determine the mean error of observation. Since here
there are but three unknown quantities, we have, by (71),

[vv] = [an.38]

and hence the mean error of an observation of the weight unity
is, by (61), m being the number of equations of condition,

£ (Ln 3] ): 0.205
m-—3

The direct computation of the residuals is, therefore, not necessary
for determining e: nevertheless, it is desirable in most cases to
resort to the direct substitution also, not only for a final verifica-
tion, but in order to examine the several observations, and to
obtain the data for rejecting any doubtful one by the use of
Prrrer’s Criterion, to be given hereafter. This direct substitu-
tion has already been carried out for this example on p. 525,
where we have found [vv] = 0.0804, which agrees with the above
value of [nn. 3] as nearly as can be expected with the use of five-
decimal logarithms.

52. Tt not unfrequently happens that one of the unknown
quantities is such that the given observations cannot determine
it with accuracy. For example, in the reduction of a number
of observations of an eclipse, one of the unknown quantities is a
correction of the moon’s parallax; but, unless the places of ob-
servation be remote from each other, the correction will be very
uncertain, and this uncertainty will affect all the other quantities
which enter into the equations of condition. In such a case, this
unknown quantity will come out with a small coefficient, which
of itself will reveal the existence of the uncertainty when it is
not otherwise anticipated. In order that this uncertainty may
not affect those quantities which are well defined by the obser-
vations, it is expedient to determine all the latter as functions of
the uncertain quantity, which for that purpose must be made the
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last in the elimination. Thus, with four unknown quantities
o zowe we proceed only as far as the auxiliaries denoted by
the numeral 2; then, having found the factors .17, AV, B
B C by (T8) or (THL i we put

s [ [bn.1] ., | [en.2] 47
R s R (38 | R v
_[n. 1] [en.2] .,
Y =[5.1] 7 [ ) B
v [en.2
T [ee 2]
these will give the values of the unknown quantities which we
should obtain from the first three normal equations if the last
unknown quantity were disregarded or put = 0. Then, by (74),
the final values of , 4. =, as functions of the uncertain quantity
w, will be

o)

T =
y=y + B"w (85)

The values of 77, y’, . will thus be well determined, and a sub-
sequent independcut determination of « will enable us to find
the final values of . y, z.%

Having found the weights of 2/, i/, 27 (which is done as if they
were the only quantitics under consideration), and their mean
errors ¢/, ¢/, ¢ /. then, when the quantity w is afterwards found,
the mean errors of the final values will be

e = ¢g? 4 (A" )?
57y = sy"" + (_B'”ew)2 (86)
Ezz s el/z + (C’”/IE"’)Z

as we find from the equations (79), or by Art. 20,

CONDITIONED OBSERVATIONS.

53, In all that precedes, we have supposed that the several
quantities to be found by observation, either directly or indirectly,
were independent of each other. Although they were required
to satisfy certain equations of condition as nearly as possible, yet
they were so far independent that no contradiction was involved
in supposing the values of one or more of them to be varied without

# For an example in which three unknown quantities are thus determined as
functions of fwo uncertain quantities, see Vol. I. p. 540.
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varying the others. By such variations we should obtain sys-
tems of values more or less probable, but all possible.

There is a second class of problems, in which, besides the
equations of condition which the unknown quantities are to
satisfy approximately, there are also equations of condition which
they must satisfy exactly: so that of all the systems of values
which may be selected as approximately satisfying the first kind
of equations, only those can be admitted as possible which satisfy
exactly the equations of the second kind. The number of these
rigorous equations of condition must be less than the number of
unknown quantities; otherwise they would determine these
quantities independently of all observations. These rigorous
equations, then, may be satisfied by various possible systems of
values, and we can therefore express the problem here to be con-
sidered as follows: Of all the possible systems of values which exactly
satisfy the rigorous equations of condition, to find the most probable, or
that system which best satisfies the approximate equations of condition.

The following are simple examples of conditioned observations.
The sum of the three angles of a plane triangle must be 180°: so
that if we observe each angle directly, and the sum of the observed
values differs from 180°, these values must be corrected so as to
satisfy this condition. The sum of the angles of a spherical
triangle must be 180°+ spherical excess. The sum of all the
angles around a point, or the sum of all the differences of azimuth
observed at a station upon a round of objects in the horizon, must
be 360°.

The approximate conditions in these cases are expressed by
the observations themselves; for the final values adopted must
correspond as nearly as possible to the observed values. The
corrections to be applied to the observed values are to be re-
garded as residual errors with their signs changed ; and the solu-
tion of our problem is involved in the following statement: Of
adl the systems of corrections which salisfy the rigorous equations, that
system. is lo be received as the most probable in which the sum of the
squares of the residuals in the approximate equations is a minimum.

, 54. The general problem as above stated may be reduced to
that of unconditioned observations, already considered. For let
us suppose there are m’ rigorous equations of condition, and m
unknown quantities. From these m’ equations let the values of
m’ unknown quantities be obtained in terms of the remaining
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m — m’ quantities, and let these values be substituted in all the
approximate equations of condition; then there will be left in the
latter only m — m’ quantitics, which may be treated as independ-
ent, so that, the approximate equations heing now solved by the
method of least squares, we have the values of the m — m/ quan-
tities, with which we then find the values of the first m’ quan-
tities.  This is a general solution of the problem; but it is not
always the simplest in practice. T shall illustrate it by a simple
example, before giving a method applicable to more complicated

cases,

ExaMpLE—At Pine Mount, a station of the U. &, Coast Survey,
the angles between the surrounding stations 1, 2, 3, 4 were
observed as tollows:

weight
1.2 Joscelyne—Deepwater......... 65° 11" 52".500 | 3
2.8  Deepwater—Deakyne.......... 66 24 15 553, 8
3.4 |Deakyne—Burden ............. &7 224 703| 3
4.1 ! Burden—Joscelyne. ...oouuna... 141 21 21 7570 1

There are here four unknown quantities subjected to the xingle
rigorous condition that their sum must be 360°.  But, instead of
tuking the angles themselves as the unknown quantities, we shall
assume approximate values of them, and regard the corrections
which they require as the unknown quantities.

We assume
1.2 | Joscelyre—Deepwater, 65° 11’ 52".5 4 w
2.3 | Deepwater—Deakyne, 66 24 15 .54 x
3.4 | Deakyne-—Burden, 87 224 .74y
4.1 | Burden—Joscelyne, 141 21 21 .84 2

the sum of which must satisfy the condition
359° 59’ 54”5 + w 4z + y + 2 = 360°

wtxd+yt+tz—55=0

The difference between the assumed value and the observed
value in each case gives us a residual; and the approximate
equations of condition are, therefore,

or

w—0 =0
z—0.053 =20

Z 4 0.043 =0
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We have here but one rigorous condition (or m’=1), and to
eliminate this we have only to find from it the value of one un-
known quantity in terms of the others, and substitute it in the
approximate equations of condition: thus, substituting the value

W=—zx—y—2+55

our equations of condition, containing now three independent
unknown quantities, are

weight.
—x—y—z45'5 =0 3
x —0.058 =0 3
Y — 0 .003 =0 3
z2—0.043 =0 1

The normal equations, applying the weights, are then
6x + 3y - 82 — 16.659 =0
3x + 6y + 3z — 16.509 =0
3z + 8y 4 42 — 16457 =0

which, being solved, give

%= -+ 0".9675
y=-+0 9175
z = 1 2 .7005
whence also
w = 4 09145

and the corrected values of the angles are

1.2]| Joscelyne—Deepwater.......... 65° 11’ 53".4145
2.3 | Deepwater—Deakyne........... 66 24 16 4675
3.4 | Deakyne—Burden............... 87 2 25 .6175
4.1 | Burden—Joscelyne.............. 141 21 24 .5005

360 0 0 .0000

55. 'When the number of unknown quantities is great, or when
there are several rigorous conditions to be satisfied, the preceding
method would lead to very tedious computations, since we are
required to perform two eliminations, the first from our m’
rigorous equations to find the first m’ quantities in terms of the
others, and the second from our normal equations involving all
the remaining quantities. In order to obtain the general form
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for a more condensed process, let the most probable values of a
number (m) of directly observed quantities be
LA G A T it
Let the observed values be
MY MM ke, .. M®
Let these observations have the weights

pr’ p"’ plll’ &c. . P(‘)

Let the equations which the most probable values are required
to satisty rigorously be expressed by
?' =fl (‘[“I’ T'U’ VIN, . .)
?" =flf (VI’ V"’ Vlll, . .)
?’” =-flll ( Iv’!’ I;"H, V!II’ .. .)
&e.

0
0
0

(87)

and let
m' — the number of these conditions.

Let the most probable corrections of the observed values be

! s '
v, ", v, &e. ... o™
so that

VI — MI + U,’ VII= MI’ + ,UII’ 'VIII — M‘III + vlll’ &c‘

Let the values of ¢/, ¢’/, ¢'""... when the observed values are
actually substituted be n/, »’/, n''" ... or

fl (MI, M!I’ MIII’ .. ‘) —_— n’

f” (MI, MII, M’III, .. ') — 7,"II

I, MY, ML) = (88)
&e.

. . . d ? d ’ d s d 1
Let the differential coeflicients d;” d;"’ &e., d‘;;” ZZ—I%" &e. be
formed ; substitute in them the values M’, M, M’ ... for V7,
V7, V', and denote the resulting values by o/, &', &e., ¥/, 0"/,

&c. ; that is, put

do' dy' do!

=% =Y e

d¢ll d¢” d¢” ;

7 V’ = b" d—'V'—’— — b", 4 V”’ — ", &C.
1 17 111

d?” ! — dg ! _ c", dy — cm’ &e.

av’ — av" - Z‘VIII
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These values of the differential coefficients will generally be suf-
ficiently exact; but if M’, M"/, M'" ... are found very greatly in
error, a repetltlon of the computatwn might be necessary, in
which the more exact values found by the first computation
would be used.

The values of M', M, M'" ... being assumed to be so nearly
correct that the second and higher powers of the corrections v/,
v, v/ ... may be neglected, we have at once, by TAYLOR'S
Theorem, as in the similar case of Art. 40,

go —n' + a'v’ + a'y" + a”’v”’-|— + almym —

5"" —_ n + b’U + b//vu + b//lvlrl __'_ b(m)v(m) — 0 89

o= n" 4 v + ¢V - " + . e — (89)
&e. &c.

which m/ equations must be rigorously satisfied by the values of
o, v, v
The equations

VI—M'=0, V'—M'=0, V"—M"=0,é&.
are the approximate equations of condition; or, more strictly,
V' — M — ’U', V' — M — ’U", Vi — M = ", &e.

are the equations of condition which are to be satisfied by the
most probable system of residuals v/, v/, v''’ . ... These, reduced
to the unit of weight by Art. 41, become

('Vl . M/) _l/p! e v!]/p!, (VH S MH) _l/:pll — U”]/_p”} &C- (90)

and the most probable residuals v'y/p’, v/'y/p’ are those the sum
of whose squares is & minimum, or we must have

P+ Pt p""? 4 &e. — a minimum.
Putting, then, the differential of this quantity equal to zero, we
have
p!vldvl _J’_pl/vlldvll + pm,uwdvm + &e. — 0 (9]_)
If v, v, v'"". .. were independent of each other, each coefii-
cient of this equation would necessarily be zero (as in Art. 28),

and then the most probable values of V’, V', V... would be
the directly observed values M’, M/, M{"'... But this minimum
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is here conditioned by the equations (89). It then, we differen
tiute (¥9), the equations

adv 4 a"de" 4 """ ... =0

Yav' + b"dv” 4 8"dv" 4 .... =0

ddv’ + AV A . =0 (92)
&e.

must coexist with (91).

The number of the equations (92) is m’, while the number of
differentials is m: and since, by the nature of the case, we must
have m > m/, we can, by elimination, find from (92) the values
of m’ ditferentials in terms of the remaining m — m/ differentials.
Let us suppose this elimination to be performed, and that the
values of the first in’ differentials, found in terms of the others,
are then substituted in (91); we shall thus have an equation in
which the remaining m — m/ unknown quantities can be regarded
as independent, and the coeflicients of these m — m’ quantities
in this final equation will then severally be equal to zero. We
can arrive directly at the result of such an elimination and sub-
stitution as follows. Multiply the first equation of (92) by 4, the
second by B, the third by C, &ec., and also the equation (91) by
— 1, and form the sum of all these products. Then, if 4, B,
C....are determined so that m/ differentials shall disappear
from the sum (and they can be so determined, since it only
requires m’ conditions to determine m’ quantities), the final
equation obtained will contain only the m — m’ remaining differ-
entials. But, the latter being independent, their coeflicients must
also be severally equal to zero; and hence we have, in all, the
following m conditional equations:

ad + VB +cC 4 ....—pv =0

a"A +V'B +c"C+ ... —p" =0

alIIA + bl/IB + c/I/CI + R __plll,vlll — 0 (93)
&e. &e.

If we multiply the first of these by 1—‘;7, the second by ;—;,—,’ &e., and

add the products, we have, by comparison with the first equation

of (89),
aa ab ac
- —|B —|C+.... =0
2 K P L Tl G
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in which the usual notation for sums is followed. In this way
we can form m’ normal equations containing m’ quantities,
namely,

[aa ] ab

=14 B ! —

52 +[p_ +[ ] LA A

[ ab ]| b "be

214 — " —

| P | +[1”JB+[P]C+ +w=0 (94)
[ac] ] ce

—). 4 B i M—0

| p | +[I’J +[1’] + + Y

&e.

If the observations are of equal weight, we have only to put
p =1, or, in other words, omit p.

The factors A, B, C...are called by Gauss the correlatives of
the equations of condition.

The equations (94) being resolved by the usual method of
elimination (Art. 42), the values of the correlatives found are
then to be substituted in (98), whence we obtain directly the
required corrections,

v —;—(’A + VB +d0 +...)

1 ! " /!
v”:p,,(a’A—i—bB—{—cC’—}—....) 95)
vVH: % (aIHA + bIIIB _I_ C’"C + . .) A'

&e. &e.

and hence, finally, the most probable values of the observed
quantities, V= M'+ o/, V"= M" + v", &e.

The comparative smaphclty of this process will best be shown
by applying it to the example of the preceding article. We
there have given, by observation,

M = 65°11 527500, p' =3
M" = 66 24 15 553, ' —3
M"= 87 224.703, p"=3
MY =141 21 21 757, v =1

with the condition

‘V’I 'Jl_' 'VN + VIH _l_ ];Tiv . 3600 — O
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We have, first,

’

ad=a" =a"

=a"=1
and when M’, M", &e. are put for V', V', &e., we have (88)
n = — 5" 487

As we have but one condition, we have also but one correlative
4; the equation of condition is, by (89),

— 5" A48T v 4 v V" =0

and the single normal equation may be constructed according to
the following form :

aa
pla|—
311]%
31113
311|143
Ij1]1
[51-
V2

24 —5"487T =0
A = 4 277435
and hence, by (95),

Corrected values.

v = 4 0.9145 V' = 65° 11’ 53".4145

— 1 09145 V"= 66 24 16 4675

s fe 0.9145 Vm— 87 2 25 6175

1" + 2.7435 Vir—141 21 24 .5005
360 0 0

agreeing with the result found by the much longer process of
the preceding article.

56. The further prosecution of this branch of the subject
belongs more especially to works on Geodesy. For more ex-
tended examples, see the special report of Mr. C. A. ScHorT in
the Report of the Superintendent of the U.S. Coast Survey for
1854, from which the above example has been drawn. Consult
also BEssEL’s Gradmessung in Ostpreussen in 1838 ; ROSENBERGER,
in the Astronomische Nachrichten, Nos. 121 and 122 ; BESSEL, i{)z’d.
No. 438; T. GaLnoway, Application of the Method to a Portion
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of the Survey of England, in the Memoirs of the Royal Astronomi-
cal Society, Vol. XV.; J.J. Bever’s Kiistenvermessung; FIsSCHER’S
Geodesie; GerLING'S Ausgleichungs Rechnungen; DIENGER'S Aus-
gleichung der Beobachtungsfehler ; Liacre, Caleul des Probabilités ;
and Gauss, Supplementum theorice combinationis, &e.

CRITERION FOR THE REJECTION OF DOUBTFUL OBSERVATIONS.

57. It has been already remarked (p. 490) that the number of
large errors oceurring in practice usually exceeds that given by
theory, and that this discrepancy, instead of invalidating the .
theory of purely “accidental” errors, rather indicates a source
or sources of error of an abnormal character, and calls for a
criterion by which such abnormal observations may be excluded.
The criterion proposed by Prof. Perrce* will be given here with
the investigation nearly in the words of its author, and with only
some slight changes of notation.

58. “In almost every true series of observations, some are
found which differ so much from the others as to indicate some
abnormal source of error not contemplated in the theoretical
discussions, and the introduction of which into the investigations
can only serve, in the present state of science, to perplex and
mislead the inquirer. Geometers have, therefore, been in the
habit of rejecting those observations which appeared to them
liable to unusual defects, although no exact criterion has been
proposed to test and authorize such a procedure, and this delicate
subject has been left to the arbitrary discretion of individual
computers. The object of the present investigation is to produce
an exact rule for the rejection of observations, which shall be
legitimately derived from the principles of the Calculus of Pro-
babilities.

“« It is proposed to delermine in a series of m observations the limit of
error, beyond which all observations involving so great an error may be
rejected, provided there are as many as n such observations.

¢«The principle upon which it is proposed to solve this problem
is, that the proposed observations should be rejected when the probability
of the system of errors obtained by relaining them is less than that of
the system of errors obtained by their rejection multiplied by the proba-
bility of making so many, and no more, abnormal observations.

* Astronomical Journal (Cambridge, Mass.), Vol. IL. p. 161.
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«TIn determining the probability of these two systems of errors,
it must be caretully observed that, because observations are
rejected in the second system, the corresponding observations of
the first svstem must be regarded, not as being limited to their
actual values, but ouly as surpassing the limit of rejection.”

Let

2 = the number of unknown quantities,

m == the whole number of observations,

n = the number of observations proposed
to be rejected,

1= m — n, the number to be retained,

4, &, &, ... 2% = the svstem of errors when no observa-
tion is rejected,
d.4, 47 ... 4™ = the system of errors when n observa-

tions are rejected,
¢, ¢, = the mean errors of the first and second
system, respectively,

y = the probability, supposed unknown,
of such an abnormal observation that
it is rejected on account of its magni-
tude,

y' =1 — y = the probability that an ob-
gervation is not of the abnormal cha-
racter which involves its rejection,

# = the ratio of the required limit of error
for the rejection of n observations to
the mean error e so that xe is the
limiting error.

The probability of an error 4 in the first system will be, by (14)
and (21),

€T 2

ey/2xw
and the same form will be used for the second system.
The probability of an error which exceeds the limit e will be

expressed by the integral (Arts. 8 and 12)

zf“;'éAdA
A =ke

2 A= A2

;q,x oo - 3—:'z_ei_dA

€1/ 27Y A—e

or, denoting this by yux,
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4

e1/2

2 w—tt
m‘tu:——f e dt
VY, _«

vz

, becomes

which, by putting ¢ =

and this may be found directly from Table IX. by subtracting
the tabular number corresponding to ¢ = ——"; from unity.

The probability of the first system of errors, embodying the
condition that n observations exceed the limit %e, is

P=oqgd.od.od"..... (—%—)"
¢ (#e)
1 _3a—naed
Sdeawt W

in which 34? = 4% + 47+ ....(4")?; and by (61) we have
24* = (m — p) &, whence
1

_ F(—m + p + nx?)
P o o (3
e ° (42)

The probability of the second system of errors is

yuylnl _ A2
) 1t € 2 2
" (27)

P =y .od . .od.od"... =

— VYV pewtw
¥ (2m) v

To authorize the proposed rejection of n observations, we

must have
P<P,
which gives at once
o'
(_) "D (e < gy

~ The value of y must be determined by the condition that P,
is a maximum, and therefore y"y"™ = y* (1 — y)" is’ a maximumn.

Taking the logarithm of this quantity, and putting its differential
equal to zero, we obtain for the maximum

y_¥y_1l1—y
n_ W
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[
(=27
.

whence
n n'
y= = y= P
Putting then

nnn'nl

I == o

vy mm } (96)
B =t (4x)

the limiting value of x, according to the above inequality, must
be that which satisfies the equation

o=
&
which gives the required criterion.

The relation of ¢, to ¢ must depend on the nature of the equa-
tions which correspond to the rejected observations; but it will
give a sufficient approximation to assume that the excess of 3'4*
over Y4 is only equal to the sum of the squares of the errors of
the rejected observations, which gives the equation

(I — p)e — nxe? = (m — p — n)e!
whence

(5])’_m—#—nx’
] m—p—n

which combined with the above equation gives

m — p — nx T\ 2=
—— e = m—n
m—p—n

R

Putting, for brevity,

7 2n
).z == == FM—N 97
(z) oD
we find
ﬂ~l=ﬁ:%:ﬁa~m (98)

Table X.A gives the logarithms of Tand R, computed by (96)
with the aid of Table IX. We can, therefore, by successive
approximations, find the value of % which satisfies the equations
(97) and (98). Since R involves x, we must first assume an ap-
proximate value of # (which the observed residuals will suggest),
with which # will be computed by (97), and hence x by (98).

Vou. IL—36
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With this first approximate value of %, a new value of log R will
be taken from the table, with which a second approximation to
» will be found. Two or three approximations will usually be
found sufficient.

In the application of this ecriterion, it is to be remembered
that it must not be used to reject n observations unless it has
previously rejected n — 1 observations. Hence we must first de-
termine the limiting value of  for the hypothesis of one doubtful
observation, or n =1, and if this rejects one or more observa-
tions, we can pass to the next hypothesis, n = 2, or n = 3, &c.;
and so on until we arrive at the limit which excludes no more
observations.

The above arrangement of the tables is nearly the same as
that given by Dr. B. A. Gourp,* who was the first to prepare
such tables and thus render the criterion available to practical
computers. The only difference is in my table of Log. 7, which
I have found in practice to be more convenient than the corre-
sponding one of Dr. GouLp.

ExamprrE.—¢“To determine the limit of rejection of one or
two observations in the case of fifteen observations of the vertical
semidiameters of Venus, made by Lieut. Hernoon, with the
meridian circle at Washington, in the year 1846.” In the reduc-
tion of these observations, Prof. PeircE assumed two unknown
quantities, and found the following residuals (v):

—0".30 — 0724 — 1740 40718
—0 .44 40 .06 —0 .22 40 .39
+1.01 40 .63 —0.05 4+0.10
40 48 —0.18 40 .20

We have here m = 15, u = 2, [w] = 4.2545, whence

et = %ﬁ = 0.3278, e=0".572

We first try the hypothesis of one doubtful observation, or
n=1. Assuming x = 2, the successive approximations may
be made as follows:

* Report of the Superintendent of the U.S. Coast Survey for 1854, Appendix, p.
131%; also Astron. Journal, Vol. IV, p. 81. '
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1st Approx.

Table X.A. log T 8.404

« logR 9.309

T
log = 9.095
€R
2n 1 7
s log 22 9.871
log (1 — &) 9.410
m — : — R 19 log12 1.079

log (x* — 1) 0.489
log x* 0.610
x 2.02

2d Approx.
8.4044

9.3062
9.0982

9.8712
9.4093

1.0792

0.4885
0.6106
2.020

Hence s = 1//.16, which excludes the residual 1/7.40.

We may now try the hypothesis n = 2.
with the assumption » = 2, we have—

log T'
log R

lo I
€&

log 2?

log (1 — 2%)
m—pu—n 11 lOg }21
log (#* —1)
log #*

%

st
Approx.

8.7210
9.309

9.412
9.819
9.531
0.740

0.271
0.457
1.69

Commencing again

2d 3d 4th
Approx. | Approx. | Approx.
8.7210 | 8.7210 | &.7210
9.3622 | 9.3544 | 9.3553
9.3588 | 9.3666 | 9.3657
9.8027 | 9.8051 | 9.8048
9.5624 | 9.5582 | 9.5587
0.7404 | 0.7404 | 0.7404
0.3028 | 0.2986 | 0.2991
0.4783 | 0.4755 | 0.4758
1.734 1.729 | 1.7295

Hence % = 0/7.989, which excludes the residuals 1”/.40 and 1”.01.

If we now try the hypothesis » = 3, we shall find, in the same
manner, xe = 0’7.887, which does not exclude the residual 077.63 :
s0 that the residuals 177.40 and 1”.01 are in this case the only
abnormal ones. Rejecting these residuals, we ghall now find

e, = 07.339.%

59. In order to facilitate the application of PErrcE’s Criterion

# For another example, in which there were four unknown quantities, and in
which the criterion was very useful, see p. 207 of this volume.
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in the cases most commonly occurring in practice, Table X. (first
given by Dr. GouLp) has been computed by the aid of the log 7'
and log R, according to the preceding method.

The first page of this table is to be used when there is but
one unknown quantity (# = 1), or for direct observations. It
gives, by simple inspection, the value of x* for any number of
observations from 3 to 60, and for any number of doubtful obser-
vations from 1 to 9.

The second page is used in the same manner when there are
two unknown quantities (u = 2).

Exampre.—Same as in the preceding article—Having found,
as above, &= 0.3273, we first take from Table X. for y = 2 the
value of #* corresponding to m = 15 and n = 1, and find

«* = 4.080, whence #'¢? = 13354,  xe — 1".16

which rejects the residual 177.40.
Then, with m = 15, n = 2, we find, from the same page,

% = 2.991, x%? = 0.9790, xe = 0"7.989

which rejects the two residuals 1/7.40 and 1/7.01.
Passing, then, to the hypothesis n = 3, we find

#? = 2.403, #%? = (0.7865, ne = 07,887
which does not exclude any more residuals.

60. The above investigation of the ecriterion involves some
principles, derived from the theory of probabilities, which may
seem obscure to those not familiar with that branch of science.
Indeed, the possibility of establishing any criterion whatever for
the rejection of doubtful observations, by the aid of the calculus
of probabilities, has been questioned even by so distinguished an
astronomer as Atrv.* It is easy, however, to derive an approxi-
mate criterion for the rejection of one doubiful observation, directly
from the fundamental formula upon which the whole theory of
the method of least squares is based.

‘We have seen that the function

* Remarks upon PErIrcE’s Criterion, Astronomical Journal (Cambridge), Vol. IV.
p. 137. Professor WINLOCK’g reply to the objections of the Astronomer Royal will
be found in the same joumal, Vol. IV. p. 145.
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N
Opt) =~ f e~ at
1 T 0

(the value of which is given in Tuble IX. A) represents, in general,
the number of errors less than @ = 7" which may be expected to
occur in any extended series of observations when the whole
number of observations is taken as unity, r being the probable
error of an observation. If this be multiplied by the number of
observations =a, we shall have the actual number of errors less
than r#/; and hence the quantity

m—m.O(pt")y = m[1l — O(pt")]

expresses the number of errors to be expected greater than the
limit /. But if this quantity is less than 1, it will follow that
an error of the magnitude »# will have a greater probability
against it than for it, and may therefore be rejected. The limit
of rejection of a single doubtfid observation, according to this simple
rule, is, therefore. obtained from the equation
or
2m — 1
N =
O(pt") = “om (99)

If we express the limiting error under the form e, e being the
mean error of an ohservation, we shall have

% = gi = 0.6745¢’ (100)
With the value of O(pt") given by (99), we can find ¢ from Table
IX. A, and hence # by (100).

ExavpLe.—To find the limit of rejection of one of the obser-
vations given on p. 562. We there have m = 15, e = 0".572;
and hence, by (99), ©(pt’) = 0.96667, which in Table IX.A cor-
responds to ¢ = 3.155, whence, by (100), » = 2.128, e = 1".22,
which agrees very nearly with the limit found by PEIRcE’s
Criterion.

By the successive application of this rule (with the necessary
modifications), it may be used for the rejection of two or more
doubtful observations, and I have, by means of it, prepared a
table which agrees so nearly with Table X. that, for practical
purposes, it may be regarded as identical with that table. For
the general case, however, when there are several unknown
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quantities and several doubtful observations, the modifications
which the rule requires render it more troublesome than Prrror’s
formula, and I shall, therefore, not develop it further in this
place. What I have given may serve the purpose of giving the
reader greater confidence in the correctness and value of PErrce’s
Criterion.
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TABLE IX.A. Probability of Errors,

(Method of Least Squares.)
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TABLE X. A. Peirce’s Criterion,

Log T.
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