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NOTE. 

TiiE followiiig pages are piinted from the stereotype plates 

of the Appendix to the author's Moiiial of Sphrrind and 

Practkul xístronomy, without any chauge iu the uumbering 

of the page.s or of the tables. The text, therefore, coni-

mences with p. 469 and ends with p. 566; and the tal)le.s 

are numbered ix.. ix. A., X. and x. A., as they stand in the 

original work. 

As the Method of Least Squares i.-̂  appHcable in aliuost all 

the phy.sieal sciences where numerical results are to be de-

duced from observatious. and i.s here treated froui funda-

mental and geuL-ral princii)Ies, it is thonghtthat tliis scjjaiate 

pubUcation of the Appendix will supply the waut that has 

for a long tirae been felt of a suitable text-lx>ok on tliis sub-

ject for the use of students of practic;d scieuce geiierally, and 

more especially of classes in our scieiitific schools. 

ST. Lons, January 1,1868. 





APPENDIX. 

METHOD OP LEAST SQUARES.* 

L A xrMBER of observations being taken for the purpose of 
determining one or more unknown quantities, and tbese obser-
vatious giving discordant results, it is an important problem to 
determine the most probable values of tlie unknown quantities. 
The method of least squares may be defined to be that metbod 
of treating tbis general problem wliich takes as its fundamental 
principle, that the mosi pi-obable values are those whieh make ihe sum 
of the squares of ihe residual errors a minimum. But, to understand 
this definition, some degree of acquaintance with the method 
itBelf is necessary. 

* The first publiahed applioation of the mcthod is to be found in LEGENDEE, NouvelUs 
méthodei pour la délermination det orbiies des comiles, Parig, 1806. The development, 
however, from fundamental principles is due to GATJSS, who declared that he had 
used the method as early as 1795. See hia Theoria Molm Corporum Cælesíium, 1809, 
Lib. II. Sec. I I I . ; Ditquisitio de elementit ellipticit Palladis, 1811; Bestimmung der 
Genauigkeit der Beobachlungen (v. LINDENAU und BOHNENBKEGEE'S Zeitschrift, 1816,1. 
s. 185); Theoria combinationis observationum erroribus minimis obnoxiæ, 182.3; Supple-
mentum theoriæ combinationis, &c., 1826: »11 of 'which have been rendered quite acoess-
ible through a French translation by J. BEETEAND, Méthode des moindres carrées. Mé-
moires sur la combinaison des obiervations, par CH. F E . GAUSS, Paris, 1855. 

For a digest of the preceding, together wilh the results of the labors of BESSBL 
and HANSEN, see ENCKE, t'eber die Methode der kleinsten Quadrate, Berliner Astron. 
Jahrbuoh for 1834, 1835, 1836; in oonneotion with which must be mentioned espe-
cially the practical work of 6EEI.ING, Die Ausgleiehungsrechnungen der practischen 
Geometrie, Hamburg, 1843. 

See also LAPLACE, Thêorie analytique des probabiliiás, Liv. II. Chap. IV.; PoissON, 
Sur laprobabiliié des résuliats mot/ens des observations, în the Connaissance des Teraps for 
3827; ENCKB, in the Berlin Jahrbuoh for 1853; BESSEI, in Astron. N'ach., Nos. 358, 
369, 399; HANSEN, in Asiron. Nach., Nos, 192, 202 et seq.; PBIBOB, in the Astron. 
.Tournal (Cambridge, Mass.), Vol. II. No. 21; LiAanE, Calcul des probabiUtés et théorie 
des erreurs, Bruxelles, 1862. 
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EEKORS TO WHICH OBSBRVATIONS ARE LIABLB. 

2. Every observation which s a measure, however carefuUy it 
may be made, is to be regarded as subject to error; for expe-
rience teacbes thatrepeated measures of the same quantity, when 
ihe greatest precision is- soughi,* do not give uniformly the same 
result, Two kinds of errors are to be distinguished, 

Constani or regular errors are those which in all measures of the 
same quahtity, made under the same c rcumstances, obta n the 
same magnitude; or whose maguitude is dependent upon the 
circumstances according to any determinate law. The eauses of 
such errors must be the subject of careful preliminary search in 
all physical inquiries, so that their action may be altogether pre-
vented or their eíFect removed by calculation. For example, 
among the constant errors may be enumerated refraction, aber-
ration, &c.; the effect of the temperature of rods used in mea-
suring a base line in a survey; the error of division of a graduated 
instrument when the same d vision is used in all the measures; 
any peculiarity of an instrument which affects a particular mea-
surement always by the same amount, such as inequality of the 
pivots of a transit instrument, defective adjustment of the colli-
mation, imperfections of lenses, defects of micrometer screws, &c., 
to which must be added constant peculiarities of the observer, 
who, for example, may always note the passage of a star over a 
thread of a transit instrument too soon, or too late, by a constant 
quantity, or who, in attempting to bisect a star with a micrometer 
thread, constantly makes the upper or the lower portion the 
greater; or who, in observing the contact of two images (in 
sextant measures, for instance), assumes for a contact a position 
in which the images are really at some constant small distance, 
or a pos tion in which the images are really overlapped, &c. &c, 

Thus, we have three kinds of constant errors: 
Ist. Theoretical, such as refraction, aberration, &c., whose effects, 

when their causes are once thoroughly understood, may be cal-
culated a priori, and which thenceforth cease to exist as errors. 

* The qualiiioation, " when the greatest precision is sought," is important; for if, 
e.g., we were to determine the latitude of a place by repeated measures of the meri-
dian altitude of the same fixed star with a sextant divided only to whole degrees, all 
our measures might give the same degree. The acoordance of observations is, there-
fore, not to be taken as an infallible evidence of their accuracy. It is especially 
when we approach the limits of our measuring powers that we become sensible of the 
diacrepancies of observations. 
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Tho detection of a constant orror in a certain (jlas.s of obscrva-
tions vory commonly loads to invostioations by whioh its cause 
is revoaled, and tlius ouv physioal thoorios aro improvod. 

-d. Instrumenial, wbioh aro disooverod by an o. amiuation of 
our instruments. or from a disoussion of tlio observations made 
with thoni. Thoso niay also bo romoved whon tlioir causos are 
fully undei-stood, eitlior by a propor mode of using the iustru-
ment, or by subsequont ooniputation. 

3d. PLrsonoL whiob ilopend upon peculiarities of the observer, 
and in dolicate inquirios booome the subjoct of special investiga-
tiou nnder the name of •• porsonal equatious." 

TTe aro to assume tbat, in an^- inquiry, all tbe sources of con-
stant error have beeu oarefully investigated, and their eff'ects 
eliminated as far as practicablo. When this has been done, 
however, wo find hj experience tbat tliere stiU remain discrepan-
cies, which must be referred to the next followiug class, 

Irregular or accidaital errors are those which have irregular 
causes, or whoso effects upon individual observations are gov-
erned by no fixed law connecting them with the circumstances 
of tbe obseiwations, and, therefore, can nover be subjected 
a priorí to computation. Such, for example, are errors arising 
from tremors of a toloscope produced by the wind : errors in the 
refraction produced by anomalous changes of density of the 
strata of the atmosphere; from unavoidable changes in the 
several parts of an instrument produced by anomalous variations 
of temperature, or anomalous contraction and expansion of the 
parts of an instrument even at.known temperatures; but, more 
especially, errors aris ng from the imperfection of the senses, as 
the imperfection of the eye in measuring very small spaces, of 
the ear in estiraating small intervals of time, of the touch in the 
delicate handling of an instrument, &e, 

This distinction between constant and irregular errors is, 
indeed, to a certain extent, rather relative than absolute, and 
depends upon the sense, more or less restricted, in which we 
consider observations to be of the same naiure or made under the 
same circumstanees. For example, the errors of division of an 
instrument may be regarded as constant errors when the same 
division comes into all measures of the same quantity, but as 
iiTCgular when in every measure a different division is used, or 
when the same quantity is measured repeatedly with different 
instruments. 
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After a fuU investigation of the constant or regular errors, it 
is the next business of the observer to diminish as much as pos-
sible the irregular errors by the greatest care in the observations; 
and finally, when the observations are completed, there remains 
the important operation of combining them^so that the outstand-
ing, unavoidable, irregular errors may have the least probable 
effect upon the results, For this combination we invoke the 
aid of the method of least squares, which may be said to have 
for ts object the restr ction of the effect of irregular errors within 
the narrowest limits according to the theory of probabilities, and, 
at the same time, to determine from the observations themselves 
the errors to which our results are probably liable, I t is proper 
to observe here, however, to guard against fallacious applications, 
that the theory of the method is grounded upon the hypothesis 
that we have taken a large number of observat ons, or, at least, a 
number sufiiciently large to determine the errors to which the 
observations are liable, 

COREECTION OF THE OBSEEVATIONS. 

3. "When no more observations are taken than are suflicient 
to determine one value of each of the unknown quantities 
sought, we have no means of judging of the correctness of the 
results, and, in the absence of other information, are compelled 
to accept these results as true, or, at least, as the most probable. 
But when additional observations are taken, leading to differeut 
results, we can no longer unconditionally accept any one result 
as true, sinee each must be regarded as eontradicting the others. 
The results cannot all be true, and are all probably, in a strict 
sense, false. The absolutely true value of the quantity sought by 
observâtion must, in general, be regarded as beyond our reach; 
and instead of it we must accept a value which may or may not 
agree w th any one of the observations, btit which is rendered 
most probable by the existence of these observations, 

The condition under wbich such a probable value is to be 
determined, is that all contradiction among the observaiions is io be 
removed. This is a logical necessity, since we cannot accept for 
truth that which is contradictory or leads to contradictory results. 

The contradiction is obviously to be removed by applying to 
the several observations (or conceiving to be applied) probable 
correciions, which shall make them agree with each other, and 
which we have reason to suppose to be equivaleut in amount to 
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ího aooidontal orrors sovorally. .Bnt lot us Iioro roniark that \vo 
do not in tliis statoniont l>y any moans imply thíit an obsorver is 
to arbilrarih/ assiuao ;i systom of oorrootions whiob will produce 
aoeordanco: on the oontrary, tlio method wc are about to con-
sidor is dosignod to roniovo, :is tar as possiblo, ovory arbitrary 
c<-)nsid(.ration, and to furnish a sot of principlos which sball 
always iruido us to tlie niost ])robal)Ie restdts. Tho consoiontious 
ol)-orvor, liavinir takou ovory oare in his obsorvation, wiU sot it 
down, liowever disoropant it niay appoar to him, as a portion of 
ho tostiniony collectod, out of which tlie truth, or the nearest 

appro. iniation to it. is to be sifted, 
Adniirting. tberefore, that tbe observations give us the best, 

as indeed the only, information wc can obtain respeoting the 
dosirod quantities, we must find. a systoni of corrections which 
shall not only produce the desired accordance, but which shall 
a!so be the ir i^t probabh corrections, and furtlier be renderedmost 
prob'.'Jjk h^i ihc»c observaiions thci/isdces. 

THE ARITHMETICAL MEAN, 

4. In order to discover a principle which may sei've as a basis 
for the investigation, let us examine first the caso of direct ob-
servations made for the purpose of determining a single unknowu 
quantity. 

Let the quantity to be determined by direct observation be 
denoted by x. (Suppose, for example, to fix our ideas, that this 
quantity is the linear distance between two fixed terrestrial 
points.) If but one measure of x is taken and the result is «, 
we must accept as the only and, therefore, the most probable 
value, X = a. Let a secoud observation, taken under the same 
or precisely equivalent circumstanees, and with the same degree 
of care, so that there is no rcason for supposing it to be more hi 
error than the first, give the value b. Then, since there is no 
reason for preferring one observation to the other, the value of 
T must be so taken that the differences x — a, x — b shall be 
iiumerically equal; and this gives 

This result must be regarded as the only one that ean be inferred 
from the two obsei-vations consistently with our definition of 
accidental errors; for positive and negative accidental errors of 
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equal absolute magnitude are to be regarded as equal errors and 
as equally probable, since, from the care bestowed on the obser-
vatious and the supposed similarity of the circumstances under 
whicb they are made, there is no reason a priori for assnming 
either a positive or a negative error to be the more probable, 

fow let a third observation be added, giving the value c. 
Since the three observations are of equal reliability, or, as we 
shall hereafter say, of equal weight, we must so combine a, b, and 
c that each shall have a like influence upon the result; in other 
words, X must be a symmetrical function of a, b, and c. If we 
first consider a and b alone, then a and c, then b and c, we shall 
find the values 

Ha + b), K« + c). i(6 + c), 

with each of which the additional observation c, b, or a is to be 
combined, Each combination must result in the same sym-
metrical function, which, whatever it may be, can be denoted by 
the functional symbol ^^- W e must, therefore, have 

X = •i.[i(a + b), c] 
= 4 [ K « + c),*] 
= 4 [K& + c), «] 

Introducing the sum of a, b, and c, or putting 

s — a -\- b -\- c 
these become 

æ = 4- [J (s — c), c] =: 4 [s, c] 
= + [ K s - 6 ) , 6]=4[s,6] 
= 4- [K« — «)) «] = + [s, «] 

But s is already a symmetrical function of a, b, and c, and tbere-
fore these equations cannot all result in the same symmetrical 
function unless c, b, a, m the respective developments of the 
functions, disappear and leave only s. Hence we must have 

x = ^(s) 

E'ow, to determine 4-, we observe that, as it must be general, 
its nature may be learned from any special but known case, 
Such a case is that in which the three observations give three 
equal values, or a = b = c; and in that case we have, as the 
only value, x = a, ov 

a = ^(Ba) 
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and, consequently, the symbol 4̂  signiiios horo the division by îi. 
Henoo, gonerally, 

a -\- b -\- c 

In the saine manner, if it had been previously shown that for 
ni equally good obsorvations the most probable value is 

^_a -f fc-i-c-f- . . . . -f n 
m 

it would foUow that for an additional observation p we must 
have 

^_a-^b + c -\- .... -{-n -{-p 

m -j- 1 

for, putting s = a-\-b-\-c+...+ n+p, we shall have 

a: = + — (s — P), î  = + [s, i?] = + (s), &c, 

But we have sl iwn that the form is true for three observed 
valuôs: henoo, it is true for four; and since it is true for four 
values it is true for five ; and tbus generally for any number,* 

The principle here demonstrated, tliat the arithmetical mean 
of a number of equally good ohsorvations is the most probable 
value of the observed quantity, is that which bas been universally 
ádopted as the most simple and obvious, and might well be 
received as axioraatic. The above demonstration is chiefly 
valuable as exhibiting somewhat more clearly the nature of the 
assumption that underhos the principle, whioli is that, under 
strictly similar oircnmstances, positive and negative errors of the 
.~ame absolute amount are equally probable. 

•'j. If now n', n", n'".... n̂ ""' are the m obseiwed values of a 
required quantity x, and if x^ denotes their arithmetical mean, 
the assumption of x̂  as the most probable value of x gives 
n'— x„ n" — x„, n'" — x^, &c., as the most probable system of cor-
rections (subtractive from the observed values) which produce 
the required accordance. But the equation 

_rí + n" -f n'" +....+ w""' ... 
"̂ " ~ m ^^ 

* ENCKE, Berliner Astron. Jahrbuch for 1834, p. 202. 
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may also be put under the form 

(rí — x^) + (rí' — x,) + («"' —x,) + (nw - a;„) = 0 

that is, the algehraic sum of the correciions is zero. 
This is, however, not the only characteristic of the system of 

corrections resulting from the use of the arithmetical mean, Let 
us examine the sum of the squares of the corrections. For 
brevity, let us denote the corrections, or, as they will be here-
after called, the residuals, by the symbol v: so that 

v' = n' — ÍCQ, V" = rí' — Xo, v"' = n'" •— Xa, &e. 

and also denote the sums of quantities of the same kind by 
enclosing the common symbol in rectangular bi'ackets: so that 

lv'] = v'+v" + v'" + &c, 
Ivv'] = v'v' + v"v" + v"'v'" + &c, 

a notation usually employed throughout the method of least 
squares. W e have 

M = 0 (2) 
and 

Ivv] = (rí — XoY + (rí' — x^y + (rí" — x^^ + 
= [ww] — 2 [«] íCo + mxa 

But since we have also 
[n] 
m 

this equation becomes 

\yv-\ = [wn] -~2\n]^ + m ^ 

= [n»] 

m m' 
[nj (3) 

m 

Let aîi be aiiy assumed value of x, giving the residuals 

Vj = rí — aij v^ = rí' — íCj «3 = n'" — x^, &c. 

then, as above, 

[«1» J = [wn] — 2 [îi] Æj + mx^ 

Substituting in this the value of \nn'] given by (3), we find 

iviv^ = Ivv] + í^ 2 [n] íCi + míCi' 
m 

— [««] -f- m I t ^ — íc, 1 

= [*'''] + m(xo— íCi)' 

(4) 
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This equation dotonninos the sum of tho squiiros of the rosidnals 
for any assuniod value of x. Sinoo tho last torm is alwiiys posi-
tivo, wo soe that this suni for auy value of x diftering from tho 
arithmotioal mean x„ is always groator than [rr] , Ilence it is a 
sooond charactoristio of the aritbmotioal mean, that it makes the 
sum uf the squares of ihc rcsiduals a minimum. 

6, Observatious may be not only dircct, that is, made directly 
upon the quautity to bo dctermined, but also indirect, that is, made 
upon some quantity wliich is a function of one or more quanti-
ties to bo determined. ludeed, the greater part of the observa-
tions in astronomy, and in physical soience generally, belong to 
the latter olass. Thus, let x, y, z be the quantities to be 
determined, aud J / a function of them denoted b y / , or 

M=f(x,y,z....) (5) 

and let ns suppose an obsers'ation to be made upon the value of 
M. We then have but a single equation between x,y, z.... and 
the obsorved quantity M, and the problem is as yet iudetermi-
nate. Various systems of values may be found to satisfy the 
equation, either exactly or approximately. Let us, however, sup-
pose that the most probable .system (as yot unknown) is expressed 
hy x = p, y = q, z = r...., and let tbe value of the function, 
when these values are substituted in it, be denoted by V, or put 

y=f{P,<l,r....) (6) 

then M— y i s the residual error of the observation. In like 
manner, if a number of observations of the same kind be taken, 
in which the observed quantities M', M", M'"... are functions 
determined by the same elements p, q, r, , and if V', V", 
V'" are the values of these functions when p, q, r are 
substituted in them, then M'-V', M"-V", M"'-V"'.... 
are the residual errors of the observations. If there are /i 
unknown quantities and also pt observations, and no more, there 
w ll be [JL equations Ijetween the known and unknown quantities, 
which will fully determine the values of these unknown quanti-
t ies : 80 that the probable values p, q, r are, in that case, 
those determinate values which exacily satisfy all the equations, 
and, consequently, reduce every one of the residuals M' — V', 
M" — V", &c. to zero. But, if there are more than /i observations, 
the determinate values found from fi equations alone will not 
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necessarily satisfy the remaining equations, in consequence of 
accidental errors in the observations. The problem, tben is io 
deiermine from ALL ihe observations, or from all the equaiions, ihe 
most probable system of values of the unknown quaniiiies, or, whicb is 
the same thing, the most probable sysiem ofresidual errors. In tbe 
case of direct observations, we have seen that the most probable 
value of the unknown quantity was that which made the alge-
braic sum of the residuals zero; but this principle followed frora 
taking the arithmetical mean of the same quantity, and is ob-
viously inapplicable in the present case. The second principle, 
that the most probable value is that which makes the sum of the 
squares of the residuals a minimum, is of a more general 
character, and might be assumed at once, as at least a plausible 
principle, to serve as the basis of the solution of our problem; 
but it will be more satisfactory to justify its adoption by the 
calculus of probabilities, 

THE PROBABILITY CURVB, 

7, Although accidental errors would seem at first sight to be 
of a capricious and irregular nature which would exclude them 
from the domain of mathematics, yet, upon examination from 
theoretical considerations, confirmed, as will be shown, by expe-
rience, we shall find that they are subject to remarkably precise 
laws, In the first place, we remark that they are subject to the 
following fundamental laws : Ist. Errors in excess and in defect 
—i.e. positive and negative, but of equal absolute value—are 
equally probable, and in a large number of observations are 
equally freqnent. 2d. In every species of observations, tbere is 
a limit of error wbich the greatest accidental errors do not 
exceed: thus, if l denotes the absolute magnitude of tHs hmit, 
all the positive errors are comprised between 0 and + l, and all 
the negative errors between 0 and — l, and, consequently, all the 
errors are distributed over the interval 21. 3d. The errors are 
not distributed uniformly over this interval 21, but the smaller 
errors are more frequent than the larger ones, 

Thus the frequency of an error of a given magnitude may be 
regarded aâ a function of the error itself: so that, if we denote 
an error of a certain magnitude by J, and its relative frequency 
in a given large number of observations by <pJ, this function 
should obtain its maximum value for J = 0, and become zero 
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whon J = ± ;, If, thon, we denote tho probability* of an error 
J by y, or put 

y = V--J (7) 

we may rogard this as tbe equation of a ourvo, taking J as the 
absoissa and y as the ordinato. Tbe nature of this ourve wili be 
accuratoly definod wbon we havo disoovered the form of tbe 
funotion c J , but wo o:iu soo in iidvanoo thíit a curvo such as 
Fig. A is required to satisfy tho conditions alrcatly imposed upon 

this function. For its maximum ordinate must correspond to 
J = 0 ; it niust be symmetrical witli reference to the axis of y, 
since equal errora with opposito signs have equal probabilities; 
and it must approach very near to the axis of abscissæ for values 
of J near the extreme limits, althougb the impossibility of as-
signing such extreme limits of error with precision nmst prevent 
us from fixing the point at which the curve will finally meet the 
axis. 

8. The number of possible errors in any class of observations 
is, strictly speaking, finite; for there is always a limit of accuracy 
to the observations, even when Ave employ the most refined 
instruments, in consequence of which tbere is a numerical suc-
cession in our results. Thus, if 1" is the smallest measure in a 

* That is, if the error J occurs n times in m observations, y =z tpã = . — . 
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given case, the possible errors, arranged in their order of magni-
tude, can only differ by 1" or an integral number of seconds. 
Hence, our geometrical representation should strictly consist of 
a number of isolated points; but, as these points will be more 
and more nearly represented by a continuous curve as we increase 
the accuracy of the observations, and thus diminish the intervals 
between the successive ordinates, we may, without besitation, 
adopt such a continuous curve as expressing the law of error. 
We shall, therefore, regard J as a continuous variable, and tpá 
as a continuous function of it. 

íTow, by the theory of probab lities, if <pá, <pá', fJ" 
are the respective probabilities of all the possible errors J, J ' , 
J " we have* 

pá + <pA' + <fã" + = 1 

when the number of possible errors is finite. But the assumed 
continuity of our curve requires that we consider the difference 
between successive values of J as infinitesimal, and thus the 
number of values of tpá is infinite, and the probabihty of any 
one of these errors is an infinitesimal. To meet this d fl culty, 
let us observe that f a finite series of errors J, J ' , J " be ex-
pressed in tbe smallest unit employed in tbe observatÍQns, these 
errors, arranged in the order of their magnitude, wiU be a series 
of consecutive integral numbers ; the probability of the error J 
may be regarded as the same as the probability that the error 
falls between J and J + 1 ; and the probability of an error be-
tween J and A + i will be the sum of tbe probabilities of tbe 
errors J, J + 1, J + 2, á + {i — 1). líi'\s small, the pro-
bab lity of eacb of tbe errors from á to á + i will be nearly the 
same as that of J : so that the r sum will difí'er but little from 
ifá. As the interval between the successive errors diminishes, 
this expression becomes more accurate; and hence when we take 
dá, tbe infinites mal, instead of i, we have fá. dá as the rigorous 
expression of the probability that an error falls between J and 
J + dá. Hence, it follows, in general, that the probability that 
an error falls between any given lim ts a and b is the sum of all 

* For if there are « errors equal to A, n' equal to â', &c., and the whole number 

of errors is m, the probabilities of the errors are respeotively ^A — —, ^A'= —, &c., 

and the sum of these is —• — = — = 1. 
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the oloments of the form tpJ.dJ botwoon thoso limits, or tbe 
intoirml 

X' 
6 
c-J , tí J 

and tliis integral, taken betwoon tbe oxtremo limits of error, and 
thus ombraoiug all tbo iiossible orrors, will be 

X + í 
C'J . rfj = 1 

— i ' 

We have heretofore assunied tbat tbe function c J is to be zero 
for J = — /. It must also bo added that, since the probability 
of miy error greater tban ± / îs also zero, we should havo to 
determino this function in such a manner that it woúld be zero 
for all valuos of J from + ? to + oo and from — l to — x. The 
olivious inipossibility of dotermiuing sueh a function leads us 
t<< oxtend the limits ± / to ± cc, and to take 

X T t» 
p J . < / J = l (8) 

This will evidently be allowable if the integral taken from 
= ^ to ± X is so small as to be praotically insignificant. Besides, 
the extreme limits of error can nover be fixed with precision, and 
it will sufiice if tbe function cr J is such that it becomesvcry smal! 
for those errors which are regarded as very large. 

9. Eetqrning now to the general case of indirect obsen'ations, 
Art. 6, in which we suppose a quantity M=f{x, y, z,... .) to be 
observed, let J, J ' , J " . . , . be the errors of the several observed 
values of Jf, and tpJ, (pJ', <pJ" their respective probabihties; 
then, the probability that tbese errors occur at tbe same time in 
the given series being denoted by P, we have, by a theorem of 
the calculus of probabilities,* 

P=^A. ^A'. yp J" (9) 

The most probable system of values of the unknown quantities 

* If a single action of a cause can produce the effects a, a', a" with the re-
spective probabilities p, ^,p", the probability that two successive independent 
actions of tbe eause will produce the effects a and a' is pp'; nnd similarly for any 
number of eiTects. Thus, if an urn contains 2 white balls, 3 red ones, and 6 blnck 
one.s, ihe probability that in two successive drawings (the original number of balls 
being t.he game at each drawing) one ball wiU be white and the other red is ^-^ X -h-

\ou II.—.îl 
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x,y,z wiU be that which makes tbe probability P a maxi-
mum, Consequently, since x,y,z are here supposed to be 
independent,* the derivative of P relatively to each of these 
variables must be equal to zero ; or, since log P varies with P , 
the derivatives of log P must satisfy this condition, and we shall 

have 
1 d P . 1 á P . . 

= 0 , • = 0, &c, 
P dx ' P dy ' 

which, since 
log P = log (pA + log (pA' + log <pA" + 

give the equations 

, , dA ^ ,,,dá'^ , ,„ dA" 
<p'A -— + <p'A'.-— + ^' Å"--— + = 0 

dx dx ax 
, , dÅ , dA' , dA" „ 

^'•5^ + ^ ' '^ + ^ ' V + ^ ) (10) 
, ' J .^ + ,'J'.§^+.'J".§^' + = 0 

dz dz dz 

&e. &c, 

in which we have put 

^ ' ^ = ^ (11) 
PJ . dA 

The number of equations in (10) being the same as that of the 
unknown quantities, these equations will serve to determine the 
unknown quantities when we have discovered the value of the 
function (p'J, as will be shown hereafter. 

Since the functions fJ and tp'J are supposed to be general, and 
therefore applicable whatever the number of unknown quant -
ties, we may determ ne them by an examination of the special 
case in which there is but one unknown quantity, or that in 
which tbe observed values M, M', M" belong to the same 
quantity. In that case, the hypothesis that x is the value of this 
quantity gives the errors 

A = M — x, A'=M' — x, A" = M"- X . 

* That is, subject to no restrictions exoept that they shall satisfy the observations, 
or the equations M=f(x, y, z, ). For the case of "conditioued" observationa, 
see Art. 53 of this Appendix. 



METHOD OP LEAST SQUARES, 4 8 3 

whence 

— — í£.—'l£. —_i 
dx dx dx 

aud the first equation of (10) becomes 
V-' (M- X) + <f' ( JP - x) + f- (M"- x) + = 0 (12^ 

This boing general for any immber m of obsorvations, and for 
any observod valuos M, JJ', M" , lot us suppose the spooial 
oase 

Jf' = M" = M— HuV 

Since the arithmetical mean of the observed quantities is here 
the most probable value of x, we have 

x = -(M+M'+ M"+ ) 
m^ ' 

=.\\M+(m-\)(M-mN)-\ 

whence 
= J / — (m — 1) .V 

M—x = (m — \)X 
M'— x= M" — x = -^ A' 

and, consequently, (12) becomes 

c' \(m — 1) V ] + (m — 1) F ' (— iV) = 0 

e' \(m - 1) V ] _ ?-'(-IP, 
(m — \)N —/V 

That is, for all values of/)!, and therefore for allvalues of {m — l)N, 
, íp'[(m — 1 ) V ] , ^ -̂ ,., y ' ( - i V ) 

we have ^—^ + - ^ equal to the same quantity -^^—^r^-
( m — I j V ^ ^ •' —JV 

w'á , . , 

Hence we have generally —~ equal to a constant quantity, and, 

denoting this constant by k, we have 

/ J = kA or, by (11), 

^A 
'^'^^=kA.dA 

Integrating, 
log <pA = ikA^ + log 

whence 

in which e îs the base of the Napierian system of logarithms. 
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Since (pA must decrease as J increases, ^k mustbe essentially 
negative: representing it, therefore, by — h^, our function becomes 

<pA =n e—M'iA 

To determine the constant x, let this value be substituted n (8), 
which gives 

r"^"5íe-''''^AdJ = l 

Put t ing 
t = hA (13) 

this integral becomes 
^ J e-'tdt = l 
hJ — a> 

The known value of the definite ntegral in the first member is 
I/TT (see Vol. I. p, 153); whence 

_ h 
• j / r 

and the complete expression of tpJ becomes 

p j = 
V^ 

(14) 

The constant h must depend upon the nature of the observa-
tions, and will be particularly examined hereafter, If we here 
take it as the unit of abscissæ in the curve of probability, the 
equation (7) becomes 

by which the curve may be constructed. The values of y for a 
few values of J are as follows: 

J 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

!/ 

0.5642 
0.5421 
0.4808 
0.3936 
0.2975 
0.2076 
0.1337 
0,0795 
0,0436 

DifF. 

,0221 
.0613 
.0872 
.0961 
.0899 
.0739 
.0542 
.0359 

A 

1.6 
L8 
2.0 
2.2 
2.4 
2.6 
2,8 
8.0 
oo 

2/ 

0.0436 
0.0221 
0.0103 
0,0045 
0.0018 
0.0007 
0.0002 
0.0001 
0.0000 

Diff. 

.0215 

.0118 

.0058 

.0027 

.0011 

.0005 

.0001 
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The curve, Fig. A, in Art. 7. is oonstruotcd from this table ; but, 
to exhibit its oharaotor moro distinotly, iho scale of the oi'dinalos 
is four timos that of tlte absoissio (whioli, indood, oorrosponds to 
rhe oaso of A = 2). Wo soo that the ourvo approachos vorv noar 
to tho axis for modorate valuos of J, and that the assumption of 
± X instoatl of finite hmits of J oan involve no practical error. 
It is evident that tho axis SA' is an asymptote to tho oui vo. 

Tho differonoos iu the above table indicate that tbe curve 
approaohos the axis niost rapidly at a point whose al)soissa is 
botwoon 0.6 aud O.v̂ . The exact position of this point, whieh 
îs a point oî' inflexion, is found by putting the second differen-
tial coeíficient oíy equal to zero, which gives 

<P« 2 4JJ 

whence 

J = - ^ = 0.7071 

The ordinate Mm- is drawn at this point. W e shall have occa-
siou to refer to it again hereafter. 

THE MEASURE OF PRECISION. 

10. The constant h requires special consideration. Since the 

exponent of e in (14) must be an abstract number, T- must be a ; 
1 

concrete quautitv of the same kind as J . In a class of observa-
1 

tions in which J is small for a given probability <pJ, v will be 

Bmall, and h will be large. Thus, A will be the greater the more 
precise the nature of the observations, and is, therefore, called by 
GACSS the mecmire of preeision. If in one system of observa-
tions the probability of an error J is expressed by 

. _ e—miA 
l/îT 

and in another, more or less precise, by 

J ^ p — Wk'^H. 

the probability that in one observation of the first system the 
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error committed will be eomprised between the Hmits — d and 
+ á will be expressed by the integral 

I + « h 
—— e—íí^AA ^j 

and, in like manner, the probability that the error of an observa-
tion in the second system wiU be comprised between — d' aud 
+ d' wiU be expressed by 

r+^' h' 
( - + e-*WAA dJ 

J-å' y-r: 
These integrals are evidently equal when we have hd = h'd'. If, 
for example, we have h' = 2h, the integrals will be equal wben 
d = 2d'; that is, the double error wiU be committed in the first 
system with the same probability as the simple error in the 
second, or, in the usuál mode of expression, the second system 
will be twice as precise as the first. W e shall presently see how 
tbe value of h can be found for any given observations. 

THB MBTHOD OF LBAST SQUARES, 

11. The preceding discussion leads directly to important prac-
tical results, W e have seen (Art, 9) that to find the most probable 
values oîx,y,z from the observed valnes of M=f{x,y, z, ) 
we are to render the probability P = J J J , ^ J ' . p j " a maxi-
mum, tbat is, by (14), 

P = A™ j r - i ' » e - A ' ' ( A A + A'A'+A"A"+....) • (15) 

must be a maximum; and this requires that the quantity 
JJ + A'J' + J"J" + should be a minimum. Thus, the prin-
ciple that the mosi probable values of ihe unknown quantities are those 
which make the sum of ihe squares qf ihe residual errors a minimum, is 
not limited to the case of direct observations, but is entirely 
general. 

The principle is readily extended to observations of unequal 
precision. For if the degree of precision of the observations 
M, M', M".... be respectively A, h', h"...,, and we compare 
these observed quantities witb the values V, V', V" , computed 
with the most probable values of x,y,z ,wbereby we obtain 
the residual errors M —V = J, M' —V' = J' , it is the same 
thing as if we had taken observations of equal precision (repre-
sented by 1) upon the quantities hM, h'M', h"M" , and had 
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oomparod them with tbo computod quaiuitios h V, h' V', h" V" , 
whoroby wo should liavo l'oniul tbo orrnrs hM — hV = hJ, 
h'M' — h' 1 ' ' = h'J' in whioh oaso wo slmuld havo to roduoe 
to a minimum tho quautity 

A'J- + h"J'- + /í"«J"- + . . . . 

that is, each errnr being miilf'jillcd by iis iiica.?urc of p7rcl.<<iú)), and 
lln)-cl>y irduccd to the samc dnjrcc of prcrisloti, ihc sum of the sqiiairs 
of ihe rcdnccd errors mit:^! bv a modmum. 

lu what preoodos is involved the wholo theory of the method 
of loast squaros. I proceed to dovelop its practical features. 

THE PROBABLE ERROR. 

12. From the preceding artiolos it follows that the probability 
that the error of an obser\-ation falls betweeu J and J + dJ is 
oxjirossod by 

— e-Aí.AA í / j 

1 ' 

and the probability tbat it falls between tbe limits 0 and a is 
exprossod by 

A = a 
AA(ZJ — I e —'''' 

1 - » / A = 0 

and this integral oxprosscs the number of errors tbat wc should 
exiiect to find betwoen the limits 0 and a whon the whole num-
ber of errors is put = 1 [oquation (H)]. If wo put t = AJ, the 
integral takes the form 

^t =ah 

'dt 
1 /^í =ah 

— 1 e-«< 
y - J t = o 

The whole number of crrurs, both positive and negative, whose 
numerical magnitude falls between tbe given limits is twice this 
integral, or 

2 f>l = ah 

- + j e-«-dt (16) 
yr. J 1 = 0 

The value of this integral (which may be computed by the 
methods of Vol. I. Art. 113) is given in Table IX. The number 
of errors between any two given limits will be found by taking 
the difference between the tabular numbers corresponding to 
these limits. Since the total number of errors is taken as unity 
in the table, the required number of errors in any particular case 
ís to be found by multiplying the tabular numbers by the actual 
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nuniber of observations, Thus, if there are 1000 observations 
we find that 

between t = 0 and t = 0.5 there are 520 errors. 
" í = 0.5 " t = 1,0 " " 322 " 
" í = 1,0 " t = 1.5 " " 123 " 
<' if = 1.5 « t = 2.0 " " 29 " 
" í = 2.0 " í = 00 " " 5 " 

13. The degrees of precision of different series of observations 
may be compared together either by comparing the values of A, 
or by comparing the errors which are committed with equal 
facility in the two systems. The errors to be corapared inust 
occupy in the two systems a like position in relation to tbe ex-
treme errors, and we may select for this purpose in each sj'stem 
the error whieh occupies the m.iddle place in ihe series qf errors arranged 
in the order of their magnitude, so thai the number of errors which are 
less tha.n this assumed error is the same as the numher of errors which 
exceecl it. Tbe error wbich satisfies this condition is that for 
which the value of tbe integral (16) is 0.5. Denoting the cor-
responding value of t by p, we find, by interpolation from Table 
I X 

P = 0.47694 
and we have 

If then we denote by r the error which, in any system of obser-
vations wbose degree of precision is A, corresponds to the value 
t = p, or put 

P = hr h = ^ (18) 

there wUI be a probability of J that the error of any s ngle obser-
vation in tbat system will be less tban r, and the same proba-
bil ty that it will be greater tban r; which is sometimes expressed 
by saying that iiis an even wager that the error will be less than r. 
Hence r is called the probable error. 

W e may, therefore, compare different series of observations 
by comparing their probable errors, their degrees of precision 
being, by (18), nversely proportional to these errors. 

14. In order to apply Table IX. in determining the number 
of errors in a given class of observations, we must know the 
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moasure of precision h, or the probablo orror r: thus, if we 
wish the numbor of orrors loss than a, wo entor the tablo with 

tbo arsrumont i = ah, or t = — 
r 

For groator couvenionoo, wo can employ Table IX.A, wbich 

givos the samo function with the argumout - . For oxample, if 

there aro 1000 obsorvatious wboso probable error is r = 2", 

and we wish to know the number of errors less than a = 1", we 

take from Tablo IX.A. with the argumont - = 0.5, tho number 
0.2i!4<.i7, wliioh multipliod by 1000 gives 264 as the required 
number, 

The foUowing example from the~ Fundamcnta Astronomiæ of 
BESSEL wiU sorve to show how far the preceding theory is sus-
tainod by experience. In 470 observations made by BRADLEY 

npon the right asconsion of Sirlus and Altair, EESSEL found the 
probable error of a single observation to be 

r = 0".2637 

Hence, for the number of errors less than 0".l the argument of 

Table IX. A wiU be - ^ = 0.3792; and for 0."2, 0".3, &c., the 

successive multiples of 0.3792. Thus, we find from the table 

for 0".l with arg. 0.3792 the mimber 0.20187 
li 

ii 

í . 

íí 

ti 

tt 

ÍC 

íí 

ii 

0 .2 
0 .3 
0 .4 
0 .5 
0 .6 
0 ,7 
0 ,8 
0 .9 
1 .0 

n 

11 

U 

11 

íl 

íí 

c 
11 

lí 

0.7584 
1.1376 
1.5168 
1.8960 
2.2752 
2.6544 
3.0336 
3.4128 
3.7920 

oo 

it 

ti 

íí 

11 

tt 

i 

íí 

tt 

(( 
(( 

0.39102 
0..55710 
0.69372 
0.79904 
0.87511 
0.92661 
0.95926 
0.97866 
0,98946 
1.00000 

Subtracting each number from the foUowing one, and multiply-
ing the remainder by 470, the number of observations, there were 
found 
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Between 

0".0 and 0".l 

0 .1 " 0 .2 

0 .2 " 0 .3 

0 ,8 " 0 ,4 

0 ,4 " 0 .5 

0 .5 " 0 .6 

0 .6 " 0 .7 

0 .7 " 0 .8 

0 .8 '•' 0 .9 

0 .9 " 1 ,0 

over 1 .0 

No. of errors 
by the theory. 

95 

89 

78 

64 

50 

36 

24 

15 

9 

5 

5 

No. of errors byl 
experienoe. 

94 

88 

78 

58 

51 

36 

26 

14 

10 

7 

8 

The agreeraent between the theory and experience, though 
not absolute, is remarkably close. The number of large errors 
by experience exceeds that given by the theory, and this has 
been found in other cases of a sim lar kind; which shows at least 
that the extension of the limits of error to ± oo has not intro-
duced any error. The d screpancy rather indicates a source of 
error of an abnormal character, and calls for some criterion by 
which such abnorraal observations may be excluded from our 
discuss ons and not permitted to vitiate our results. Such a 
criterion has been proposed by Prof. PEIRCB, and will be con-
sidered bereafter. 

THB MBAN OF THE BERORS, AND THB MEAN BRROR. 

15, The selection of tbe probable error as the term of com-
parison between different series of observations is arbitrary, 
although it seems to be naturally designated by its middle posi-
tion in tbe series of errors, There are two other errors which 
have been used for tbe same purpose, 

The first is the mean of the errors, these being all taken vrith 
the positive sign, In order to find its relation to the probable 
error, let us first cons der a finite series of errors 

J,J',A", 

w tb the respective probabilities 

2a 
m' 

2^ 
m' 

2ffl" 

m 
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so tliat in m observations there will be 2a erroi-s (numerioally) 
oqual to J, 'la' equal to J ' , &o., the probabihty of a positive cn-or 

J boing —. The mean of all theso errora, oaoh being repeated 

a uumber of times proportional to its probability, is 

- • ' ^ z i i f Z ± i í ! : : : ^ . i i ^ = 2 j . £ + ' . j ' . ^ + 2 j " . ^ + 
m m m m ' 

When the number of errors is infinite, the probability of an 
error J is to be underatood as the probability that it falls 
betweeit J and J + dJ, wbich is ^ J . dJ (Art. 8), and the above 
formula for the inean of the errors becomes the sum of an infi-
nite number of terms of the form 2 J ^ J . dJ. Hence, putting 

r, = the mean of the errors, 

we have 

or, by (18), 
=x ° ° ^ j e - « . A A ^ ^ ^ _ J _ (19) 

' = 7 7 ^ = l-l«29r , (20) 

r = 0.8453, } 
Another error, very commonly employed in expressing the 

precision of observations, is that which has received the appella-
tion of the mean error {der miiilere Fehler of the Germans), which 
is not to be confounded with the above mean of the errors. Its 
definition is, ihe error the square of which is the mean of ihe squares of 
aU ihe errors. Hence, putting 

we have 

or, by (18), 
r 

the mean error, 

I/TC 2A' 

= 7V-2-'•'''''' ] (22) 
r = 0.67456 ) 

Wb.en we pnt h = 1, we have s = i / J . The mean error s, 
therefore, the abseissa of the point of inflection of the curve of 
probability (Art. 9). In the figure, p, 479, OMis the mean error, 
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OP the probable error, OE the mean of the errors, and Mm, Pp, 
Ee, their respective probabilities. 

THB PROBABLB BRROR OP THB ARITHMETICAL MEAN. 

16. The error above denoted by r is the probable error of any 
one of the observed values of thé unknown quantity x. We are 
next to determine the relation between this and the probable 
error r^ of the arithmetical mean of these values. 

If J, J ' , J " . . , , are the errors of the observed yalues, the 
most probable value of x is that which renders the probability 

P = ^»»7r—Í'Be—''' '(AA + A'A' + A"A"+ •...) 

a maximum (Art. 11), and, consequently, the sum JJ + J'J' 
+ ....& miniraum. But this sum is rendered a minimum by 
tbe assuraption of the arithraetical mean x^ as tbe most probable 
value (Art. 5), and hence the quantity P expresses the probability 
of the arithraetical mean if J, J ' , J " . . . . are the errors of the 
observations wben compared with this mean. The probability 
of any other value of x, as x^, + ô, will be 

P ' = A'»;r-4me-''''f(A-s)= + (A'-í)''+....} 

^ n i , ^ — i ^ e - * ' ' f [AA]—2|;A]S+ma6| 

Since [ J ] = J + J ' + J " + , . . . = 0 (Art. 5), and '[^Já] = mee 
(Art. 15), this exj)ressio.n may be put under the form 

P ' = 7i,'»7j—ime—"'''''(""t-**) 

and at the same time we have 

P = A^Tr—Img—mhhee 

so that 
JPlP' — 1 . g — mJûiSS 

that is, the probability of the error zero in the arithmetical mean 
is to that of the error á as 1 : 6-""'"««. For a single observation, 
the probability of the error zero is to that of the error d as 
j .g-Mss, Hence the measure of precision (Art. 10) of the 
single observation being h, that of the arithmetical mean of m 
such observations is hi/m; from which followl the important 
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thoorem that thc prcdslon of ihe mcan of a mtwbcr of obscrradons 
ini.reascs as thc si/uarc rooi of thclr number.* 

If, thou, r is the prohablo orror of a siugle observatiou, and r^ 
tliat of the arithmetical luoan, we must bave 

r„ = - ~ (23) 

and from the constant relation between the mean and the proba-
ble error y22], 

'o = ~ : (24) 
y m 

DETERMINATION OF THE MEAN AND PROBABLE ERROES OF GIVEN 

OBSERVATIOSS. 

17. The principles now explained wiU enable us to determine 
the mean errors of any given sorios of directly observed quanti-
tios. Let n, n', n" be the observed values; x^ their arith-
motioal moau; r, r', v" the residuals found by subtracting 
Xo from each observed value: so that 

v = n — x^, v' =rí — x^, v" = n" — x^, &c. 

If o were certainly the true value of x, so that r, v', v" were 
the actual or (as we may say) the true crrors, and, consequently, 
identical witb J, J ' , J" , we sbould have, according to the 
above, nut = [ J J ] = [CT], and hence 

=V(^) 
and this must always give a close approximation to the value of e. 
But the relation mss = [ J J ] was deduced from a consideration 
of an infinite series of errors which would reduce the mean 
error of aroto an infinitesimal, according to the principles assumed, 
aud thus make v, v', v" identical with J, J ' , J " . . . A better 
approximation to tbe value of s, where the series is hmited, is to 
be obtained by consideringthe mean error of a:o itself, and conse-
quently, also, the meau errors of the residuals v, v', v" If 
then we suppose the true value of x to be x^ + d, we shall have 
the true errors 

A = v — d, A'=v'—S, A"= v" — ô, &c. 

* See, in connection, Arts. 21 and 25. 
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whence, observing that [v] = 0, 

[ J J ] = mee = ^vv] — 2 [u] 5 + mS' 

— [''̂ ] + ^̂ " 

Thns the approximate value mee = [yv'] requires the correction 
md^, the value of which depends upon the value we may ascribe 
to d. As, the best approximation, we may assume if to be the 
mean error SQ : so that, by (24), 

md' = meJ' = m — = ££ 
° m 

which gives 
mee = [rø] + ee 

whence 
[rø] 

ee 
m — 1 •=V(S) « 

and consequently, also, by (22), 

Thus from the actual residuals the mean and the probable error 
of a single observed valne are fonnd. Hence, by (23) and (24), 
the mean and probable errors of the arithmetical mean wiU be 
found by the formulæ 

••=V(^) '-W(^) (-' 
ExAMPLE.—^Let us take the following measures of the outer 

diameter of Saturn's ring observed by BESSEL at the Eonigsberg 
Observatory with the heliometer, in the years 1829-1831.* The 
measures, denoted by n, are all reduced to the mean distance of 
Saturn from the sun, and are here assumed to have the same 
degree of precision. 

* Ástron. Nach., Vol. XII. p. 169. 
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1 " 

3S".91 
1 39 .32 

•̂í .93 
1 S9 .31 
39 .17 

; 39 .04 
39 .57 
39 .46 

; 39 .30 
39 .03 
39 .35 
39 .25 
39 .14 
89 .47 
39 .29 
39 .32 
39 .40 
89 .33 
39 .28 
39 .62 

-

— 0".40 
+ 0 .01 
— 0 .38 

0 ,00 
— 0 ,14 
— 0 .27 
+ 0 ,26 
+ 0 .15 
— 0 .01 
— 0 .2S 
+ 0 .04 
— 0 .06 
— 0 .17 
+ 0 .16 
— 0 .02 
+ 0 .01 
+ 0 .09 
+ 0 .02 
— 0 .03 
+ 0 .31 

i'i' 

0.1600 
.0001 
.1444 
.0000 
.0196 
.0729 
.0676 
.0225 
.0001 
.0784 
.0016 
.0036 
.0289 
.0256 
.0004 
.0001 
.0081 
.0004 
.0009 
.0961 

n 

39".41 
39 .40 
39 .36 
39 .20 
39 .42 
39 .30 
39 .41 
39 .43 
39 .43 
39 .36 
39 .02 
39 .01 
38 .86 
39 .51 
39 .21 
39 .17 
39 .60 
39 .54 
39 .45 
39 .72 

V 

+ 0' .10 
+ 0 .09 
+ 0 .05 
— 0 .11 
+ 0 .11 
— 0 .01 
+ 0 .10 
+ 0 .12 
+ 0 .12 
+ 0 .05 
— 0 .29 
— 0 .30 
— 0 .45 
+ 0 .20 
— 0 .10 
— 0 .14 
+ 0 .29 
+ 0 .23 
+ 0 .14 
+ 0 .41 

vo 

0.0100 
.0081 
.0025 
.0121 
.0121 
.0001 
.0100 
.0144 
.0144 
.0025 
.0841 
.0900 
.2025 
.0400 
.0100 
.0196 
.0841 
.0529 
.0196 
.1681 

a;„ = 39 .308 [OT] = 1.5884 

Hence, since m = 40, we have, by (25) and (26), 

.=V( f ^ ) — 
r = 0".202 X 0.6745 =0".136 

and consequently, by (23) and (24), or (27), 

0".202 

V(40) 
= 0".032, 

0".136 
1/(40) 

= 0".022 

That is, the probable error of a single observation was 0".136, 
and that of the final result x^ = 39".308 was only 0".022. 

18. The preceding method of finding the probable error from 
the squares of the residuals is that which is most commonly 
employed; but when the number of observations is very great, 
it is desirable to abridge the labor, if possible, A sufficient 
approximation can be obtained by the use of the flrst powers of 
the residuals as foUows, 

The number of observations being very great, we shall pro-
bably have as many positive as negative residuals, If v', v", 



496 APPENDIX, 

v'". , . are the posit ve and n^^, v^, i'g . . . the negative residuals, 
and if the true value of x is oro + d, the true errors will be 
v' — d, v" — 0, v'" — d , and — v^-d^ — v^ — d^—v^ — d, 
If they are all iaken with the posiiive sign oníy, the errors are, there-
fore, 

v' — ô, v" — ô, v'" —d, and v^ + d, v^+ 8,v^ + S, 

the mean of which, upon the hypothesis of an equal number of 
positive and negative residuals, is the same as that of the series 

i', v", v'", 

Hence, denoting the sum of the numerical values of the residuals 
by [y'], and the mean of the actual errors by r/, as in Art. 15, we 
have 

m 
and hence, by (20), 

r = 0.8453 ^ (28) 
m ^ 

and consequently, also, by (22), 

e = 1.2533 ^ (29) 
m 

In the example of the preceding article we find the mean of the 
residuals taken with the positive sign to be 0".1555, which by 
(28) gives r = 0".1555 X 0.8453 = 0".131, which is perbaps a 
sufiicient approxiraation to the value found above. In this 
example, however, we have 22 positive residuals, 17 negative 
ones, and 1 zero: so that tbe hypothesis upon which the formula 
(28) was founded is not strictly applicable. In a larger number 
of observations we should expect a closer agreement with the 
bypotbesis, and raore accordant results. 

W e may, however, employ the first powers of the residuals 
more strictly according to the theory of probabilities. In a 
limited series eacb residual is to be regarded as liable to a pro-
bable error r', and their mean is to be regarded as the mean of 
tbe errors of the residuals themselves, rather than as the mean 
of the errors of the observations. Hence the formula 

r' = 0.8453 í ^ 
m 
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givos the probable error of a rosiilual. Tho rolation hotwoon 
r ' and r ( = the probablo error of an obsorvod quantity //) may he 
found as follows. Ivioh obsorvod n may bo snppcisod to ho tbe 
rosult of ohsorving tho moan (piantity .r„ inoroasod hy an ol)-
srr\cd orror v. Tho probabio error of n = x^ + r is, therefore 
(by a priuoiple hereafter to bo proved), 

whence 

or 

V('V + r'0 = V(:; + ^"). 

, í 7» 
r = r ' A / ^ 

\ m —1 

:0.S4:>:i M_ 
yím(m-\)] ^^^^ 

whioh agroos wdtb the formula giv^n Ijy C. A. F . PETERS.* A C -

cording to this formula. we find in tl)o above oxanqile r = 0".133. 

DETER.MIS.4TI0X OF THE .MEAN AXD PROBABLE ERRORS OF FUXCTIONS 

OF INDEPENDEXT OBSERVED QUANTITIES. 

19, Suppose, first, the most simple function of two independ-
ent ubsorvod quantities x and x^, naraely, their sum or difference 

JC=x ± .r, 

and lot the givi-n mean errors of x and x^ be e and £,, Althougb 
the number (jf observations by wbich x and x, have been fouud 
may not be given, we may assume it to have been any large 
number m, aud the sarne for each of the quantities; the degrees 
of precision of the two series being inversely proportioual to s 
and îj. The true errors of the assumed observations may be 
a.í3umed to be— 

for X, J,"J', A" 
for x„ J„ J/ , J," 

and the errors of X, consequently, 

J ± Ji, J' ± J / , A" ± J / ' , 

Denoting the mean error of X by F, we have, by the definition, 

mE' = (J ± J , / + (A' ± J / ) ' + (J" ± A/'f + 
= [ J J ] ± 2 [JJ,] + [ J , J , ] 

» Aetron. Nach., Vol. XLIV. p. 32. 
VoL. 11.—Z1 



498 APPBNDIX, 

In a great number of observations there must be as many posi-
tive as negative products of the form JJ.^, and such that we shall 
probably have [ J J J = 0 ; and since we also have me^ = [ J J ] , 
ms.^^ = [ J j J J , this equation gives 

E' = s' + s^' (31) 

If we have 
^ = X ± Xi ± x^ 

and the mean errors of x, x,, x^ are s, s^, e^, we have by the pre-
ceding equation the mean error of a; ± x, = y'^s^ + s^), and by 
a second application of the same equation, considering x ± a:, as 
a single quantity, the mean error of .XwiII be found by the 
formula 

Æ:̂  = ê  + e,̂  + e/ (31*) 

and the same principle may be thus extended to the algebraic 
sura of any nuraber of observed quantities, 

In consequence of the constant relation (22), if r, r,, r̂  . , . . 
are tbe probable errors of x, x,, a;̂  . . . . and P the probable error 
oí X=x ±Xiáz x^ , we shall have 

Æ' = r» + r,̂  + r/ + . . . . (32) 

ExAMPLE 1.—The zenith distance of a star observed in the 
meridian is 

C = 21° 17' 20".3 with the mean error e = 2",8 

and the deelination of the star is given 

S = 19° 30' 14".8 with the mean error ê  = 0".8 

Eequired the mean error E of the latitude of the place of obser-
vation, found by the formula (p = !l + d. W e have, by (31), 

- B = -,/[(2.3)» + (0.8)= ]̂ = 2".44 
Hence 

(p = 40° 47' 35".l with the mean error E = 2".44 

ExAMPLE 2.—The latitude of a place has been found with the 
meau error s = 0".25, and the mer dian zenith distance of stars 
observed at that place witb a certain instrument has been found 
to be subject to the mean error s^ = 0".62: what is the mean 
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error JE" of the declinations of tho stars doducod by the formula 
á = c — ; ? Wo bave 

E = I [(0.25)> + (O.f.2)-] = 0".67 

20, Let us next consider tho function 

A ' = (IX 

aud suppose x has been obsorvod with the moan error e, and a is 
a givon constant. Every observation of x witb the error ± J 
gives ^r with the error ± </J: so tbat the mean orror of ^i'must be 

E=ae 

In goneral, by combinmg this with the preceding principle, if 
we have 

JL = ax + a,a:, + a^j + . . . . 

and if the mean errors of x, x^, x„ . . . . are s, ,, S.,, ...., and E 
that oî . r , wo shall have 

E-" = íl'e* + rt.'e,' + í?2-ej' + . . . . = [fl'-e'] (33) 

and the same foi'm may be used for probable orrors. 

ExAMPLE.—As an example iUustrating the application of both 
the preceding principles, suppose that in order to find the rate 
of a chronometer we find at the tirae t its correction + 12" 13'.2 
váú\ the mean error 0'.3, and at the time t' the correction 
— 12"'2V.^i with the same mean error 0'.3, and the interval i' — t 
= 10 days. The rate in the whole interval is 

12- 21'.4 — 12r 13'.2 = + 8'.2 

with the mean error, according to Art. 19, 

y [ ( 0 . 3 / + (0.3)^^ = 0'.42 

The mean daily rate is then 

8'2 
+ — = + 0',82 
^ 10 ^ 

with the mean error, according to Art. 20, 

0*42 
- - - = 0'.042 

10 
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21. If X, Xj, Xj . . . . are the several observed values of the 
same quantity, their arithmetical mean being 

^0^= — (a-' + OCi + x^ + ...) 
m 

and if r is the probable error of each observation, what is the 
probable error r^ of x„ ? By Art. 19, the probable error of the 
sum X + Xj + Xj + , , , . is 

y (j.2 _|. y2 _|- ẑ _|_ _ ) _ |/(mr^) = r y'm 

and the probable error of ^ t h of the sum is, by Art. 20, 

1 , r 
r„ = — X ry'm = —— 

m '^ y'm 

as has been otherwise proved in Art. 16. 

22. Let us now take the general ease in which JT is any func-
tion. whatever of the observed quantities x, x^, x^,. ... expi'essed 
hy 

JL ^= f (x, Xi, x^, . . . . ) 

Let the variables be expressed in the form 

a, (ij, «2 . . . being arbitrarily assumed very nearly equal to 
X, x,, x^ . . . respectively, and such that x', x / , x/ may 
be 80 small tbat their squares will be insensible. The given 
mean errors e, e,, ê  . . . may then be regarded as the mean 
errors of x', x/, x / The function X developed by TAYLOE'S 

theorem is 

-tr j / N I d.Æ , , d ^ , , d ^ , 

X = /(«, a„ «,....) + __x' + ^ x / + — . < + . . . , 

and the mean error of X will be that of the quantity 

dZ ,.d.jr , dJT , , 
--—x' + -—x' -] X. + 
dx dx^ ' ^ dx.^ ' ^ 

or, by (33), 

--(^)"-+(í)-.-+{^)'..- + - (-) 
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or, if r, r,. r̂  . . . are the probablo orrors of .r, .r,, x„ ..., and P 
that of A', 

-=(.^)'^+(.íír)V+(;íf)v.' + .... ( - . 
Tbis formnla is, imlood, but approximalivo, siiu-'e we bavo 
iioglected the torms involving the higher jiowors iu tho develop-
ment of A'; but the moau orrors of thoso small terms wiU bo in-
sonsible if wo suppose that the orrors £. e,, ê  • • • '̂ i'O so small 
that the diftorei os botwoon the observed viducs x, ./;,, x^ ... 
and the true vahios aro of the same order as the quantities 
r', y / , x./ ..., which will always be tbe case wbere proper care 
has been taken to reduce tbe accidental errors of observation to 
their smallost amouuL If the given functiou is implicit, as 

0 = / ( A ' , .r, x^,x^...) 

we shonld stiU by differentiation obtain the differential coeffi-
ciouts. and then find the mean error of Jf by (34). 

ExA.MPLE.—The local apparent time at a place in latitude 
c = 38= 5«' 5:3" was found (Vol. I. Art. 145) from the sun's 
zonith di.-^tanco ^ = 73° 12' 25", when tbe declination was 
d = — 2-2° .50' 27", to be < = 2'' 47-" 39^.4. What is the probable 
error of this result, supposing the probable errors of the data 
t o b e — 

Probable error of ^ = r = 0".5 
« " d = r, = 0 .6 
" " C = r , = 3 .5 ' 2 ' 

The formula 

0 = — 008 f + sin 'y sin S + cos f cos S cos t 

expresses í as an implicit ftmction of f, d, and ^, W e find 
(Vol, L Art, 35) 

dl_ 1 
d^ cos f> tan A 

dt _ 1 
ãS 009 o tan q 

dt__ 1 
d^ 008 <p sin A 
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where A is the azimuth and q the parallactic angle, We find 
from the data ^ = + 40° l', q = 32° 51' , whence 

- = — 1.532, — = 1.680, —= + 2.001 
dp dS dZ 

and the probable error of t is, by (34*) 

R = ^"[(0.5 X 1-532)̂  + (0.6 X 1-680)̂  + (3.5 X 2.00l)^] ^ 7".12 

or, in seconds of time, 

R = 0'.47 

23. To complete this branch of our subject, it is to be observed 
that the preceding deraônstrations apply only to the case where 
the quantities entering into combination are independent; but 
when they are merely different functions of the same observed 
quant ties, the above formulæ are incomplete. Let us suppose 
that we have JTand X', different functions of the same observed 
quantities x, Xj, x^, ...., or 

X = / (x,x„x^, ) 
j r ' = / ' ( a ; , a;„x„ ) 

tbe mean errors of x, Xj, x^ ... being e, e,, ê  . . . . ; and that we 
wish to find the mean error E of tbe function, 

Y=F(X,X') 

If any single observation of x, x,, x̂  is affected by an error 
d, d^, d^, .... respectively, the corresponding errors in X and X' 
will be— 

Error In X, A = aS + a^S^ + «A + 
" X',A'=a'S + a^'8^ + a^S,+ .... 

in wbich a, a^, a^ .... are the differential coefficients of X, and 
a', Kj', a/ .... the differential coefficients of X', with reference 
to x, Xj, x^, The corresponding error in Y wiU be 

J" =AA+ A'A' 

in which A and A' are the differential coefficients of Y with re-
ference to X and X'. The square of the meau error E will be 
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tho moan of tho squaros of all tbo valuos of J " whiob result 
from all the possiblo valuos of (í, <),, (/. . . . 

í^ubstiluting tho valuos of J ancl J ' , wo havo 

J" = (Aa + A'a') S + ^.1,;, + J ' a / ) í, + . . . . 

whioli we may briotly oxi^ross as follows: 

-J"=»'' + 'H + K+----
If the number of valuos of J " is denotod by m, the mean of aU 
the values of J "-' will be 

y"^=o^^ + ^^^ + fm + ... 
m m m ' ' ni ' 

+ 2a,.^E£M-^.2.,B]+.. 
771 

lu consequence of the vaiious eigns of ôd^, ôn„, kc., the mean 
value of each of these (inantitios wiU be zero; and the mean 
values of oK o,-. c. aro ê , e,-, >!cc. Hence the formula becomes 
simply 

E- = (Aa + A'a' f e' + (Aa^ + A'a/y e,' + . . . . 

or 
E' = A- (aV + a^%' + ....)+ A" (a'V + a^h^ + . . . . ) 1 .35. 

+ 2 .Ll ' (aa'e' + a.a^e^' + , . . .̂  ) ^ ^ 

To iUustrate by a very simple example, let 

X=2x X'=3x 

and suppose e = 0 .1; then, to find the mean error E of 

T=X+X' 

we cannot take ^ 7 = T/[(0.2)2 + (0.3)^ as we should if X a n d X' 
were independent, but by the above formula we must take 

E = y\(0.2y + (O.S/ + 2 X 2 X 3 X (0.1)^ = 0.5 

as in fact we find directly, in tbis simple case, by first substi-
tuting in Y the values of X and X' 
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WEIGHT OF OBSERVATIONS, 

24. Observations of the same kind are said to have the same 
or different weight according as they have the same or diftereut 
mean (or probable) errors. W e assume a priori tbat observations 
wiU have the same weight when they are made under precisely 
tbe same circuinstances, including under this designation every 
thing that can affect the observations; but whether this coudi-
tiou has in any case been realized can only be learned, a pos-
teriori, .from the mean errors revealed by the observations them-
selves. 

In order to obtain a numerical expression of tbe weight, let 
us suppose all our observations to be compared with a standard 
fietitious observation the raean error of wbicb is any assumed 
quantity e,. Let the actual observations be subject to the mean 
error e. Let it require a nuraber p of standard observations to 
be corabined in order to reduce the mean error of their arith-
metical mean to that of an actual observation, that is, to e; or, 
according to (24), let 

' = ^ or ^e^ = e,̂  (36) 

then one of our actual observations is as good, that is, has tbe 
eame weight, as p standard observations, and the number p may 
be used to denote that weigbt. If, in like manner, other obser-
vations of the sarae kind are subject to the mean error e', and 
we have 

p'e"" = e^ 

one of these observations has the weight of p' standard observa-
tions, and the weights of the observations of the two actual 
series may be compared by means of the numbers p and p'. 
Tbe weight of the fictitious observation is here the unit .flf 
weight; but this unit is altogether arbitrary, since it is only the 
relaiive weights of actual determinations that are to be con-
sidered. 

I t foUows immediately, since we have 

' = ps' = p'e'* 

or 
P 
p' 7 (37) 
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that (he irei]dds of two obstrmtions are reclprocally proporllonal to the 
Siiaairs of tiiclr mcan crrors. 

Tbo moasuro of prooision (Art. 10) and thc weight aro to be 
distiugnished from each other: tho foriner varios invorsoly as 
the moan orror, the lattor invorsoly as tho square of this orror. 

25. To flnd thc mosi probable mean of a numbcr of ob.^crratlons of 
difi'creni urlghts.—Lot n'. n", n'" be the givon obsorved 
valnos; /) ' , />", p'" their rosjioctive weigbts. lîy tho pre-
ceding definitiou of the weight, the quantity ti' may be considered 
as tbo moau of p' obsorvations of the weight unity, n" as the 
mean of p" obsorvatious of the weigbt uuity, &c, We may, 
thereforo, conceive the given sorios of obsorvod quantities re-
solvod into a sorios of standard observations, all of equal weight, 
aud theu apply to the latter series the principle of the arithme-
tical mean. The whole number of equivalent standard obsorva-
tions will be p' + p" + p'" + ; the sum of the p' standard 
obsor\ations wiU be p'n'; the sum of the p" standard observa-
tions wUI be p" n", &c.: hence the desired mean x, will be 

_ p'rí + p"n" + p"'rí" + .... 

" ~ i''+y' + / "+. . . ^ ^ 
or, more briefly, 

™ _ [i'«] (38*) 

This formula shows that although the above demonstration 
implios that /;', p", p'" . . . . are wbole numbers, yet anynumbers, 
whole or fractional, may be used which are in the same propor-
t ion; for / being any arbitrary factor, whole or fractional, we 
may write for (38) the foUowing: 

_ fp'n' + fp"rí' + fp"'rí" + .... 

* ° ~ / / + / / ' + / / " + • • . . 

and th.&nfp',fp",fp"' may be regarded as the weights. 
The value of x^ is bere an arithmetical mean only in the con-

ventional sense iraplied in the sub.stitution of fictitious observa-
tions with uniform weights for the given observations. I t may 
be called the general mean or the probahle mean. 

The weight of this general mean, referred to the nnit of p', 
p", ....\&=p' + p" + p'" + .... 
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The mean error of the general mean wiU be expressed by 

0 ^(p' + p" + p'"+...) ^ip-] 

where e, is the mean error corresponding to the unit of weight. 
If e, is not given, we shall have to find it from the observations 

themselves. Taking the difference between x^ and each of the 
given quantities, we have the residuals 

v' =rí — x„, v" = rí' — Xa, v'" = rí" —x„,... 

If e', e", s '" , , . are respectively the mean errors of n',n"\ n'",.... 
we shall bave, as in Art. 17, 

whence 
p'e'^ = £," = p'v'v' + p'eo' 

and, in like manner, 
e^^ = p"v"v" + P"B^' 

0 
,iii„iii„iii £ 2 _ piiiyiiiyni 1 ^fll^ 2 

&C. 

The number of given values n', n" ... being = m, the sum of" 
these equations is 

wî i' = [pw] + ÍT] ^O' 

which combined with the above value of ê  gives 

•.=V(S) <•''•' 
and consequently, also, 

J / \pvv^ . \ 
" \\(jn-\)\p-]} ^ 

ExAMPLB.—Let us suppose that the observations of Saturn's 
ring in Art. 17 had been given as in the following table, where 
the mean of the first seven observations of Art. 17 is given 
= 39".179 with the weight = 7, the mean of the next following 
four = 39".285 with the weight = 4, &c. 
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p 

Ipl^ 

7 
4 
5 
4 
1 
8 
3 
4 
3 
6 

40 

n 

39".179 
.285 
.294 

.407 

.410 
,320 
.377 
.310 
.127 
.448 

Xj = 39 .308 

V 

— 0".129 
— 0 .023 
— 0 .014 
+ 0 .099 
+ 0 .102 
+ 0 .012 
+ 0 .069 
+ 0 .002 
— 0 .181 
+ 0 .140 

vv 

.016641 
529 
196 

9801 
10404 

144 
4761 

4 
32761 
19600 

pvv 

.1165 
21 
10 

392 
104 

4 
143 

0 
983 

1176 
\pw] = .3998 

Here the general mean Xo found by (38) of course agrees with 
that found before. For the mean error corresponding to the 
unit of weight (which in this case is that of an observation as 
givou in ArL 17), we have, by (39), since m = 10, 

,=V(T)--211 

and for the mean error of x ,̂ by (40), 

.3998 
" \ \ 9 X 4 0 / 

which agree snfficiently well with the former values. A perfect 
agreement in the mean errors is not to be expected, since our 
formulæ are based upon the supposition that we have taken a 
sufficient number of observations to exhibit the several errors 
to which they are subject in the proportion of their respective 
probabilities; and tbis would require a very large number of 
observations. 

26. In the application of the preceding formulæ, it must be 
observed that when the weights of different determinations of 
the same quantity are inferred from their mean errors, we must 
be certain that there are no constant errors (that is, conetant 
during the observations which compose a single determination) 
before we can combine them together accordi ng to tbese weights, 
unless the constant errors are known to affect all the determina-
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tions equally and with the same s gn, For example, if ten 
measures of'the zenith distance of a star are made at one cul-
mination, giving a mean error of 0".4, and five itíeasures at 
another, giv ng a mean error of 0".8, the weights according to 
these errors would be as 4 to 1. But if it is known that the 
errors peculiar to a culmination (and affecting equally all the indi-
vidual'observations at that culmination) exceed 1", it would be 
better to regard the observations as of the same weigbt, since 
tbere would be a greater probability of eliminating such peculiar 
errors by taking the simple arithmetical mean. If, however, the 
observer, from considerations independent pf the observations, 
can estimate the weight of determinations made under different 
circumstances, then it is evident that these weights will serve 
for the combination, if the mean accidental errors of the several 
deterrainations are sensibly eqnal. 

But if from the different circumstances we have deduced 
weights for the several determinations, and at the same time the 
mean errors (deduced from a discussion of the discrepancies of 
the observations composing each determination) are widely dif-
fereut, it is not easy to assign any general rule for reducing the 
weights which shall not be subject to some exceptions. In such 
cases, practical observers and computers have resorted to em-
pirical formulæ, involving some arbitrary considerations, more or 
less plausible. 

In many cases we can proceed satisfactorily as foUows. Let 

e = the mean accidental error of a single observation, 
Tj = the mean error pecuhar to a determination which rests 

upon m such observations, 
e = the total niean error of such a determination, 

then, e and ;y being supposed to be independent, we shall have 

ê  = _ + ,= (41) 
771 

If then •// ean be obtained frora independent considerations, this 
formula wiU give the value of e, and, consequently, the weight 
for each deterraination, aud tbe corabination may then be made 
by (38). For an example of a discussion according to these 
principles, see Vol. I. Art. 236. 
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IXDIRECT OBSERV.ITIOXS. 

27, I prooood now to tho application of tbe method of loast 
s.piaros to the solutiou of tbo gonoral i^roblem of dotormining 
the mi)st probable valuos of any nnmber of unknown quautitios 
of which tho obsorved quautitios aro functions. Tho obsorva-
tions aro then said to bo indireit. The partioular ciiso of direct 
obsorvations, alroady oonsidorod, is, howovor, included in tbis 
goiioral problom; being tho caso iu which thc numbor of un-
known quantitios is roduood to one, and this one is directly 
obsorvod. 

The general problem embracos two classes of probloms, wbich 
must be distiuguishod from oaoh other. în the first class, tbe 
unknown quantitios are independcnt, in the sense that they are 
subject to no ooiulitions except those establisbed by the observa-
tions: so thaL before taking the observaiions, any assumed system 
of valuos of tbose quantitios has tho same probability as any 
other systom. In tho second class, there are assigned, apriori, 
certain conditionswhieh the unknown quantities must satisfy at the 
same time that they satisfy (as nearly as possible) the conditions 
established by the observations. Thus, for example, if the tbree 
angles of a plane triangle are to be determined from observations 
of auy kind, we havo, apriorl, tbe coudition that the sum of 
these anglos must be equal to two right anglos, and all the 
systems of valuos which do not satisfy tliis condition are excluded 
at the outset. This class will be briefly considered hereafter, 
under the head of '• conditioned observations ;" but our attention 
wiU be chiefly directed to the first class, which includes most of 
the problems occurring in astronomical inquiries. 

Agaiu, the equations which the observations are to satisfy may 
be linear or 'non-linear; the observed quantities may be explicii or 
iiiifÁhdt functions of the required quantities; but, for simplicity, 
we consider fîrst the case of linear equations, to which all the 
others may alwaj-s be reduced. 

EQUATIONS OF CONDITION FROM LINBAE FUNCTIONS. 

28. Let us suppose the equations between the known and 
unknown quantities are of the foi'm 

ax + by + cz + + Z = F 
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in which a,b,c, l are known quantities given by theory for 
each observation, V'is the quantity observed, and x,y,z.... are 
the quantities to be determined. For each observation, we have 
a similar equation, and tbus a system such as the following: 

dx +b'y +c!z + + V =V' \ 
a"x + b"y + d'z + + l" =V" I 
a"'x + b"'y + c'"z + + ^" = 7 ' " "̂ 2̂) 

&c. &c. j 

the number of these equations heing greater than that of the 
unknown quantities (Art. 6). If our observations were perfect, 
all these equations would be satisfied by the same system of 
values o{x,y,z...; but, beingimperfect,let M', M", M'" 
denote the values obtained by observation for V', V", V'" 
When these valnes are subst tuted in the second merabers of (42), 
there wiU, in general, be no system of values of x, y, z which 
satisfies all the equations at the same time, and we can only 
detérmine that system which is rendered most probable by the 
observations. Let us therefore denote by N', N", N'" the 
values which the first members of our equations obtain wben 
any hypothetical or assumed system of values of x, T/, z . . . . is 
substituted in them; and put 

v'=N'— M', v" = N" — M", v'" = N'" — M'", .... 

then v', v", v'" are the errors of the observations according 
to this hypothesis. Finally, let us put 

rí=l'—M', rí'=l"—M", rí"=l'" — M'",.... 

then onr equations may be thus expressed: 

a'x + Vy + dz +,,^,., + 71' = v' 
a"x + b"y +c"z + . . . , + 71" = v" 
a'"x + b'"y + d"z + . . . . + rí" = v'" 

&c.. &c. 

(43) 

If our observations were perfect, we should be able to find 
values oíx,y,z.... wbich would reduce all the quantities v', v", 
v'" to zero. I t is usual, therefore, to write zero in the second 
members: 

a'x +h'y + dz + +71' = 0 
a"x + b"y + c"z +.... + rí' = 0 
a"'x + b"'y + d"z + . . . . + n'" = 0 \ (^^*) 

&e. &c. 
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and thoso are ealled the cquaiions of coriillllon. sinoo tboy oxpross 
tbo oonditions whieh the unknown ([lumiltios aro roquired to 
satisfy as noarly as possiblo. AVo may, howovor, with more rigor 
rogard (43) as our equations of oomlitiou, and treat them as 
oxiuvssing tho gonoral oondition that tho unkuown quantities 
shall bo such as to givo the most probable system of errors 

Xow, aooordiug to Art. 11, the most probable systom of values 
of ./•. y. ~ . . . . (aud, oonsoquently, tbe most probable system of 
errors) is that which makos tbe sum of the squares of the errors 
a minimtmi: tbus, we are to reduce to a minimnm the function 

[rr] = i-'r' + r"r" + v"'v'" + .... 

Regarding [''•] as a function of tbe variables x,y,z... (which we 
must remember are here independent), the condition of minimum 
ro.juiros that its derivatives taken with reference to eachvariable 
shall each be zero ; that is, 

^['•'-•] ^ o d\vv-\ ^ Q d\vv] ^ Q ^̂  
dx ' áy ' dz 

or 
dx/ dr" dv'" 

f *^^ I 11 •' I III ^^ i A 

V \- V (- vf" • + = 0 
dx dx dx 

^dv' dv" dv'" _ 

.dv' , „ dv/' , .„dv'" , . 
t/ \- V 1- V • + = 0 

dz dz dz 
&c. 

f which we might have obtained directly from (10) by substituting 
c ' J = /:J = /.'•, and dividing by the constant k). But, by differ-
entiating the equations (43) with reference to x, y, z.... succes-
sively, we have 

— —d 
dz 

^ = d',.... 
dz 

&c. 

80 that (44) are the same as the following: 

dv' _ , 

dx 
d'd' ^, 

dx ' 
&c. 

^ = y , 
dy 

^ ' = / ) " , 
dy 

&c. 
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dv' 
b'v' 
dv' 
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+ d'v" + a'"v'" + .. 
J^ ô"î," + b"'v'" + .. 
_|_ c"v" + d"v'" + .. 

&c. 

.. = 0 

.. = 0 

.. = 0 (44*) 

The number of these equations is the same as that of the un-
known quantities; and if we now substitute in them the values 
of v', v", v'"... from (43), we have the final or, as we shall call 
them, tbe normal equations, which determine the most probable 
values 6Î X, y, z.... 

NOEMAL EQUATIONS. 

29. W e see by (44*) that to form the first norraal equation we 
multiply each of the equations of condition (43) or (43*) by the 
coefficient of x in that equat on, atíd then form the sum of all 
the equations thus multiplied. The resulting equation is caUed 
the norrhal equation in x.* The sum of the equations of condi-
tion severally multiplied by the coefficients of y is the normal 
eqnation in y, &c. To abbreviate the expression of these sums, 
we pnt 

[aa] = a'a' + a"a" + <i'"a'" + .... 
[íz6] = a'b' + a"h" + a"'h'" + .... 
\ac] = a'd + a"d' + a'"d" + .... 

&c. &c. 

then the normal equations are 

[a(2] x + \ah] y + \ac] z + + \an] = 0 
\ab-] X + [66] y + \bc] z+ .... + [671] = 0 
^ac} X + \bc] y + \cc] z + .... + \cn] = 0 ' ^^°' 

&c. &c. 

30. The formation of such normal equations is one of the 
most laborious parts of the computations involved in the method 
oí least squares, especially when the number of equations is very 
great. I t is important to have a means of verification, or 
"control," to insure their accuracy, before proceeding with the 
next important process of elimination. A very simple and 
eftective control is the following. 

* Tlie "normal equation in a;" is so called beoause it is tlie equation wliioh deter-
mines the most probable value of x when the otlxer variables are reduced to zero, or 
wlien X îs the only unknown quautity; and so of the others. 



MKTHOD OF LE.AST SQUAIÎES. 5 1 3 

Form the sums ot' tho ooolHoiouts of tbe unknown quantitic-
iu the sovoral oiiuations, namoly, 

a' +b' + (•' + . . . . = s' 
«" + l>" + c" + . . . . = s" 
a'" + b'" + c'" + . . . . = S'" \ (•!'' 

&o. 

If wo multiply each of tboso hy its n. and add the prodncts, we 
have 

\an] + \bn] + \cn] + . . . . = \sn] (47) 

.V so. multiplying oaoh of (46) by its a, and adding, tben each 
bv its b, and addinsr, aud so on, wo bave 

\aa] -^ \,d,] + [,)(•] + . . . . = [«.s] 
\ab] + [66] +\bc] +.... = \bs] 
\ac] + \bc] + \cc] + . . . . = \cs] 

&c. 
(4^ 

The equations (47) must be satisfied when the absolutc terms of 
tho normal equations are correct, and (48) when the coetficients 
of t!io unknown quantitios are correct. 

31. The normal equations wiU give determinate values of 
X, y, z provided they are reall v independeut. If, howovor. 
any two of them beconio identical by tbe multiplication of oitl a' 
of them by a constant, the number of independent oquations is, 
in fact, one lcss than that of the unknown quantities, aud tbo 
jiroblem becomes indeterminate. This difficulty does not arise 
from the method by which the normal equations are formed, but 
from the nature of the given equations of condition. In any 
such case, additional observations are necessarj', for whicb tbe 
coofficionts have such varied values as to lead to indepcndent 
equationg. Evon when two equations cannot be reducod pre-
cisely to a sinfrle one by the introduction of a constant factor, if 
they can be made ver}- neariy identical, the problem is still prac-
ti-ally indeterrninate. The indetermination will becorae cvident 
in the actual elimination in practice when any one of tbe un-
kiiown quantities comes out with so small a coefficient that small 
errons in the observations would greatly change this coefficient. 
(See Art. 52.) 

VoL. 11.-3,3 
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32. By whatever method the eliminatioh is performed, we 
shall necessarily arrive at the same final values of the unknown 
quantities; but, when tbe number of equations is considerable, 
the metbod of substitution, with GAUSS'S convenient notation, is 
universally foUowed; but, for the present, leaving the reader to 
choose his method, I proceed to explain the principles by which 
the mean errors of the values oi x,y, z . . . . are determined. 

MEAN EEEOES AND WEIOHTS OF THB UNKNOWN QUANTITIES. 

33. Since we have put n' = l' —M', n" = l"—M", &c. (Art. 28), 
the mean error of n ' , n " , n ' " . . . . is also that of M', M",M'",....; 
that is, the mean error of n', n", n'" is to be regarded as the 
mean error of an observation. If the elimination of the normal 
equations were fully carried out, each unknown quantity would 
be finally expressed as a linear function of n', n", n'", — , aud the 
mean errors of tbe latter being given, tbose of the unknown 
quantities would follow by the principle of Art. 20. It results, 
however, fi-ora the symmetry of the normal equations that several 
forms may be obtained for computing directly the weights of the 
unknown quantities, and from these weights the mean errors 
can afterwards be found. 

34. Firsi method of computing the weights of the unknown quantities. 
—For siraplicity, let us first suppose all the observations to be 
of equal weight; 'or the mean errors of n', n",n"' to be equal. 
Let 

e = the mean eiror of an observation, 
e = the mean error of the value of x fouud from tlie normal 

X 

equations, 
p^= the weight of the value of x, the weiglit of an observa-

tion being unity; 
then (Art. 24) 

e' 

ÍTow, let us suppose the elimination to be performed by the ' 
method of indeterminate coefficients. Let the first equation of 
(45) be raultiplied by Q, the second by Q', tbe third by Q", &c., 
and the products added. Then let the factors Q, Q', Q" 
(whose number is the same as that of the unknown quantities) 
be supposed to be determined so tbat in this final equation the 
coefficients of all the unknown quantities sball be zero, except 
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tbat of .r, whioh shaU bo unity. Tho conditions Ibr determining 
thoso factoi's aro, thorotoro, 

[<7<7] Q + \ab] Q' + \ac] Q"+ ....= \ 
\ab] Q f ['-'.] Q' + \bc] (/• + . . . . = 0 
\ac] Q + \bc] Q- + [00] ( ? " + . . . . = 0 ( (-̂ )̂ 

&o. &c. 

and the final equation in x is 

X + \an] Q + \bn] Q + \cn] Q"+ .... = Q (r,0) 

Comparing (4.'>) aud (4í>), we soo that tbe coefficients of 
'('• Q'- •/' 'íi"̂ ' the samo as those of .r.y.z but tbat the 
ahsoluto terms are —1 in i4'.i| instoad of [<//<] in (4,jj, and zero 
ÍMstoad of [/'/']. [••//], &c. Ilonco. if the elimination of (45) were 
carried out. and the values of ./•, y, z.... determined iu terms of 
/(',?«",//'" tbe valuos of Q. Q'. Q".... would be found from 
t :.-;o by merely putting [a??] = — 1. aud [6>?] = [r/,], ko. = 0, 
This is also ovidout from î .lO). I shall now show that Q is the 
rcoiprocal of the required weight of ./•. 

The fiual value of x being a liuear fuuction of //'. n",n"' , 
tbe equation (ôu) may bo supi jsod to be developed in the form 

X a'rí + a"n" + a"'ií"' + . . . . = 0 (51) 

inwhicha ' , a " . a " ' are fnncti^^ins of a'.l/, o". h", ,&c.; 
and those functions are immediatoly found by dovoloping [crii], 
[''>//], «!cc.. in (-50); for WL- then have, by comparing the eoefficients 
of(.50)andf.51i, 

^' =a' Q + b' q+d q' + .... \ 
^" = a"Q + v'q + d'q' + .... 
a"'= a'"Q + V"q + c'"q' + .... ( ^ ' 

&c. &c. j 

Multiplying each of these equations by its a, and adding all the 
products, we obtain, by (40), 

„f f I ^fi ff I ^iii fff \ 1 

Cla + a a + a a + . . . . = : ! 

Multiplying each of (o2) by its b, and adding, we obtain, by (49), 

Va' + V'a" + 6"'o"' + . . . . = 0 

and 80 on for as many equations as there are unknown quantities. 
These relations are briefly expressed thus: 

\aa] = 1 \ha] = 0 \ca] = 0, &c. (53) 
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If, then, each of (52) is multiplied by its a, and the results are 
added, we find, by (53), 

\aa] = a''+a"'+a""+....= Q (54) 

But, by Art . 20, when e is the mean error of each of the quan-
tities n', n", n'", , the mean error of x found by (51) is 

e ^ = í l / [ c i ] 
Hence 

£ ^ 1 1 
Í ' . = 3 = f - l = 7 (55) 

e^ [aa] Q 
as was to be proved. 

Hence we have a first method of finding the weights. In the 
.firsi normal equaiion wriie -^ 1 for the absohite terni [«?(], and in ihe 
other equaiions zero for each of ihe absolute terms \bn], [cn], &c.; tlie 
value of X ihen found from ihese equaiions will be the reeiprocal of the 
vjeight of ihe valae of x found by íhe general elimination. 

Tbis rule is to be applied to each of the unknown quantities 
in succession, so that tbe reciprocal of the weight of y is that 
value of y which will be found by putting [bn] = — 1, and 
[a?i] = [cTi] = &c. = 0; the reciprocal of the weight of z is that 
value of z which will be found by putting [cn] = — 1, and 
[a?i] = [6??], &c. = 0; &c. 

It is evident, moreover, that although we have dedueed the 
rule by the use of indeterminate multipliers, it must hold good 
whatever metbod of elimination is adopted. 

35. Secorul method of computing ihe •weighis of the unknown quan-
tities.—^lf we write the nonnal equations thus, 

\aa] X + \ah] y + \ac] z + + \an] = A 
\ab] X + [66] y + \bc]z +....+ \hn] = B 
\ac] X + \bc] y + \cc]z+....+ \cn] = 0 

&e. &c. 

and perform tbe elimination, we shall obtain x,y,z....h\ terms 
of [aa], [ab], &c., and of A, B, C, &c.; and if in tíie general values 
thus foiind we make J. = .5 = C, &c. = 0, these values wiU be 
reduced to those which would be found by carrying out the 
elimination with zero in tbe second members of the normal 
equations. If we suppose the eUraination performed by means 
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of the indotorminato factc^rs Q, Q'. Q" already omphyod, the 
tínal equation for determining x wiU be 

•r - [""]« + Lbn]q + \cn]q'+ .... =QA +qB+q'C+.... 

where the coeffioiont of -l is tho reciprocal of the required weight 
of .r, But, whatovor method of elimination is omployod, tho 
ooeffioiont of + iu this goneral value of x will nocossarily bo the 
samo; aud honoo wo derivo tho socond method of detcrmining 
the woighis : Wriic A. £, C. &o., instcad of 0, in the second membcrs 
íf ih.c normal cquatlons. aml carry out thc eliiiilnaílon (by any inethod 
at ploasuro); //ai Ihe final calucs of x. y, z are tlum terms In the 
general cal'u-f which are Indcpcndcnt of A. B, C ; the wclght of x 
is thc rcclproc/d of t/ic ccn.rnclc)it o.f A iji the gaicrcd value of x; the 
irtighi of y 'is the rcciprocal of ihe focfrlclcnt of B in ihe gcntral value 
'fy: kc. 

3t). Third mct/fod of compuiing the rceights of tlie unknown quantitlcs. 
—Let us suppose the olinnnation to be performed by the method 
of substitutiou, still rotaining A. B, C— in the second members, 
as in ' the preooding articlo. The final oquation in x, according 
to this method, is found by substituting in tho first normal oqua-
tion the values of,y, z given by the other oquations. Thoso 
snbstitutions do not affect the coefficient oí A, which remains 
unity, so long as no reduction is made after the substitutions, 
Thus, the final equation in x is of the form 

Rx= T + A + terms in .B, C , . . . . 

in which T is the sum of all the absolute quantities resulting 
ÍTom tbe substitution, and is a function of [cia], [ab], — [an]. 
Hence the value of x is 

T A 
X = — + ^ + terms in .B, C, 

Ji xL 
T 

in which = is the final value of x which results when A = B 
R 

= C = 0, and .^ is nccessarilv the quantity denoted by Q in 
R 

the preceding articles. Therefore JR is the weight of x, and 
hence we have a third method of finding the weigbte: Let thefirst 
n.rjrrncxl eqfiaUov (the equation in x, Art. 29) be ia./,:en as the fi.nal 
fjjuo.tlon for dclcrmining x, and .'-•i'bstituje in ii the vcdues of y, z— In 
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ierms of x asfoundfrom ihe remaining equãtions; then, before freeinq 
ihe equation of fractions or introducing any reduction factor, the coeffi-
cient of X in this equation is ihe weighi of ihe value of x. In the same 
manner, substitute in ihe second normal equation (the equation in y) 
the values of x, z — in ierms of y as found frorn the other equa,-
tions; the coefiîcient of y is then the weight of ihe value of y; and so 
jyroceedfor each unknown quantiiy. 

According to this method we determine each unknown quau-
tity, íogether with its weight, by a separate eliraination carried 
through all the equations, in each case changing the order of 
elimination, until every unknown quantity has been made to 
come out the last, The algorithm of this process, with GAUSS'S 

convenient system of notation, will be given hereafter (Art, 45). 

37. Tofind ihe mean error of observation.—The weight of x being 
found, we have the ratio of ê  to e, but we have yet to determine 
e, which, in general, cannot be assigned a priori, but must be 
deduced a posíeriori, that is, from the observatione, and conse-
quently from the equations of condition. The residuals?;',?;",?;"'...., 
in (43), are those wbich result when the most probable values of 
x,y, z (namely, those resulting from the normal equations) 
are substituted in the first members. The actual or írwe errors 
(Art. 17) of observation are, however, those valuea of the first 
members of (48) whieh result when the true values oî x,y,z, 
are substituted. 

Let X + AX, 1/ + Aî/, 2 + A2, be the true values which, sub-
stituted in the equations of condition, give the true residuals 
u', u", u'" ; so that we have 

a' (x + Ax),+ 6' (y + AT/) + c' (z + Az) + rí =rí \ 
a" (x + Ax) + 6" (y + Ay) + d'(z + AZ) + .... rí' = rí' I 
a'"(x + Ax) + V"(y.+ Ay) + d"(z + AZ) +.... rí"= «'"( (^^) 

&C. &G. ) 

K these equations be multiplied by a', a", a'" , respectively, 
tbe sum of the products is 

\aa] X + \ah] y +\ac]z + . . , , + [«71] 
+ \aa] Ax + \ab] Ay + \ac] Az + J = \au] 

which by the first of (45) is reduced to 

\aa] Ax + \ab] Ay + \ac] AZ +....— \au] = 0 
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In tho samo inannor. multiplying oaoh of tho e(piations (ôtl) hy 
its /.. c, ,\:o., suooo.-^sivoly, wo form tho otlior o(|uations of thi! 
foIlowing group: 

\aa] A.r + [Í76] AI/ + \ac] A : +....— \au] = 0 
\ab] A.v + [66] A,/ + [6c] A- + . . . . — [6M] = 0 , 
[,/-•] A.r + [Ifc] Ay + \cc] A:+....- \ci,] = 0 ' ^°') 

\-c. &c. 

Tboso being of tlio same form as tho norinal equations (45), we 
s^c that tho value of A.Í- rcsultiug from tbem will be of the same 
form as that of x rosulting froiu (45), witb only the substitution 
of — « for /(.• benco. by [ôl), 

Xr — a'll' — a"u" — a" 'u" ' — . . . . = 0 (58) 

Again, mulriplying (50) by r', r", r ' " . . . , , respectively, the sum 
of tbe products is, by (44*), reduced to 

[«"»] = [í«] 

and in the same manner, from (43), 

\vn] = \vv] 
whence 

\vu] = \w] = \vn] (59) 

The sum of the products obtained by multiplyiiig the equations 
(43) respoetivoly by u', /<", u'" is 

\au] x + \hu] y + \cu] z + + \nu] = \vu] = \vv] 

and from (56), in the sarae raanner, 

\au] X + \bu] y + \cu] z + . . . . + \nu] ") ^ , 
+ \au] Ax + \hu] Ay + \cu] AZ + j ^ •' 

which two equations give 

\uu] = \vv] + \au] Ax + \bu] Ay + \cu] AZ + (60) 

Xow, [uu] being the sum of the squares of the true errors of the 
observations, its value is, as in Art. 17, = TTiee, if we put 

m = the number of observations, 
= the number of equations of oondition. 
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Consequently, if we could assume Ax,Ay.... tovanish, we should 
have 

\vv\ 
ee = -—i 

JTl 

and this wUI usually give a close approximation to the value of 
e, but it will give the true value only in the exceedingly impro-
bable case iii which the values oî x,y, z are absolutely true, 
whereas they are to be regarded only as the most probable ones 
furnished by the observations. This forraula, then, raust always 
give too small a value of e, since it ascribes too high a degree of 
precision to the observations. W e must, therefore, add to [rr] 
the quantities [au]AX, [bu]Ay, &c., as in (60); but, ae we cannot 
assign any other than approximate values of these quantities, let 
us assume for thera their mean values as found by the theory of 
mean errors, The mean value of [au] AX will be found by raul-
tiplying together 

\au] = a'rí + a"u" + a'"u'" + ... 
and AX = a'rí + a"u" + a'"u'" + ... 

observing that the errors u', u", u'" , when we consider only 
their mean values, are to be regarded as having the double sign 
dz; so that the mean value of the product will contain only the 
terms a' a' u' u', a" a" u" u", &c. Hence we take 

\au] Ax = a'a'u'rí + a"a"u"u" + a'"a"'u"'u'" + .... 

and substituting in this the mean value of u'u', u"u", &c., which 
in each case is ee, we have 

\au] AX = (a'a' + a"a" + a'"a'" + . . . , ) ee 

or, finally, by (53), 
\au] AX = ee 

In the sarae maniier, it must follow that ee is the mean value of 
each of the terms [bu] AT/, [CU] AZ, &C, If then we put 

/i = the number of unknown quantities, 

the equation (60) hecomes 

mee = \vv] + /J.ee 
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whence 

=VJ , («•) »» — /» \ 771 — /1 

It is to be observod that wbon thoro is but oue unkuown 
quantity, or ;< = 1, this general forin is roduced to the sinqde 
one (2,/, alroady givon for diroot obsorvations, 

Fiiudly, p^, p^, p._ donoting the weights oí x,y,z.... fou)id 
by anv of the preceding methods, we have 

^.= -'7- e = - - - , &C. (62) 
l'P. ' \'PJ ^ ' 

38. ExAMPLE.—^Let us suppose the following very simple equa^ 
tions of condition to be given :* 

X— y ^ 2z~- 3 = 0 
S.r + 2y — 52 — 5 = 0 
4.1- + y + 4-; — 21 = 0 

— X + 3y + 32 — 14 = 0 

If but the first three of these equations had been given, the 
problem would have been determinate. W e should find from 

18 28 13 , , , -, , 
tnem x = -^,y = ~,z = --, and we sbould have to acceptthese 
values as final ones, witb no means of judging of their accuracy, 
or of that of the observations upon wbich the oquations are sup-
posod to depend. A fourth obscrvation having given us our 
fourth equation, we find that the values of x, y, z derived frora 
the first three will not satisí'\- it, for when they are substituted in 

g 
it the first member becomes — -, instead of zero. If we deter-
mine the values of x, y, and z from any three of tbe equations, 
and substitute these values in the fourth, we shall find a residual. 
Each one of the four systems of values of the unknown quantities 
thus found sati.sfies three equations exactly, aiid the fourth 
approximately; but, all the observations being subject to error, 
the most probable system of values can seldom satisfy any one 
of the equations exactly. Hence the necessity of a principle of 
computation which shall lead as directly as possible to sucb a 
probable .system of values; and this principle is furnished by the 
method of least squares. 

* GAUSS, Theorla Moius, Art. 184. 
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W e are, then, by Art. 29,- to deduce from these four equations 
three normal equations, and the values of x, y, 2; which exactly 
satisfy these are to be regarded as the most probable values. 

To forra the first normal equation, we multiply the first of the 
above equations of conditiou by 1 ( = a'), the second by 'Å.(=a"), 
the third by 4 ( = « ' " ) , and the fourth by — 1 (=a") , and add the 
products. W e thus find [aa] = 27, [ab] = 6, [ac] = 0, and 
[an] = — 88. 

To form the second normal equation, we multiply the first 
equation of condition by — 1 ( = h'), the second by 2 ( = b"), the 
third by 1 ( = b'"), and the fourth by 3 ( = 6"), and add the pro-
ducts. W e thus find [ab] = 6, [bb] = 15, [hc] = 1, [bn] = — 70. 

The third normal equation is formed by multiplying the first 
equation of condition by 2 ( = c'), the second by — 5 ( = c"), the 
third by 4 ( = c'"), and the fourtb by 3 ( = c"), and adding the 
products. We find [ac] = 0, [bc] = 1, [cc] = 54, [cn] = — 107. 

Hence our normal equations are 

27x + 6 7 / _ 88 = 0 
6x + lby + 2 — 70 = 0 

7/ + 542 — 107 = 0 

the solution of which gives, as the most probable values, 

49154 „ . _ 
X = = 2.470 

19899 2617 g n=i 7/ = = 3.551 
^ 737 

12707 
2 = ^^^ = 1.916 

6633 

In order to determine the mean, and hence als.o the probable, 
errors of tbese values, let us first determine their weights accord-
ing to the preceding methods. 

Firsi. By the method of Art. 34, we first write — 1, 0, 0 , for 
the absolute terms of the tbree normal equations, and we have 
the three equations for determining the weight of x, 

27x '+ 6 / — 1 = 0 
6x' + Iby' + z' = 0 

y' + 542' = 0 

in which accents are employed to distinguish the particular 
values from the above general ones. These give 
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19899 

which is the reciprocal of the reqnirod weight, Hence, 

p=- - = 24.1)97 

lu a similar manner, to find the weight of y, we take the 
equations 

27 . r '+ 6y" = 0 
6x" + 15y" + 2" — 1 = 0 

y" +542" = 0 
aud find 

whence 
lái 

P,= '^l = u.m 

And to find the weight of z, the equations 

which give 

and 

27.r"'+ Gf" = 0 
Ox'" + Iby'" + 2 " ' = 0 

y"' -1- báz'" — 1 = 0 

/ " = . ^ 1 

P.--

2211 

2211 
41 

53.927 

SeconcUy. By the method of Art. 35, we write our normal 
equations thus: 

27x + 6y — SS=A 
6x + 15y + z— 70 = B 

y + 5iz — 107 = G 

and, carrying out the elimination as if A, B, and C were known 
quantities, we find 

19899x = 49154+ (809)J —324 5 + 6 C 
7.377/ = 2617 — 12 J + (54) B— G 

66332 = 12707 + 2A— Q B + (123) G 
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and, therefore, 
49154 .̂ , ,̂ . . 19899 

X = with the weis;ht p = 
19899 ^ "̂̂  809 
2617 „ „ ,, 737 

^ 737 ^""^ 54 
12707 „ „ .. 6633 
6633 ^" 123 

the same as by the first method, 
Thirdly. By the method of Art. 36, to find x and its weight 

we eliminate y and z from the equation in x (the first normal 
equation) by meane of the other equations, employing suecessive 
substitutions. The last normal equation gives 

1 , 107 
. ' ^ - 5 4 ^ + ^ 

which being substituted in the second gives 

. , 809 3673 . 
6x H V = 0 

^ 54 ^ 54 
The value oîy frona this, namely, 

324 , 3673 
y = X + 
^ 809 ^ 809 

being substituted in the first norraal equation, and no reduction 
being made, g ves 

19899 49154 _ 
809 ^ 809 ~" 

where the coefficient of x is the weight, and the value of x is the 
same as before found. 

To find y and its weight, we make the second the final equa-
tion. From the first and third we find 

6 , 88 
^ = - ^ 7 ^ + 27 

1 , 107 
' = - 5 l ^ + -54 

which substituted in the second give 

737 _ 2617 _ 
54 ^ IT ~ 

where the coefficient oîy is its w^eighL 
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Finally, to fiud c with its weight, wo mako tho third aorinal 
equatiou tho final one, Froin the fii^st two wo find 

y = 
9 ^ 454 

12;]" "*" 123 
whioh svbstituted in the third givos 

GtmT) ^ 12707 
T23 ' 23 

= 0 

wliere tlie oootfioiout of r is its weight, and its value îs the same 
a< was before found. 

By a little attontion, it wiU be poroeived that tbe three metbods 
iuvolve essentially the samo numerical operations, 

We are noxt to find tlie mean errors of x, y, and z; for which 
purposo we must first find the mean error of an observation, 
assiiming here, f(.>r the sake of iUustration, that the absolute terras 
of the givon equatious of condition are the observed quantities, 
and that they are subjoct to tlio same mean error. Substituting 
iu these equations the above found values of x, y, and z, we 
obtain the residuals as foUo^vs; 

No. 

1 
9 

3 
4 

V 

— 0.249 

— 0.068 

+ 0.095 

— 0.069 

vv 

0.0620 

.0046 

.0090 

.0048 

7? l : 4, /x = 3, \vv] 
\vv] 

0.0804 

: 0.0804 
7 7 1 — / í 

Hence, by (61), 
£ = T/0 .0804 = 0.284 

which is the mean error of an observation, so far as this error 
can be inferred from so smaU a number of observations. (_See 
the next article.) Consequently, the mean errors of x, y, and z 
are as follows: 

£ = - i - = 0.057 

£ = - 4 - = 0.077 
' VP, 

€ = - ^ = 0.039 
' VP, 
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Multiplying these errors by the constant 0.6745, we shall have 
(Art. 15) the probable errors as follows: 

Probable error of an observation = 0.192 
" " X = 0.038 

" " 2/ = 0.052 

" " 2 = 0 . 0 2 6 

39. I t has already been remarked in the foregoing pages, and 
the remark is especially important in the present connection, 
that the method of least squares supposes in general a great 
number of observations to have beeu taken, or a number sufi -
ciently great to determine approximately the errors to which the 
observations are liable. Theoretically, the greater the number 
of observations the more nearly wiU the series of residuals ex-
press the series of actual errors, and, consequently, the more 
correct vrill be the value of e inferred frora these residuals. In 
practice, therefore, no dependence sbould be placed upou the 
mean or probable errors deduced from so small a number of 
obeervations a s w e have employed, for the sake of brevity and 
clearness, in the preced ng example. íevertheless, the method 
is, even in this case, the best adapted for determining the most 
probable values of the unknown quantities deducible from the 
given observations, and also their relative degree pf precision. 
Thus, in this example, the degrees of precision (denoted by h, 
Art. 10) of X, y, and z, being inversely proportional to the mean 
errors, or directly proportional to the square roots of the weights, 
are nearly as the numbers 5, 3.7, and 7.3, so that from the four 
given observations z is about twice as accurately found as y, 
while the precision of x falls between that of y and z. But we 
can place but little dependence upon the result which assigns 
0.284 as the mean error of observation, and 0.057, 0.077, 0.039 
as the mean errors of x, y, and z, because this result is derived 
from too small a number of observations. 

EQUATIONS OF CONDITION FROM NON-LINEAR PUNCTIONS. 

40. Let the relation between the observed quantities V', V", 
V'" and the unknown quantities X, Y, Z be, for the ob-
servations severally, 

/ ' (V', X,Y.Z, .) = 0 , \ 
f" (V", X,Y,Z, ) = 0 / 
f" (V'", X,Y, Z, ) = 0 / (6>̂ ) 

&c. 1 
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Lot tho valuos of V', V", V'" , found by obsorvation, be 
.y. M". M'".... Thoso valuos being substituted, wc sball 
iiavo tho oquations 

f' (M', A'. Y, Z. ....) = 0 
f" ..!/", A, Y.Z, ....) = 0 
/ " ' (M'", X, y,Z,....)=Q \ (64) 

&o. 

ÍTom which the values of X. Y. Z aro to bo found. But, as 
wo caunot oftoct the dii-ect solution of theso equations according 
to the method of least s^juaros so long as thoy are not linear, we 
resort to tho foUo^ving imlirect procoss, by which linear equations 
of condition are fomied. Let approximate values oíX, Y, Z be 
found, oithor by somo iudopondent method or from a sufficiont 
number of tho oquations (64) treated by any suitable process, and 
doiioto theso approximate valuos by Xi^, Y^, Z^ Let the most 
probable values be 

X=X^ + x, Y=Y, + y, Z=Z^ + z, 

then X, y, z.... are the corrections roquired to reduce our ap-
proximate values to the most probable values; in other wordsj 
X. y. z are the most probable corrections of the approximate 
values, and the method of least squares is now to be applied in 
fiuding these corrections. 

Substitute the approximate values X^, Yg, Zg. . .in (63), and 
find, by resolving the equations, tbe corresponding values of 
V', V" wbich denote by V„', V^" These wiU be func-

tions which may be tbus generally expressed: 

V:=F'(X„Y„Z„....) 
V:'=F"(X„Y„Z,....) 

&c. 

Xow, the values of V', V" which result when the most pro-
bable values X^ + x, Y^+ y, Za+ z are substituted, and which 
are yet unknown, being denoted by N', N" , . . . we have 

N' =F' (Xo + x, Y, + y,Z, + z,....) 
N"=F"(X, + x, Y, + y,Z, + z,....) 

&c. 

and by TAYLOE'S Theorem, when we neglect the higher powers 
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oíx,y,z.... which are supposed to be very small quantit es, we 
have 

^„ ^^, , dV^ . dV: , dV^ , 
N = F„ -\ — X + — - y H ?- 2 + 

° dX, ^ áF„ ^ dZ, ^ 
N" =Vl' +^-^ X + ^-If-y + "^^z + .... 

dX„ d 1(1 dZ^ 
&c. &c. 

dV' dV" dV' dV" 
where -r—-/ — ~ , &c., -—?-. ——, &c. are simply the values of the 

dXo dXo ' dYo dYo , 
derivatives of V', V" . . . . found by differentiating (63) with 
reference to each of the variables, and afterwards substituting 
Xo, Fo, &c. for Jr, F, . . . . &c. 

If now we denote the derivatives of V', V" . . . . with reference 
to Xhj a', a" . . . .; their derivatives with reference to F b y b', 
h" . . . . &c.: 80 that 

N' =Vl + a'x +Vy + dz + .... 
N" = F„" + a!'x + V'y + d'z + .... 

&c. &c. 

and then also put 

v' = N'—M', v" = N" — M", &c. 
. 7î' = F„' —il í ' , ?i" = Fo" —Jf", &c. 

our equations become 

a'x + Vy + dz + . . . + 7i' = v' _ 
a"x + V'y + c"z + ... + rí' =v" 
a'"x + b"'y + c'"z + , . . + n'" = v'" 

&c. &c. 

in which a', b'... a", b" ... n', n"... are all known quantities; 
and v', v" are the residual errors of observation. These 
equations of condition are precisely like those already treated, 
arid, being solved by the same method, give the most probable 
values of x, y, z ...., and hence, also, the most probable values 
of j r , F, Z.... 

This process rests upon the assumption that the approximate 
values Xg, Yg, Z^ ... are already so nearly correct that the squares 
oî X, y, z ... may be neglected. But should the values found 
for x,y,z,... sbow that this assumption was not admissible, the 
coraputation is to be repeated, starting with the lastfound vahies 
X^ + X, Ya + y, Zf, + z ... ae the approximate values; and then 
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tho oorrootions which thoso last ro^piiro wiU gonorally bo so small 
that thoir highor {)owors may ho noglootod withont seiisiblo orror. 
llowovor, should this stiil m)t bo tho oaso, snocossivo approxima-
ti.ms. oommonoing always -with tho last fouud valuos, will at 
lonuth load to values which ri.íquire onlv correc-tions suitahly 
s uall, 

Kvon whou tho given function is alroady hnoar, it is mostly 
oxpedient .> follow the gonoral niethod jnst givon : naniely, to 
sahsritute apj)roximato valuos and form oquations of ooudition 
to dotermine thoir O()rrocti()us. This reducos x, y, z ... to small 
quautitios, groatly simplifies the computations, aud dimiuishes 
the chance of orr()r. 

TBEAT.MEXT OF EQUATIOXS OF COXDITION WHEN THE OBSERVATIONS 

HAVE DIFFERENT WEIGHTS. 

41. The process above explained assumes that all the observa-
tions are subjoct to the same inean error, and hence aro all of 
úiv samo weigbt. The more genoral case, in which the obser-
vations are of different weigbts, is easily reduced to this simple 
ca-»o. For, let 

a'x + Vy + dz + .... + rí = v' 

be an equation of condition of the weight ;>'; that is, one formed 
for an observation of the weight p'. The mean error of an ob-
servation of the weight unity being e^, the inean error of the 

actual observation, and, therefore, also of ??', is e' = —-• Ilenco 
' VP 

the mean error of n'i p' is, by Art. 20, equal to e' | p', that is, 
equal to e,. If, therefore, we muUipIy the equation by yp', so 
that we have 

a ' i / y .X + b'^'^.y + d^~^'.z + ... + rí^J = v'yp'' 

'n becomes an equation in whicb the mean error of the absolute 
torm is the mean error of an observation of the weight unity. 
Ilence we have only to multiply each equation of condition by 
tbe square root of its weight in order to reduce them all to the 
same unit of weight; after which the norraal equations will be 
found as in otber cases. 

The mean error of observation, found by (61) from the equa-
tions of condition thus transformed, wiU be tbat of an observa-

VoL. II.—.34 
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tion of the weight unity, and the weights of the unknown quan-
tities will come out with reference to the same unit. 

ELIMINATION OF THE UNKNOWN QUANTITIES EROM THE NORMAL 
EQUATIONS BY THE METHOD OF SUBSTITUTION, ACCORDINt} TO 
GAUSS. 

42. By means of a peculiar notation proposed by GAUSS, the 
elimination by substitution is carried on so as to preserve. 
throughout the symraetry which exists in the normal equations. 
In order to explain this method, it wiU be expedient to suppose 
a limited number of unknown quantities. I shall take but/oMr, 
but shall give the process in so general a form that it may readily 
be extended to any number. 

The unknown quantities will be denoted by 

X, y, z, w, 

and their coefficients in the equations of condition by 

a, b, c, d, 

respectively, with sub-numerals denoting the number of the 
equation or observation upon which it depends, and by 

7i„ n^, «3, &c. 

the absolute terms of the Ist, 2d, 3d, &c. equations respectively: 
so that the m equations of condition (here supposed to be 
reduced to the same weight by Art. 41) wiU be 

«1^ + \y + V +d^w +n^ =0 
«3^ + b,y + c^z +d^w +n^=0 
'•2^ + bjj + c,z + (̂ 3» + 7Í3 = 0 { (65) a 

«»^ + bj/ + C^Z + djj, + 77„ = 0 

and the four normal equations formed from these are 

\aa] X + \ah] y + \ac] z + \ad] w + \an] = 0 
\ab] X + [66] y + \bc]z + \bd] w + \bn] = 0 
\ac]x + \bc] y -I- [cc] 2 + \cd] W-+ \cn] = 0 
\ad] X + \bd] y + \cd] z + \dd] w + \dn] = 0 

(66) 
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The value of z from tho first eqnation is 

\aa] \aa]~ \aa]^" \aa] 

If this is substituted in the othor three equations, wo shaU pre-
sorvo the symmetiy of the rosult by the foUowing notation : 

m [«6] 
[<?«] 

[a6]=[66.1] 

C^^-g]t-3=[^o.i] 

Ibd] 

lcc]. 

[crf]. 

\aa] 

\ac] 
\aa] 
\ac] 
\aa] 

\ad] = \bd.\] 

\ac]= [cc.l] 

[aíri = [cá.l] 

\dd]-í^^\ad] = \dd.\] 

\bn]-^\an] = \hn.\] 
\aa] 

lcn]-^\an] = \cn.l] 
laa] 

\d,i] \ad] 
\aa] 

\an] = \dn. 1] 

The three equations thus become 

[Ô6.1]y + [ 6 c . l ] 2 + [6á.l]ro + [6?i.l] = 0 
\bc.\]y +[cc .1]2 + [c<i.l]7í7 + [Cft.l] = 0 
\bd.\]y +\cd.\]z + \dd.\]w + \dn.\] = 0 

(67) 

The presence of the numeral 1 is all that distinguishes tbese 
from original normal equations in y, z, and iv. The elimination 
of y wiU, therefore, he effected in the same manner as that of x. 
Thus, from the first, we have 

[6c. 1] 
V = — — z 

[66.1] 
í^^^ M, _ I ^ i l 
[66.1] [66.1] 

the substitution of wh ch in the other two equations leads to the 
foUowing notation: 

[cc.l] [6C.1X 
[66.1] 

[6c.l] = [cc.2] 

\cd.\] — ^'^^ • ^̂  \bd.\] = \cd.2] 

\dd.\] 

[66.1] 
[bd. 1] 
[66.1] 

\bd.\] = [dd.2] 

[cn. 1] — I ^ £ J Í 1 \bn. 1] = [c?i. 2] 
^ -• [66.1] "- -" 

\dn.\]-^í^^\bn.\] = \dn.2] 
•• •' [ 6 6 . 1 ] L J L J 

file:///cd.2
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and the resulting equations are 

\cc. 2] 2 + \cd .2] w + [c7i. 2] = 0 
lcd.2]z +\dd.2]w + \dn. 2] = 0 

(68) 

From the first of these we have 

\cd.2] \cn. 21 
Z = i: i W i 

[CC.2] [CC.2] 

which, substituted in the second, leads to the following notation: 

\dd.2] — M:_? l \cd. 2] = \dd.^ \dn.2] _ í í i i ? ] \cn.2] = \dn. 3] 
\cc . 2] \cc . 2] 

and the resulting equation is 

\dd . 3] 7« + [6?7i. 3] = 0 (69) 
whence 

\dn. 3] 
w \dd. 3] 

Ilaving thus found lo, we substitute its value in the first of (68), 
aud deduce z. Then the values of z and w being substituted iu 
the first of (67), we deduce y ; aiid finally, substituting the values 
y, z, and w in the first of (66), we deduce x. These latter substi-
tutions are made in the numerical computation, but it is not 
uecessary to write out here the formulæ which result from the 
literal substitutions, as it would not facilitate the computation. 

I t may be observed that all the auxiliaries \bh. 1], [bc. 1], [cc. 2], 
&c., may be expressed by the general formula 

\Pr. /̂ ] - £ ^ 4 t"?- • ^'^ = ^-f • (/̂  + 1)3 
[ a a . /J.] 

a, ^, y denoting any three letters, and p any numeral. 
For tbe convenience of reference, tbe final equations employed 

iii the actual computation are brought together as foUows, the 
coefficient of that unknown quantity which is found from each 
after the substitution of the values of the others being reduced 
to unity: 

file:///cd.2
file:///dd.2
file:///dn.2
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x + E'̂ y + 
[«a] ^ ^ \aa] ~ + 

\ad] , 
[««] ^ 

, [6c.l] , [ M . l l 
^ ^ [66.1] ^ [ 6 6 . 1 ] '"^^[66 

[««] 
\aa] 

\bn . 1] 

1] 
"•1 

0 
(70) 

['•</• 2] , [C71. .J „ 

'+i>^:2î«' + [ ?:2Í = o 

^[d<í .3] " 

As the number of unknown quantities increases, the number of 
auxUiarios to be found increases very rapidly. K we include the 
coefficionts and absolute torms of the normal equations, tbe 
whole number of auxiliaries is shown in the following scheme :* 

Xo. of unknown quantities 1 2 
^ í 1 

Xo. of aaxiHaries 1 2 i 7 
1 1 

3 

16 

4 

30 

5 

50 

6 

77 

7 

112 

8 

156 

43. For tbe purpose of verification, it is expedient to repeat 
tho elimination in inverBO order, commencing with the last 
normal equation and ending with the first, which wiU briug out x. 
It wdll not be necessary to write out the formulæ for this inverse 
elimination, since when the form for computation has been once 
prepared, it snffices to place in it the coefficients of the normal 
equations in inverso order, and then to proceed with the nnmeri-
cal operations precisely as in the first elimination. The unknown 
quantities coming out in the íirst elimination in the order w, z, 
y. x, they will in the second come out in the order x, y, z, w. 

This inversion has also the advantage of giving the weights of 
all the unknown quantities 'with the greatest facility, as wiU 
hereafter be shown, 

44. A very complete final verification, or " control," is obtained 
as foUows. Substitute the values of x, y, z, w in the equations of 
condition, and thus find the residuals Vy, v^, v^. 
values which the first members assume. Form the sum 

\vv] = v,v, + v^v, + v,v^ + . . . . + VJ)^ 

* The number of auxiliaries will be, in general, 

2.3 

?;„., or the 

where / denotes the number of unknown quantities. 
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whieh is also required in finding the mean error of observation 
by (61). Also form the foUowing new auxiliaries: 

[7177] = n^n^ + n^n, + n^n^ + + TÎ TI, 

r -1 Í^^Y r 1-1 
[?i?i] — -t—— = \nn. 1] 

\aa] 

\nn.\]—^^ = \nn.2] 
•- -• [66.1] *- -• 

m m 
2 

[n?í. 2] - í £ ^ = [7171.3] 
•* [cc.2] •- •' 

\nn.3]-^^^=\nn.^] 
"• -• [<i<i!.3] "- •' 

then, if the whole eompntation, both of the normal equations 
themselves and of the subsequent elimination, is correct, we, 
must have 

\vv] = \nn . 4] (71) 

To demonstrate this, we observe fii'st that we have already, by (59), 

\vv] = [T;??] 

If now we go back to the eqnations of condition, and multiply 
each by its n, the sum of the products is 

\an] X + \hn] y + \cn] z + \dn] w + \nn] = \vn] = \vv] 

If this equation be annexed as a fifth normal equation to the 
group (66), and the successive substitutions are made in it as in 
the others, beginning with x, it evidently becomes, successively, 

\bn.\]y + [c7i.l]2 + \dn.\]w + [7171.I] = \vv] 
\cn.2] z + \dn.2]w + \nn.2] = \vv] 

\dn .K]w + \nn. 3] = \vv] 
[7171.4] = \vv] 

which last is the sarae as (71). 

DETERMINATION OF THE WBIGHTS OF THE UNKNOWN QUANTITIES 

WHEN THE ELIMINATION HAS BBBN EFFECTBD BY THB METHOD OF 

SUBSTITUTION. 

45. By the general method explained in Art. 36, the ehmina-
tion would have to be performed as many times as there are 
unknown quantities. I t is desirable to have more direct methods. 
When there are but four unknown quantities, we can find their 
weights from the auxiharies occurring in two succeesive ehmina-
tions in inveree order. lu the first elimination, according to the 
order a, b, c, d, we find iv by substitution in the last normal 
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oquation, and, the oootHoiont of w boing theu [</</. 8], it foUows,. 
by Art, 36, that the woight of thc vahio of //• is 

p, = \dd.S] 

In tho invorso eliiniuatiou, iii the ordor d, c, b, a, the coefficieut 
ot X in tho final oquation, which would be denoted by [<ia, 3], 
wiU be the woight of ./•, or 

p,= \aa.S] 

Xow. if a tbird elimiuation wero carried out in the order x, y, w, z, 
or í/, /'. </, 0 (the third normal equatiou now taking the last place), 
we should have tbe same auxiliarios as in the first eUmination, 
so far as tlioso denotod by the uumerals 1 and 2 ; aud the equa-
tions (68) -vvould still be tbe same, but in the foUowing order: 

\dd.2] w + \cd.2] z + \dn.2] = 0 
\cd. 2] w + [cc . 2] ~ + [c?i. 2] = 0 

The value of v: given hy the first of these is 

w = - ^''l^ - _ t^'^^-^] 
\dd.2]'' \dd.2] 

which, substituted in the second, gives for the coefficient of z, 

[CC.3] = [CC.2] _ E ^ \cd.2] = \dd.íi] X g ^ 
[<ict.2] \dd.2] 

Therefore we have 
\dd. 3] 

i?^=[cc.2] 
\dd. 2] 

In the fourth supposed elimination, in the order d, c, a, b, the 
auxiliaries denoted by 1 and 2 would be the same as in our 
actually performed second elimination; but in the final equation 
in y we should have for the coefficient of y the quantity 

[66.-8] = [66.2] - M ^ [a6.2] = [ . . .3] X [ ^ 
\aa. 2] \aa. 2] 

and, therefore, 

rl.í o-, [«« • 3] 
' \aa. 2] 

Thus, when the elimination has been once inverted, we have 
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fouud the weights of two of the unknown quantities directly, 
and the weights of the other two in terms of the auxiliaries pre-
viously tised, and in a forra adapted for logarithmic computatioii. 

46. In order to give the above method greater generality, so 
that the reader may be ehabled to extend it to a greater nuraber 
of unknown quantities, we remark that the product of the form 

P=\aa] [66.1] [cc.2] \dd.S] 

has the same value whatever order may be followed in the elimi-
nation. This is the same as saying that it is a symnietrical func-
tion of a, b, c, d. .. which is, consequently, not affected in value 
by the permutatiou of these letters.* Suppose, then, four orders 
of elimination, in which each unknown quantity in turn becomes 
the last, while the order of the remaining three quantities 
reraains the same; and, to distiuguish the auxiliaries which occur 
in each elimination, let the 1 etter which occurs in the last auxiliary 
be annexed to eaeh of the otbers; the above constant product 
may thus be expressed in the foUowing four forms : 

P=\aa]^\bh.\]^\cc.2]^\dd.S] 
= \aaX [66 • 1]„ \dd. 2\ \cc . 3] 
= [««][ [cc. 1]° \dd. 2]° [66.3] 
= [*&]. [«c.l]Jd</.2]„ [a<i.3] 

íow, it is evident that each time a new unkno-wn quantity s 
made the last, we do not change all the auxiliaries, but only 
tbose which involve the letter which has become the last in the 
new order. I t is readily seen, therefore, that if we annex a letter 
to those auxiliaries only which have a different value from that 
which is denoted by the same symbol in the first elimination, we 
sball have, simply, 

P = \aa] [66.1] \cc . 2] \dd. 3] 
= \aa] [66.1] \dd.2] \cc .8] 
= \aa] \cc . 1] \dd. 2\ [66 . 8] 
= [66 ] \cc. \ \ \dd. 2\ \aa . 3] 

* The quantity P is, in faet, nothing more than the common denominator of the 
values of x, y, z, w, wheu these values are reduced to functions of the known quan-
tities and in the form of simple fraotions ; aúd this common denominator must evi-
dently have the same value whatever order of elimination is followed. 

file:///dd.S
file:///dd.2


METHOD OF LKAST SQUARES. 537 

from which wo deduce 

p,= \dd.S] 

P = [ c c . 3 ] = [ c c . 2 ] . í ^ ^ 

p = [ 6 6 . 3 ] = [66.1].ÍH£:-- . E í ^ } (72^ 

,. „., r T [**•!] ['̂ '̂ •2] ídd.S] 
Lbb] \cc.\\ \dd.2]^ 

K this method is applied in the case of six unkno'wn quantities, 
we shaU in each of two eliminations have the weights of three 
of the unknown quantities by computing each time but one new 
auxilian.-, and, therefore, tbo woigbta of all six when the second 
elimination is the inverse of the first. In the case of but four 
unknown quantities, by inverting the elimination we can find 
the weights of z and y t^vice, and thus verify our work, 

47. If we bave but three unknown quantities, the weights are 
determined at the same time with x, y, and z themselves, by a 
singlc eliminatiou in the order a, b, c, in which z comes out first 
with the weight 

P.= ícc.2] 

and then y and 2, with the weights 

Tcc ^l 
« = [66.2] = [66.1]. t - + ^ 
^' •- -• ^ -• [cc.l] 

[66.11 [cc.2] 
p = [ a a . 2 ] = [ a a ] . t J . t — ^ 

[cc . l ] , = [ c c ] - M [ 6 c ] 

in which 

INDEPENDENT DETER.MINATION OF EACH UNKNOWN QUANTITY AND 

ITS -SVEIGHT, ACCOEDING TO GAUSS. 

48. Let the four equations (70) be multiplied respectively 
bv 1, A', A", A'", and let these factors be determined by the 
condition that in the sum of the products the coefficients of y, 
z, and w shall be zero. Also, let tbe last tbree equations of (70) 
be multiplied respectively by 1, B", B'", and let tbese factors 
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be determined by tbe condition tbat in the sum of the products 
the coefficients of z and w shall be zero. Finally, let the last 
two equations of (70) be multiplied respectively by 1, G'", and 
let C'" be determined by the condition that in the sum of the 
products the coefficient of w shall be zero. The conditions 
which determine these factors are then 

0 = [«y + A! 
\aa] 

O ^ I ^ + [ * ^ ^ / + jp, 
\aa] [66.1] 

0 = E ^ , [ i ^ ^ / , [^^// , /̂// 
\aa] ^ [ 6 6 . 1 ] ^ [cc.2] ^ 

0 = [ ^ 1 + . B" ^ ' ' 
[66.1] ^ 

Q _ [ 6 ^ ] [ c á ^ ^ ,„ 
[ 66 .1 ] ^ [cc.2] ^ 

0 = [ ^ + C'" 
[cc.2] 

aiid the final values of x, ?/, z, w, in terms of' these factors, are 
given as follows: 

-oc = l ^ , [&»•!] .̂ , I lcn.2]^^„ \dn.S] 
\aa] ^ [ 6 6 . 1 ] ^ [ c c . 2 ] '^^dd.S] 

_ \bnX] \cn^^,, \dn.S] 
[ 6 6 . 1 ] ^ [cc.2] ~^\dd.3] 

\cc.2] "^ \dd.S] 

(74) 

[<Í7l . 3] 
— w = 

\dd. 3] 

49. As the equations (73) are above arranged, aU the factors 
A are determined frora the first system of three equations; the 
factors B from the second system of two equations, &c.; in each 
case, by succeesive substitution. This method then enables us 
to find each unknown quantity independently of the others. 

Another form may be given to the computation of the auxiliary 
factors. Since in the formation of the equatione (74) we have 
regarded [an], [bn], [cn], &c. as independent, w-e must stiU so 
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rogínxi thoin when wo invort tho procoss and recompose tho 

O(iuations (70) froin ^74). If, thon, wo muhiplv the equations (74) 

rospootively by 1, t _ J, L^^^, _k ^^J, an^ ^^^ ,̂̂ ,̂ products in order 

to rooomposo tho first of (70), the coetfioiont of [an] wiU be '̂  > 

but the ooofficionts oí [6íi, 1], [cn. 2], &o. must severally be oípuil 

to zero, The samo principle AviU apply whon we recompose the 

socond equation of (70) from the last three of (74), &c, llence 

we havo 

0 = '̂ + W 
[««] 

" - ^ + [ a a ] ^ + [ 5 ^ 

0 = A'" + [ í ^ B'" + í ^ C'" + [ ^ 
\aa] [.<^d] \aa] 

0 = 5 " + [ ^ > (̂ )̂ 
^ [ 6 6 . 1 ] 

0 = B'"+ ^'"'-'^ C'" 4- [ ^ ^ 
[66.1] ^ [ 6 6 . 1 ] 

0 = C ' " + [ £ ^ ] 
^ [ c c . 2 ] 

According to this scheme, we first find A', B", C'" from the 
e(]uation3 in which they occur singly; then, with tbese factors, 
we find the valnes of A", B'", from the equations invol-ving two 
factors, &c. 

50. Again, let us write the 3d, 5th, and 6th equations of (75) 
in the following order: 

J^n j^lfM ^iii ,\P^ Q,,, _ j _ [ ^ ^ o 
\aa] \aa] \ao ] 

^in , \pc. 1] ^,,, , [^^•l] ^ Q 
"^[66.1] ^ [ 6 6 . 1 ] 

C'"+E^=0 
\cc . 2] 

Comparing these with the first three of (70), we at once infer 
that A'", B'", C'" are those values of x, y, z, respectively, which 
we should obtain from our first three normal equations by putting 
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w = 1 and omitting the terms in n; or, going back to (66), that 
A'", B'", C'" may be determined by the following conditions : 

\aa] A'" + \ah] B'" + \ac] C'" + \ad] = 0 
[a6] A'" + [66] B'" + \hc] G'" + [6<í] = 0 
\ac] A'" + \bc] B'" + \cc] G'" + \cd] = 0 

If now we multiply the normal equations (66) by A'", B'", C'", 
and 1, respectively, and add the products, the conditions jnst 
given will cause x, y, and z to disappear, and the resulting equa^ 
tíon '\n w must be identical* with (69): so that J . '" , B'", C '" 
must also satisfy the following condition: 

\an] A'" + \hn] B'" + \cn] C'" + \dn] = \dn.S] (76) 

The second and fourth equations of (75) being written as follows, 

A"+^B"+^ =0 
\aa] \aa] 

J 5 " + [ ^ = 0 
^ [66.1] 

and compared with the first two of (70), we infer that A", B" 
are those values of x and y which we obtain from the first two 
normal equations by putting z = 1, lo = 0, and omitting the 
terms in n; that is, A" and B" must satisfy the conditions 

\aa] A" + \ah] B" + \ac] = 0 
[a6] A" + [66] B" + \hc] = 0 

Therefore, if we multiply the first three normal equations (66) by 
A", B", 1, respectively, and add the products, x and y will dis-
appear, and, the resulting equation being identical with the first 
of (68), we must also have 

\an] A" + \hn] B" + \cn] = [C7i. 2] (77) 

Lastly, it is evident that A' must also satisfy the condition 

\an] A' + \hn] = \hn . 1] (78) 

From these relations we readily infer general formulæ for the 
weights of the unknown quantities. 

•* The equation (69) is the last normal equation, unchanged except by the substitu-
tion of eguivalenls for x, y, and z ; and in the present article we eliminate x, y, and z 
by the use of factors, but do not change the last nôrmal equation, since we multiply 
it by unity. 
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Aooording to Art. 34, the reciprocal of the woight of x is that 
valuo wdiich wo obtain for x if wo put [<?/(] = — 1 and [br ] = [e??] 
— [''"] = ^̂'̂  ^vA, under tboso eonditions, tbe oquations (76), 
(iT), (78) give 

\dn . 3] = - A'", \cn . 2] = - ,4", \bn .1] = —A' 

lu order, tboroforo, that the value of x given by the firet equa-

tion of 174) may become —, wo have only to substitute — A'", 

— A". — A', — 1, respectívêly, for [dn. 3], [e??. 2], [bn. 1], [«?).]. 
In the same manner, the weight of y being found by putting 

[bn] = — 1 and [cm] = [cn] = [dn] = 0, we have to put 

[<Í7i. 3] = — .B"', \cn.2] = —F', [67i.l] = — 1 

in the second equation of (74), in order that we may put — for y. 
Ji]/ 

For the woiglit of z we have to put 

\dn. 3] = — C'", [cTi. 2] = — 1 

in the third equation of 174), and — for z. 

For the weight of w, we bave to put 

[<in. 3] = — 1 

in the last equation of (74), and change w to — 

The final formulæ for the weights are, therefore, 

1 1 A'A' A"A" A'"A'" 
+ nu -1-1 + 7 7^ + Px [««] \bh.l] [cc.2] \dd.S] 

J__ 1 B"B" F"ff" 
J>, ""[66.1] [cc. 2] [<M. 3] 

-L — 1 , C'"'g"' 
p,~ \cc.2]^ \dd. 3] 
1 1 

(79) 

;>„ \dd.S] 

MEAN EEROR OF A LINEAE FUNCTION OF THE QUANTITIES X, y, Z, W. 

50. Tofind ihje mean error of thefunction 

X=fx + gy + hz+ iw+ 1 (80) 

v:hen X, y, z, w are d^pendent upon the same observaiions. 
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The quantities x, y, z, w not being directly observed, their 
mean errors cannot be treated as independent, as was done in 
the case of directly observed quantities in Art. 22. We might 
proceed by the method of Art. 23; but, as we here suppose 
X, y, z, w to have been deterrained from the norraal equatious 
(66), we can obtain a more convenient method by the aid of the 
auxiliaries which have been introduced in the general elimina^ 
tion. The quantities x, y, z, w being functions of the directly 
observed quantities n', n", n'", ... the mean error of X can be 
readily obtained by the principles of Art. 22, if we first reduce 
X to a function of these observed quantitiee. For thie purpose, 
if the values of x, y, z, w.deduced frora (70) be substituted in X, 
we shall have an expression of the form 

X=k, \an] + k^ \hn.1] + k^ \cn.2] + k^ \dn.S] + l (81) 

in which the coefficients k^, k^, k^, k^ are functione of [aa], [ab], 
&c. In order to determine these coefficients, let us substitute in 
thie express on the values of [an], [6??.. 1], &c. given by (70). We 
find 

X= — \aa] kgX — [a6] kj/ — \ac] k^ ^ \ad] k„w +1 
— [66.1] k^y — \bc. 1] k^z — \bd. 1] k,^D 

— \cc. 2] k^ — \cd . 2] k^w 
— \dd. 3] k^w 

which becomes identical with (80) by assuming 

\aa] /í|, = — / 
\ah]k,+,\hh.l]k^ = -g 
\ac]\ + \hc. 1] Å, + \cc.2]k^ = — h 
\aã]k,+ \bd.l]k^+ \cd.2] k^ + \dd.S] k^ = — i 

(82) 

These equations fnlly deterraine the coefficients. We find k^ 
directly from the fijrst, and then Ar̂, k^, k^, by successive substitu-
tions in the others. 

ISrow, to find the mean error of X under the form (81), let the 
raean error of each of the observed quantities n', n", n'" be 
denoted by e (these observed quantities being supposed of equal 
weight, or, rather, the equatious of condition beiiig supposed to 
have been reduced to the same weight), and let the correspond-
ing mean errors of 

[a?i], [677.1], [C7Î.2], \ãn.S], X, 
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be denotod by 
F„ L\, Í:.,, F„ (eX). 

Siiioo wo havo 

\an] = a'rí + a"rí' + a"'rí" + .... 

wo havo, bv Art, 22, 
i ; ' = [ a a ] e ' 

Again, we havo 

^J^\an]=ylib-l^a\n] 
\aa] "- -J ^ L\ \aa] } J 

[6?i . l] = [ 6 7 í ] -

and hence 

= .(C»1-̂ M-M + I^M) 

= .-(t»]-t^W) 
^ \aa] I 

= [66 . 1] e» 
In a similar manner, we have, also, 

F^' = \cc. 2] e\ E,' = \dd. 3] e' 

The quanritios ./•. y, z, w, being determined frora the equations 
(70). their mean errors involve those of the quantities [an], [6n . l ] , 
[cn.2]. [////.3], precisely as if the latter had been independently 
observed qnantities affected by the raean errors just determined. 
Hence also in (81) we regard [an], [6?i.l], &c. as independent; 
and it then follows directly from the principles of Art. 22 that 

or 
(eXy = A-„' E^^ + Æ/ E,^ + /í,= Ei + k,-E,' 

(eXy = ( V íaa] + I.;' [66.1] + /c/ \cc. 2] + k,^ \dd. 3]) ê  (83) 

51. From the preceding article we may easily find the for-
mulæ ('74) and (79). The function X becomes x wben we assume 
f=l, g = h = i=l = 0; and then (81) gives x while (83) gives 

e' 
£/, and hence the weight = —̂. This hypothesis gives m (82) 

[ífa] k^ = — 1; and the remaining equations of (82) are identical 
with the first three of (73) if we put [66 .1] /:, = —A', [cc.2] k^ 
= — A", [dd.S]k^ = — A"'; andthen(81)becomes identicalwith 
the fir.st of (74), and (8-3) with the first of (79). In a similar 
manner we may deduce the remaining equations of (74) and (79). 
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EXAMPLE.—In order to exhibit the numerical operations which 
the preceding method requires, in their proper order and within 
the Umits of the page, I select an example involving but three 
unknown quantities. The following equations of condition were 
proposed by GAUSS (Theoria Motus Corp. Coel, Art. 184) to illus-
trate his method: 

(1) X — 7/ + 22 = 3 
(2) Sx + 2y — bz= 5 
(3) 4x + 7/+ 42 = 21 
(4) — 2x + 6î/ + 62 = 28 

of which the first three are supposed to have the weight unity, 
while the last has the weight J. Multiplying the last by j / J = | 
(Art. 41), the equations of condition, reducedto the same weight, 
are— 

(1) X — 7/ + 22 — 3 = 0 
(2) Sx +2y — bz— 5 = 0 
(3) 4x + 7/ + 42 — 21 = 0 
(4) — X + 3?/ + 32 — 14 = 0 

The next step is to form the coefficients [aa], [ab], &c., of the 
normal equatione. In the present example thie can be done very 
easily without the aid of logarithms; but, in order to exhibit the 
work usually required in practice, I sball give the forms for 
logarithmic computation. The sums of the coefficiente of the 
unknown quantities will be employed as checks, according to 
Art. 30. Their logarithms, together 'vvith those of a, b, c, n, are 
given in the following table: 

log a 

0.00000 

0.47712 

0.60206 

770.00000 

log b 

710.00000 

0.30103 

0.00000 

0.47712 

logc 

0.30103 

710.69897 

0.60206 

0.47712 

logí 

0.30103 

— ÛO 

0.95424 

0.69897 

logn 

710.47712 

710.69897 

711.32222 

711.14613 

(1) 
(2) 

(3) 

(4) 

It is iraportant, where many operatione are to be performed, to 
write down no more figures than are necessary for the clear prose-
cution of the work. Hence, in combiniug the preceding 
logarithms it will be found expedient to proceed as foUows. 
Write each log a tipon the lower edge of a slip of paper; then, 
placing this slip so that log a shall stand over log a, log b, log c, 
&c., of the same horizontal line, in snccession, add together the 
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two logarithms mentaUy, and, with the sum in ihe heaã, tako from 
the logarithmic table the corrosponding uatural number {aa, ab, 
ac. as. or an), which place in a oolumn appropriated for the pur-
poso. Thon writo log 6 in the same manuor, and fonn bb, bc, bs, 
bn. and so proceed to form all the coefficients of the normal 
equatíons, as in the following table: 

(1) 
(2) 
(3) 
(•t) 

[««] 

-b 
1.0 
9.0 

16.0 
1.0 

- 27.0 

[«»] 

- 1 -
t 

í 1.0 
6.0 
4.0 

• 3.0 

lo.o; 4.0 
— 6.0 

[8CJ 

' •+ 

2.0 

16.0 

18.0 
0 

— 

15.0 

3.0 

18.0 
0 

[ « ] 

+ 1 -
2.0 

0.0 
36.0 

1 5.0 
38.0i 5-0 
-t- 33.0 

[««] 

-1-

14.0 

14.0 

— 
3.0 

16.0 
84.0 

102.0 
— ás.o 

[66] 

+ 
1.0 
4.0 
1.0 
9.0 

- I - I5 .0 

\bc\ 

-f 

4.0 
9.0 

18.0 

+ 

— 

2.0 
10.0 

12.0 
1.0 

(M 
(21 
(3) 
t-t) 

[it] 

r 

-r ; — 
2.0 

0.0 
9.0' 

1.5.0 

24.0 2.0 
-r- •2-2.0 

[h.] 

-t-
3.0 

— 

10.0 
21.0 
42.0 

3.0) 73.0 
— 7 0.0 

[«] 

- r 

4 .0 
25.0 
16.0 

9.0 

-t-54.0 

[<a] 

+ 
4.0 

36.0 
15.0 

55.0 
-1-í 

- -

0.0 

0.0 
)5.0 

[c»] 

+ 1 -
! 6.0 

26.0 

25.0 
— 1 

84.0 
42.0 

132.0 
07.0 

[«.] 

-f 

0.0 

0.0 
— 2 

— 
6.0 

189.0 
70.0 

265.0 
65.0 

["»] 

+ 
9.0 

25.0 
441.0 
196.0 

+ 671.0 

Having ascertained that the results satisfy the test equatious 
(4S), we can write out the normal equations as follows: 

27x + &y — 88 = 0 
6 x + 15J/ + 2 — 7 0 = 0 

y + 542 — 107 = 0 

We proceed to determine the values of x, y, z, according to 
our general formulæ, still carrying out the workwith logarithms 
for the sake of illustratiou. Here, again, eystem and concise-
ne.ss are indispensable. The whole computation is given belo-ŵ  
nearly in the form proposed by ENCKE. This form corresponds 
to the group of equations (70). It is divided into three principal 
compartments, corresponding, respectively, to the first three equa-
tions of (70), each beginning one column farther to the right. In 
the first compartmentthe first line of numbers contains the values 
of [««], [ab], &c., the second line their logarithms, and the third 
line the logarithms of the eoefficients of the first equation. The 
logarithms in this third Une are formed by subtracting the first 
log. in the second line from each of the subsequent ones, for this 

Voi» II.—35 
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purpose writing the first logarithm upon the lower edge of a slip 
of paper. 

In tbe second compartment, the first line conta ns the values 
of [bb], [bc], &c.; the second line, the quantities subtractive from 
these, according to the formulæ iii Art. 42. To form these sub-

tractive quantit es, write the logarithra of ^—^ (which is here 

9.34679) upon the lower edge of a elip of paper, and hold it suc-
cessively over log [ab] and each of the subsequent logarithras in 
the sanie line; add the two logarithms mentally in each case, take 
the corresponding natural number from the logarithraic table,' 
and write it in its place below. Subtracting these numbers, we 
have the valuee of [66.1], [6c . l ] , &c. The fourth line conta ns 
the logarithms of theee quantities; the fifth, the logarithms of the 
coefficients of our second equation, formed by subtracting the 
first logarithm of the preceding line from each of the subsequent 
ones in that line, 

In the third compartraent we have—firet, the values of [cc], &c.; 
secondly, the values of the eubtractive quantities formed from 
the last line of the first corapartment as before; thirdly, the 
remainders which are the values of [cc . l ] , &c. The fourth line 
contains the values of the quantities which are subtractive from 
tbe preceding and are formed from tbe last line of the second 
compartment by adding the first logarithm of that line to the 
logarithm immediately above it and to each of the subsequent 
losrarithms in the same line ; tbe fifth line cbntains the reraain-
ders which are the valuee of [cc. 2], &c.; the sixth line, the loga-
rithms of these; and the last line, the logarithms of the coeffi-
cients of our third equation. 

For control, we carry through the operations upon [as], [bs], 
&c., precisely ae upon the other quantities; and then, according 
to the arrangement of the scheme, we shonld have, if we have 
computed correctly, each sura containing s equal to thê sum of 
the quantities on its left in tbe same line, together with those of 
the same order in a vertical columu over the first number in this 
line. Thus, we must have, in the present case, 

[6S.1] = [66.1] + [6C.1] [571.1] = [677.1] + [CTl.l] 
\cs . 1] = \cc . 1] + \bc. 1] \sn . 2] = \cn. 2] 
\cs. 2] = \cc . 2] 

relations easily proved by means of the formulæ of Art. 42 com-
bined with (48). 
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The columns [s,,] and [?7?i] aro addod to the third compart-
ment m oitler to form the quautity [nn.å], from whiob the moan 
errorof obsorvatiou is to bo deduced, aa wiU bo showu hereafter. 

[«»] I [«»] ! 

• 27.Uii0 -f- 6.000 í 
1.48136 li.7781.->! 

o,;;tii7;, 

— Í̂ S.l.îOO 
0.000 

-f-21.30.5 
— 66.695 

BI.S24I'Í) 
logz = (.i.o'J27o 

(»] 

-i- 15.000 
-í- 1.833 
4- 18.667 

1.13566 

— 50.444 
-(- 1.916 
— 4,s..-,:].^ 

nl.CxS.v.i^ 

logy = 0..5.̂ ;03:: 

- I.OOO 
0.000 

-h l.tKMl -j- I4.(iu7 
O.Oíimx: 1.1(1033 
8.SiU:!i; 0.08( (17 

[«] 
54.000 

0.000 

[«] 
56.000 
O.OOO 

î- 54.000 '̂ 3r̂ -r.Tí( (T 
- . 0 . 0 7 3 ^ 1.073 

ll3792f .<3.;(27 
1.73181 

lcn] I [ín] I [nn] 

- lOí.Odlji^ 2tl5.0noí-|- 671.000 
O.OUi)— 107..5.5 '-|- 280.813 

- 107.000 —1^57.'445 ^:ij84.l87 
^ ,3.691; —^54.135+ 18G.191 
- K 3.30'.)'—^r3.1iTií+ i97.yT)(; 
'/2,01414; ;-+- 197.í)l,". 

log ( — z ) = »(1.28:;33 [H» . 3] = H. (1.IIK7 

After z has been found, its value is substítuted in the second 
equation of (70), and y is deduced. Then, the values ofy and z 
being siibstituted in the first equatíon, wo find x. The numerical 
computations arc given above in the margin. 

Tlion, for the weights, by Art. 47, we have first to find the 
additional auxUiary 

[ C C . 1 ] , : ^ [ C C ] - ^ ^ ^ ^ 6 C ] 

and bv the formulæ of that artícle we have— 

[66] 
+ 15.000 

1.17609 

[6c] 
+ 1.000 

0.00000 
8.82391 

\cc] 
+ 54.000 
+ 0.067 

[cc . la ] = + 53.933 

log [66.1] 1.13566 
log [66] 1.17609' 

1.43136 
9.95957 
9.99996 

1.39089 

logí?. 

Iog[cc.2] 
log [ce.l] 

1.73181 
1.73239 

log[cc . l ]a 1.73185 

1.13566 
9.99942 

1.13508 

log p„ 

1.73181 

^ogp. 
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The final result is then 

a; = + 2.4702 with the weight 24.597 
y = + 3.5508 " " 13.648 
2 = + 1.9157 " " 53.927 

It only remains to substitute the values of x, y, and z in the 
original equations of condition, to form the residuals v, and from 
these to cletermine the mean error of observation. Since here 
there are but three unknown quantities, we have, by (71), 

\m] = \nn. 3] 

and hence the mean error of an observation of the weight unity 
is, by (61), m being the number of equations of condition, 

-V(S^)-«»^ 
The direct computation of the residuals is, therefore, not necessary 
for deterraining e: nevertheless, it is desirable in most cases to 
resort to the direct substitution also, not only for a final verifica-
tion, but in order to examine the several observations, and to 
obtain the data for rejecting any doubtful one by the use of 
PEIRCB'S Criteriou, to be given hereafter. This direct substitu-
tion has already been carried out for this example on p. 525, 
where we have fouud [vv] =0.0804, which agrees -with the above 
value of [TO. 3] as nearly as can be expected with the use of five-
decimal logarithms. 

52. It not unfrequently happens that one of the unknown 
quantities is such that the given observations cannot determine 
it with accuracy. For example, in the reduct on of a number 
of observations of an eclipse, one of the nnknown quantities is a 
correction of the moon's parallax; but, unless the plaees of ob-
servation be remote from each other, the correction will be very 
uucertain, and this uncertainty will affect all the other quantities 
which enter into the equations of condition. In such a case, this 
unknown quantity will come out with a small coefficient, which 
of itself will reveal the existence of the uncertainty when it is 
not otherwise anticipated. In order that this uncertainty may 
not affect those quantit es which are well defined by the obser-
vations, it is expedient to determine all the latter as functions of 
the uncertain quantity, which for that purpose must be made the 
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last in the eliminatiou. Thiis, witíi four unknown quantitios 
r. ',. r, ?r, wo prooood only as tiir as tho auxiliarios donotod by 
Tho numenil 2; thon, liaving i'ouud tho iactors . 1 ' , A", A'", B" 
-/)"", C'", by (73) or (751, if wo put 

- r' =^^ -X- t '" '-^] A' ^ ^'" • -^ I" \ 
[a<7] ^ [66 .1] "̂  + i ^ 2] ' ' 1 

-rf = ^:3_^^'>:3B" ' ,84. 
^ [66. 1] ' [cc. 2] ^ I '^^-^•> 

_ , , _ [C71.2] \ 
- \cc . 2] j 

theso will give tbo values of the unknown quantities which we 
should obtain from the first three normal equations if the last 
unknown quantity were disrogai-dcd or put = 0. Then, by (74\ 
the íinal valuos of x, y, -, as functions of the uncertain quantity 
(c, wiU be 

X = x' + .4'"!« -j 
y=y'+B"'w l (,s5) 
z =z' + C'"w ) 

The values of .r', y', z'. wiU tbus be weU determined, and a sub-
seiiuent independont detoi-mination of //• wiU enable us to find 
the final valuos of./;. y, z.* 

Having found the woights of x', y', z' (which is done as if they 
were tho only quantitics under consideration), and their mean 
errors ef, e/, sj. then, when the quantity w is aftenvards found, 
tho mean errors of the final values wiU be 

e'^=, ej^ + (A'"e y ^ 
^\=^;'+(S'\y } (86) 
^\=C+(C'"eJ^ j 

as we find from the equations (79), or by Art. 20. 

COXDITIONED OBSEKVATIONS. 

53. In all that prccedes, we have supposed that the several 
quantities to be found by observation, either directly or indirectly, 
were independent of each other. Although they were required 
to .satisfy certain equations of condition as nearly as possible, j e t 
they were so far independent tbat no contradiction w âs involved 
in supposing the valuesof one or more of theni to be varied without 

* For an example in which three unknown quantities are thus determined as 
functions of íwo uncertain quantities, see Vol. I. p. 540. 
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varying the others. By such variations we should obtain sys-
tems of values more or less probable, but all possible. 

There is a second class of problems, in which, besides the 
equations of condition which the unknown quantities are to 
satisfy approximately, there are also equatione of condition which 
they muet satisfy exactly: so that of all the systeme of values 
which may be selected ae approximately satisfying the first lcind 
of equations, only those can be admitted as possible which satisíj' 
exactly the equations of the second kind. Tbe nnmber of these 
rigorous equat ons of condition must be lese than the number of 
unknown quantities; otherwise they would detei-mine these 
quantities independently of all observations. These rigorous 
equations, then, may be satisfied by various possible systems of 
values, anclwe can therefore express the problem here to be con-
sidered as follows: Of all the possible systems of values which exactly 
satisfy the rigorous equations of condition, to find ihe most probablc, or 
ihat system which best satisfies the approxim.ate equaiions of condition. 

The following are siraple examples of conditioned observations. 
The sum of the three angles of a plane triangle must be 180°: so 
that if we observe each angle directly, and the sum of the observed 
values differs from 180°, these values must be corrected so as to 
satisfy tbis condition. The sum of the angles of a spherical 
triangle must be 180° + spherical excess. The sum of all the 
angles around a point, or the sum of all the differences of azimuth 
observed at a station upon a round of objects in the horizon, muet 
be 360°. 

The approximate conditions in these cases are expreseed by 
the observations themselves; for the final values adopted must 
correspond as nearly as possible to the observed values. The 
corrections to be applied to the observed values are to be re-
garded as residual errors with their signs changed; and the solu-
tion of ourproblem is involved in the follo-wing statement: Of 
all ihe systems of correciions which satisfy ihe rigorous equations, tha,t 
system is to be received as the most probable in which ihe sum of ihe 
squares of ihe residuals in the approximate equaiions is a minimum. 

, 54. The general problem as above stated may be reduced to 
that of unconditioned observatíons, already cons dered. For let 
us suppose there are m' rigorous equations of cond tion, and m 
unknown quantities. From these ??i' equatious let tbe values of 
m.' unknown quantities be obtaiued in terms of the remaiiúug 



METUon OF LEAST SgUAlíES, 5.'")1 

»1 — ?»'quantirios, and lot tbo.so valuos bo aubstitutod in all tbo 
approxiinate equations of oouditiou; thon thorowill be loft iu tlio 
latter only m — m' quautiíios, whioh may bo troatod tis indoj)ond-
eut, so tbat, tho a{)pro.\imato o(|uaiions boing now solvod by tho 
method of least squ;u'os. wo liavo tho valuos of tbo ??i — ???' quan-
titios. with whioh we then find tbo valucs of the first m' (juan-
titios. Tliis is a gonorid solution of tbo problom; but it is not 
always tho simplost in praotico. I shall iUustrate it by a simple 
example, before giving a luethod applicablo to more complicated 
casos. 

ExAMPLE.—At Pine MounL a smtion of the V. S. Coast Survey, 
the angles botwoou the surroundiug statious 1, 2, 3, 4 were 
observed as foliows: 

•weigbt 

1.2 Joscelyne—Decpwater 05° 11'52".500 | 8 
2.3 ; Deepwater—Deakyne 60 24 15 .5,');]: 3 
3.4 I Deakyne-Burdcn 87 2 24.703 1 3 
4 .1 ! Burden—Joscclyno 141 2121.757! 1 

There are here four unkno'wn quîintities subjected to the single 
rigorous condititui that thoir sum must be 360°. Bnt, instoad of 
taking the anglos tbemsolves as the unknown qiiautities, we shall 
assume approximate values of them, and rcgard the corrections 
which they require as the unknowu quantities. 

We assume 

1.2 
2.3 
3.4 
4 . 1 

Joscelyire—Deepwater, 65° 11' 52".5 + lo 
Deepwater—Deakyne, 66 24 15 .5 + x 
Deakyne—Burden, 87 2 24 .7 + 7/ 
Barden-Joscelyne, 141 21 21 .8 + 2 

the sum of which must satisfy the condition 

359° 59̂  54".5 + w + x + y +z = 360° 
or 

w + x + y + z — 5".5 = 0 
The difference bétween the assumed value and the observed 
value in each case gives us a residual; and the approximate 
equations of condition are, therefore, 

w—0 = 0 
X — 0.053 = 0 
y — 0.003 = 0 
2 + 0.043 = 0 
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We have here but one rigorous condition (or ??i' = 1), and to 
eliminate this we have only to find from it the value of one un-
known quantity in terms of the others, and substitute it in the 
approximate equations of condition: thus, substituting the value 

70 — X 7/ — 2 + 5".5 

our equations of condition, containing now three independent 
unkno'wn quantities, are 

weight. 
- X — 7/ — 2 + 5".5 = 0 
X — 0 .053 = 0 

y _ 0 .003 = 0 
2 - 0 .043 = 0 

The normal equations, applying the weights, are then 

Qx + Sy + Sz — 16.659 = 0 
3x + %y + Sz — 16.509 = 0 
3a; + 37/ + 42 — 16.467 = 0 

which, being solved, give 

whence also 

X = + 0".9675 
y = + 0 .9175 
2 = + 2 .7005 

w = + 0.9145 

aiid the corrected values of the angles are 

1.2 
2.3 
3.4 
4 .1 

Joscelyne—Deepwater 65° 11' 53".4145 
Deepwater—Deakyne 66 24 16 .4675 
Deakyne—Burden 87 2 25 .6175 
Burden—Joscelyne 141 21 24 .5005 

360 0 0 .0000 

55. When the number of unknown quantities is great, or when 
there are several rigorous conditions to be satisfied, the preceding 
method would lead to very tedious computations, since we are 
required to perform two el minations, the first from our m' 
rigorous equations to find the first m' quantities in terms of the 
others, and the second from our normal equations involving all 
the remaining quantities. In order to obtain the general form 
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for a more condensed process, let the most probable values of a 
number (m) of dLrectly observed quantitíes bo 

F ' , T'", 1"", &c. . . . F>-' 

Le t the observed values be 

M', M", M'", &c . . . . M"^ 

Let tJiese observatíous have the weights 

/ , p", f', &c....í?<-' 

Let the equations which the most probable values are required 
to satisíy rigorottsly be expressed by 

9' = / ' (F ' ,F",F" ' , . . . ) = 0 \ 
9>" = / " ( V', F", F'", ...) = 0 ( 
p ' " = / " ' ( T̂ ', V", V'", ...) = 0 / (^7) 

&c. 1 
and let 

m' = the nnmber of theee conditions. 
Le t the most probable corrections of the observed values be 

rí, 7?", v'", &e. . . . ?;"•> 
so that 

V'=M' + v', V" = M" + v", V'" = M'" + v'", &c. 

Let the values of f', <p", (p'"... when the observed values are 
aetually substítuted be n', n", n'" . , . or 

/ ' (M', M", M'", ...) = rí 
/ " (M', M", M'", ...) = rí' 
f'"(M', M", M'", ...) = rí" 

&c. 
(88) 

Let the differential coefficients -r^, -r-=r,, &c., -r^,, -rpr-, &c. be 
dV' dV dV' dV 

formed; substítute in them the values M', M", M'" . . . for V', 
V", V'", and denote the resulting values by a', a", &c., b', b", 
&c.; that is, put 

d<p' , dcp' „ dcp' : a'", &c. 
dV' av" av-

É^=:V, - ^ = 6", - ^ = 6 " ' , & c . 
dV' ' dV" ' dV'" 

^ ' = v ^ = c " , ^ ^ — = c"',&c. 
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These values of the differential coefficients •will generally be suf-
ficiently exact; but if M', M", M'" .. . are found very greatly in 
error, a repetition of the computatíon might be necessary, in 
which the more exact values found by the first computation 
would be nsêd. 

The values of M', M", M'" . . . be ng assumed to be so nearly 
correct that the second and higher powers of the corrections v', 
v", v'" . . . may be neglected, we have at once, by TAYLOR'S 

Theorem, as in the similar case of .Art. 40, 

<p' =rí + a'v' + a"d' + a'"v'"+ .... + a<""?;<"" = 0 
<p" = 77" + Vv' + V'v" + V"v'" + . . . . + 6<"");<»' = 0 
p" '= rí" + dv' + d'v" +'d"v'" + . . . . + c<'»'í?<"" = 0 

&c. &c. 

(89) 

vvhich m' equations mnst be rigorously satisfied by the values of 
v', v", v'" . . . . 

The equations 

V' — M'=0, V"—M"=0, V'" — M'" = 0, &c. 

are the approximate equations of condition; or, more strictly, 

V' — M'=v', V" — M"=v", V'" — M'" = v'",&c. 

are the equations of condition which are to be satisfied by the 
most probable system of residuals v', v", v'" . . . . These, reduced 
to the unit of weight by Art. 41, become 

( F ' — M') y'p' = v'y'p', ( F " — M") yp" = v"^p", &c. (90) 

and the most probable residuals v'Vv', v"Vp" are those the sum 
of whose squares is a minimum, or we must have 

p'v"^ + p"v"'' + p'"v""^ + &c. = a minimum. 

Pntting, then, the differential of this quantity equal to zero, we 
have 

f'ddv' + p"v"dv" + p"'v'"dv'" + &c. = 0 (91) 

If v', v", v'". . . were independent of each other, each coeffi-
cient of this equation would necessarily be zero (as n Art. 28), 
and then the most probable values of V', V", V'" . .. would be 
tbe directly observed values M', M", M'"... But this minimum 
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is hore conditioned by the equations (89). It', then, wo difforon 
tiato (S9), the equations 

a'de' + rí'dv" + a"'di^" + , , . , = 0 \ 
b'di/ + 6"</r" + b"'dd" + , . . . = 0 / 
ddv' + c"du" + d"dv'" + . . . . = 0 (^^) 

&e. ) 

must coexist with (91). 
The nuinber of the equations (92) is m', while the number of 

differentials is m: and sinco, by the nature of the case, wc must 
have j?i > Tíi', wo oan, by elimination, find from (92) the values 
of ?7i' difiereutials in terms of the remaining ??i — ??i' differentials, 
Let us supp()so this eUmination to be perfoi'med, and that the 
values of the first m' difterentials, found in terms of the others, 
are then substituted in (91); we shall thus have an equation in 
which tbe remaining TTI — 7?i' unknown qnantities can be regarded 
as independent, and the coefficients of these ??? — m' quantities 
m this fijtial equation ^viU tboii severaUy be equal to zero. We 
can arrive directly at the result of such an elimiuation aud sub-
stitution as foUows. Multiply the first equation of (92) by A, the 
second by B, the third by C, &c., and also the equation (91) by 
— 1, and form the sum of all these products. Then, if A, B, 
C.... are determined so that m' differentials shall disapijear 
from the sum (and they can be so determined, since it only 
requires m' conditions to determine m' quantitíes), the final 
equation obtained will contain ouly the m — m' remaining differ-
entials. But, the latter being independent, their coefficients must 
also be severaUy equal to zero; and hence we have, in all, the 
followiug m conditional equations: 

a'A +VB+dG+....—p'v' = 0 
a"A + V'B +d'C + .... —p"v" = 0 
a'"A + b'"B + d"C+ .... —f'v'" = 0 

&c. &c. 

(93) 

a a 
If we multíply the first of these by —. the second by -y,, &c., and 
add the products, we have, by comparison -with the first equation 
of (89), 
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in which the usual notation for sums is followed. In this way 
we can form m' normal equations containing m' quantities, 
namely, 

[f]A + [f]B + [1]a+ „.. + .• = . ^ ^„, 

[fV+[f]'+ ¥]"+••••+ ""'=' 
&C. 

If tbe observations are of equal weight, we have only to put 
p = 1, or, in other words, omit p. 

The factors A, B, C. .. are called by G-Auss the correhtives of 
the equations of condition. 

The equations (94) being resolved by the usnal method of 
elimination (Art. 42), the values of the correlatives found are 
then to be substituted in (93), whence we obtain directly the 
required corrections, 

V' =Y(<I'A +VB +dC +....) 

V" = 1, (a"A + V'B +c"C + ....) ĝ̂ ^ 

v'" = ^ (a"'A + V"B +c'"C+ ....) 

&c. &c. 

and hence, finally, the most probable values of the obeerved 
quantities, V'= M'+ rí, V" = M" + v", &c. 

The comparative simplicity of this process will best be shown 
by applying it to tbe example of the preceding article. We 
there have given, by observation, 

M' = 65° i r 52".500, 
M" = 66 24 15 .55.3, 
M'"= 87 2 24 .703, 
Jf" = 141 21 21 .757, 

witb the cond tion 

Y' _i_ Y" -j- Y'" + V" — 

/ = 3 
p" =S 
p'" = 3 
j p " = 1 

360° = 0 
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We have, firsL 

a' = a" = (?'" = a" = 1 

and when M\ M", &c. aro put for V', V", &c., we have (88) 

fi' = — 5".487 

As we have but one conditiou. we bave also but one correlative 
A; the equatíon of conditíon is, by (89), 

— 5".487 + v' + v" + v'" + «" = 0 

and the single normal equation may be coustructed according to 
the foUo^ving form: 

p 

3 
3 
3 
1 

a 

1 
1 
1 
1 

aa 

P 

i 
i 
i 
1 

[a<i"j 

and hence, by (95), 

d = + 0.9145 
î/' = + 0.9145 
7)'"= + 0.9145 
r " = + 2.7485 

2 ̂  — 5".487 = 0 
A = + 2".7435 

Corrected valuea. 
F ' = 65° 11' 53".4145 
F " = 66 24 16 .4675 
F ' " = 87 2 25 .6175 
F " = 1 4 1 21 24 .5005 

860 0 0 

agreeing with the result found by the much longer process of 
the preceding article. 

56. The further prosecution of this branch of the subject 
belongs more especially to works on Geodesy. For more ex-
tended examples, see the special report of Mr. C. A. SCHOTT in 
the Report of the Superintendent of the IJ. S. Coast Survey for 
1854, from which the above example has been drawn. Consult 
ako BESSEL'S Gradmessung in Ostpreussen in 1838; ROSENBERGER, 
in the Astrmomische Nachríchien, Nos. 121 and 122; BESSBL, ibid. 
Xo. 438; T. GALLOWAY, AppUcatíon bf the Method to a Portion 
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of the Snrvey of England, in the Memoirs of the Boycd Astronomi-
cal Society, Vol. XV. ; J . J . BÆYEE'S Kiisienvermessung; FISCHER'S 

Geodæsie; GERLING'S Ausgleichungs Eechnungen; DIENGER'S J.MS-

gleichung ãer Beobachtungsfchler; LIA(ÎEB, (hlcul cles ProbabiUtés; 
and GAUSS, Supplemenium theoriæ combinationis, ko,. 

CRITBRION FOR THE RBJBCTION OF DOUBTFUL OBSERVATIONS. 

57. I t has been already remarked (p. 490) that the number of 
large errors occurring in practice usually exceeds that given by 
theory, and that this discrepancy, inetead of invalidating the . 
theory of purely " accidental" errors, rather indicates a source 
or Bources of error of an abnormal character, and calls for a 
criter on by which such abnormal observat ons may be excluded. 
The criterion propoeed by Prof. PEIRCB* will be given bere with 
the investigation nearly in the words of its anthor, and with only 
some slight changes of notation. 

58. " I n almoet every true series of observations, some are 
found which differ so much from the others as to indicate some 
abnormal source of error not contemplated in the tbeoretical 
diecussione, and the introduction of w+ich into the investigations 
can only serve, in the present state of science, to perplex and 
mislead the inquirer. Geometers have, therefore, been in the 
habit of rejecting those observatione which appeared to thera 
liable to unusual defects, altbough no exact criterion has been 
proposed to test and authorize such a procedure, and this delicate 
subject has been left to the arbitrary discretion of individual 
computers. The object of the present investigation is to produce 
an exact rule for the rejection of observations, which shall be 
legitimately derived from tbe principles of the Calculus of Pro-
babilities. 

" It is proposed io deiermine in a series ofm observcdions ihe limit of 
error, beyond which all observaiions involving so great an error may be 
rejeeted, provided ihere are as many as n such observaiions. 

" The principle upon which it is proposed to eolve this problem 
is, thai the proposed observations should be rejeeted whai the proba.bility 
of the system of errors obtained by retaining ihem is less ihan tliat of 
ihe sysiem of errors obiained by iheir rejection muliiplied by ihe proha-
bility of making so many, and no more, abnormal observations. 

* Astronomical Journal (Cambridge, Mass.), Vol. II. p. 161. 



MKTHOD O F I.KA.ST SQUARKS. Ô.V.I 

*• lu dotonnining the probability of tboso two systoms of orrors, 
it inus be oarofuUy observod tbat, l)ooau.-<e obsorvations aro 
rejootod in tbo sooond systom, tbo oorrosponding ohsorvatious of 
the first system must be regardod, not as boing linûtod to thoir 
aotual valuos, but ouly as surpassing tbo limit of rejootion." 

Lot 

p. =r the numbor of unknown qu.antities, 
m = the whole numbor of observ'ations, 
íi = the nnniber of observations proposod 

to bo rejocted, 
»i' = 771 — 71, tho numhor to be retained, 

â, J', J", . . . J'"' = the systom of orrors when no observa-
tion Í8 rejected, 

J|. Jj', á",... J^"^ = the system of erroi-s when 71 observa-
tions are rejccted, 

t, ij = the mean errors of the first and second 
system, respectively, 

y = the probability, supposed unknown, 
of such an abnormal observation that 
it 18 rejected on aceount of its magni-
tude, 

y" =1 — y = the probability that an ob-
servation Í8 not of the abnormal cha-
racter which involves its rejection, 

y. = the ratio of the required limit of error 
for the rejection of 71 observations to 
the mean error e, so that xe is the 
hmiting error. 

Tbe probability of an error J in the first system will be, by (14) 
and (21), 

1 - ^' 
c i j = — = e 2t« 

ev^27r 
and the same form wUI be used for the second system. 

The probability of an error which exceeds the limit xe will be 
expressed by the integral (Arts. 8 and 12) 

r̂: 9'édA 

or, denoting this by i//X, 
2 /••A = 00 A* 

4,/í = — = 1 e~^~ dJ 
ev'- t^A=.« 
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which, by putt ng i = ——, becomes 

2 í"" 
j-x = —^ I e~** dt 

and this may be found directly from Table IX. by subtractang 

the tabular number correspond ng to i = —-^ from unity. 

The probabil ty of the first system of errors, embodying the 
condition that n observations exceed the limit xe, is 

P = y,á.^á'.yá". 

1 _SA2—re M 
2̂ 2 (4-»«)" 

e"'(2 7r)i"' 

iu which i'J^ = J2 + J/2+ (jw)^; and by (61) we have 
2J^ = {m — [i) ê, whence 

e"'(27r)i»'' ^^""^ 

The probability of the second system of errors is 

P = 7/»!/'»', pA . ̂ A'. ,pá" . . . = — í J i e - 27^ 

y'n/ 
ej"'(27r)i»' 

r y ^ gi(-n'-fri 

To authorize the proposed rejection of n observations, we 
must have 

P<P, 
which gives at once 

(^)"V''("^-i)(4x)"<r2/" 

The value of y must be determined by the condition that Pj 
is a maximum, and therefore ^"T/'"'= T/" (1 — 7/)"' is' a maximum. 
Taking the logarithm of this quantity, and putting its differential 
equal to zero, we obtain for the maximum 

•^ = 1 ' = ^ ~ y 
77 n' rí 
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whenoo 

" J 

771 

Putt ius then 
71" í»" T" = 3ry-': 

.R = ei^''-i) (4,x) î (96) 

the limiting value of x, according to the above inequality, must 
be that which satisfios the equation 

(^r R' 

which gi\ies the required criterion. 
The relatíon of £; to e must depend on the nature of the equa-

tíons which correepond to the rejected obsei-vations; but it will 
give a suffieient approximation to assume that the excess of Sá'^ 
over IJ^ is only equal to the snm of the squares of the errors of 
the rejected observations, which gives the equation 

(m — ;t) e' — TlxV = (??? — /x — 77) e^ 

whence 
mi 
n 

I £ j \ ' _ m — /i—v 

\ e / 771 — /i — ; 

which combined with the above equation gives 

i-nx' IT\J:2L. 
/í — 71 \jt} 

m — /t 

m 

Putting, for brevity, 

( rr \ 2J! D ^ (97) 
we find 

m — /i — 71 
(1 - ^') (98) 

Table X.A gives the logarithms of Tand B, cømputed by (96) 
with the aid of Table IX. W e can, therefore, by successive 
approximatíons, find the value of x wbíe-íii satîsfies the equations 
(97) and (98). Since B involves x, we must first assume an ap-
proximate value of JÍ (which the observed residuals will suggest), 
with which /2 will be computed by (97), and hence x by (98). 

Vot. II.—36 
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With this first approximate value of x, a new value of log R will 
be taken from the table, with which a second approximation to 
X will be found, Two or three approximations wiU usually be 
found sufficient. 

In the application of this criterion, it is to be remembered 
that it must not be nsed to reject n observations unless it has 
previously rejected n — 1 observations. Hence we mnst first de-
termine tbe limiting value of x for the hypotheeie of one donbtful 
observation, or n = 1, and if this rejects one or more observa' 
tions, we can pass to the next hypotbesis, n = 2, OT n = S, &c.; 
and so on until we arrive at the limit which excludes no more 
observations. 

The above arrangement of the tables is nearly the same as 
that given by Dr. B. A. GOULD,* who was the first to prepare 
such tables and thns render the criterion ava lable to practical 
computers. The only difference is in my table of Log. T, which 

have fonnd in practice to be more convenient than the corre-
sponding one of Dr. GOULD. 

E X A M P L B . — " T o determine the limit of rejection of one or 
two observations in the case of fifteen observations of the vertical 
semidiameters of Venus, made by Lieut. HBRNDON, with the 
meridian circle at Washington, in the yéar 1846." In the reduc-
tion of these observations, Prof. PBIRCB assumed two unkno-wn 
quantities, and found the following residuals {v): 

— 0".30 
— 0 .44 
+ 1 .01 
+ 0 .48 

— 0".24 
+ 0 .06 
+ 0 .63 
— 0 .13 

— r'.40 
— 0 .22 
— 0 .05 
+ 0 .20 

+ 0".18 
+ 0 .39 
+ 0 .10 

We have here m = 15, ft = 2, [yv'] = 4.2545, whence 

4.2545 
13 

= 0.3273, e = 0".572 

W e first try the hypotbesis of one doubtful observation, or 
n = 1. Assuming x = 2, the successive approximations may 
be made as follows: 

* Report of the Superinteudeut of the U. S. Coast Survey for 1854, Appendix, p, 
131*; also Astron. joufnal, Vol, IV, p, 81. 
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2;i 
>?l — 7» 

J7» — /l-

Ist Approx. 

Table X.A. log T 8.404 
" \ogR 9.309 

T 
loff - 9.095 

^ R 
log -l' 9.871 

log (1 — »̂) 9,410 

logl2 1,079 

Iog(x= —1) 0.489 
logx' 0,610 

X 2,02 

12 

2d Approi, 

8,4044 
9.3062 

9.0982 

9,8712 

9,4093 

1,0792 

0.4885 
0.6106 
2.020 

Hence xs = 1".16, which exeludes the residual 1".40. 
We may now try the hypothesis ?i = 2. Commencing again 

with tho assumption x = 2, we have—• 

m—Tt 13 

11 
0 

log(; 

l o g T 
log-B 

^°s| 
log /.' 

-X^) 

11 
o g - ^ 
^ - 1 ) 
log ' 

X 

Ist 
Approx. 

8.7210 
9.309 

9.412 

9.819 

9.531 

0.740 

0.271 
0.457 
1.69 

2d 
Approx. 

8.7210 
9.3622 

9.3588 

9.8027 

9.5624 

0.7404 

0.3028 
0.4783 
1.734 

3d 
Approx. 

8.7210 
9.3544 

9.3666 

9.8051 

9.5582 

. 0.7404 

0.2986 
0.4755 
1.729 

4th 
Approx. 

8.7210 
9.8553 

9.8657 

9.8048 

9.5587 

0.7404 

0.2991 
0.4758 
1.7295 

Hence xs = 0".989, which excludes the residuals 1".40 and 1".01. 
If we now try the hypothesis n = 3, we shaU find, in the same 

manner, xe = 0".887, which does not exclude the residual 0".63: 
so that the residuals 1".40 and 1".01 are in this case the only 
abnormal ones. Eejecting these residuals, we shaU now find 
£ j=0" .339 .* 

59. In order to facUitate the appUcatíon of PEIRCB'S Criterion 

* For another example, in which there Trere four unknoTrn quautities, and in 
•îrhich the criterion was very useful, see p. 207 of this volume. 
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in the cases most commonly occurring in practice, Table X. (first 
given by Dr. GOULD) has been computed by the aid of the log T 
and log B, according to the preceding method. 

The first page of this table is to be used when there is bnt 
one unknown quantity {p. = 1), or for direct observations. I t 
gives, by simple inspeetion, the value of x̂  for any nnmber of 
observations from 3 to 60, and for any number of doubtful obser-
vations from 1 to 9. 

The second page is used in the same manner when there are 
two unknown quantities (// = 2). 

ExAMPLB.—Same as in the preceding article.—^Having found, 
as above, e^= 0.3273, we first take from Table X. for ;z = 2 the 
value of x' corresponding to m = 15 and n = 1, and find 

x̂  = 4.080, whence xV = 1.8354, xe = 1".16 

which rejects the residual 1".40. 
Then, with m = 15, n = 2, we find, from the same page, 

x' = 2 .991, xV = 0.9790, xe = 0".989 

which rejects the two residuals 1".40 and 1".01. 
Passing, then, to the hypothesis n = 3, we find 

x'' = 2.403, xV = 0.7865, xe = 0".887 

which does not exclude any more residuals. 

60. The above investigation of the criterion involves some 
principles, derived from the theory of probab lities, which may 
seem obscure to those not familiar with that branch of science. 
Indeed, the possibil ty of establishing any criterion whatever for 
the rejection of doubtful observations, by the aid of the calculus 
of probabilities, has been questioned even by so distingnished an 
astronomer as A IRY.* I t is eaey, however, to derive an approxi-
mate criterion for the rejeciion of one doubtful observation, directly 
from the fundamental formula upon which the whole theory of 
the method of least squares is based. 

W e have seen that the funct on 

* Bemarks upon PEIBCE'S Criterion, Asironomical Journal (Cambridge), Vol. IV. 
p. 137. Professor WINLOCK'S reply to the objeetions of the Astrouomer Royal -will 
be found in the same journal, VoL IV. p. 145, 
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2 fi,*' e,pf) = -^^- 1 e-«<íí 

(the value of which is given in Table IX.A) represents, in general, 
the number of orrors loss than a = rt' which may be expected to 
occur in any o.xtonded sorios of obsorvations when the whole 
number of obsorvatious is taken as unit}-, r being the probable 
error of an obsorvation. If this be mnltiplied by the number of 
obsorvati(.ins = //;, wo shall have the aotual number of errors less 
than ri'; and hence the quantity 

771 — 771 , Q(pt') = 777 [ 1 — ØOsí')] 

expresses the number of errors to be expected greater than the 
limit ri'. But if this quantity is less than -i-, it will follow that 
an error of the magnitude ri' wiU have a greater probability 
against it than for it, aud may therefore be rejected. The limit 
of rojection of a singlc doubtfid observation, according to this simple 
rnle, is, therefore. obtained from the equation 

i = ??i [1 — øOoí')] 
or 

Ø(^í') = ^^^HÍ—^ (99) 
2771 

K we express the limiting error under the form xe, e being the 
mean error of an observation, we shall have 

x = — = 0.6745 í' (100) 

With the value of @{pt') given by (99), we can find i' fi-om Table 
IX.A, and hence x by (100). 

ExAMPLE.—To find the limit of rejection of one of the obser-
vatíons given on p. 562. We there have m = 15, e = 0".572; 
and hence, by (99), @{pi') = 0.96667, which in Table X.A cor-
responds to f = 3.15.5, whence, by (100), x = 2.128, xe = 1".22, 
which agrees very nearly with the limit found by PEIRCE'S 

Criterion. 
By the successive application of this rule (with the necessary 

modifications), it may be used for the rejection of two or more 
doubtful observations, and I have, by means of it, prepared a 
table which agrees so nearly with Table X. that, for practical 
purposes, it may be regarded as identical with that table. For 
the general case, however, when there are several unlcnown 
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quantities and several doubtful observations, the modifications 
which the rule requires render it more trôublesome than PBIRCE'S 

formula, and I shall, therefore, not develop it further in this 
place. What I have given may serve the puipose of giving the 
reader greater confidence in the correctness and value of PEIECE'S 

Criterion. 



TÆBLii Lí.. Probability of Errors. 
(.\lo!hoi.l of l.e:i,i| S(|uuic^.) 

0(1) 'dt 

0 . 0 « 
0 .01 
0 . 0 3 
0 . 0 3 
0 .04 

0 . 0 3 
0 .06 
0.07 
0 .08 
0 . 0 3 

0 . 1 0 
0 .11 
0 . 1 , : 
0.13 
0.14 

0.1.-, 
0 . 1 6 
0 .17 
0 . 1 8 
0 . 1 9 

o.-zo 
O.^il 

O..::Í 
0.^1 

0 . 2 5 
0.-.JG 
0.̂ 27 

0.20 

0 . 3 0 
0 . 3 1 
0 . 3 2 
0 . 3 3 
0 . 3 4 

0 . 3 5 
O.30 
0 . 3 7 
0 . 3 8 
0 . 3 9 

0 . 4 0 
0 . 4 1 
0 . 4 2 
0 . 4 3 

o.n 
0 . 4 5 
0 . 4 6 
0 . 4 7 
0 . 4 8 
0 . ^ 

0 . 5 0 

e(í) 

O.OOOCK5 

.oii.:S 

.035*4 

.04511 

0.05657 
.06-0; 
.c-!ÎS6 
.0900S 
. l o i i g 

c. 11246 
. I ; ; 6 : 
••34-6 
. l 4 í S -
.15695 

0.16JCC 
. i - y c i 
. iSy99 

•-W° 
.25521 

.265-c 

o . ; - 6 3 ; 

•=9 '4-
.30788 
.3182S 

0.32863 
.33891 

•349'3 
.35928 
.36936 

0.37938! 

•38933 
.39921 
.40901 
.4.1874 

0.42839 

•43797 
•44747 
.456'J9 
.46623 

0.47548 
.48466 

•49375 
.50275j 

.51167J 

0.52050I 

mir. 

12S 

12S 

12.S 

12-

i 6 

I2Í 

1^4 

122 

120 

liS 

116 

"4 
111 

loS 

101 
098 
095 
090 
0S6 

oSi 
0-8 
072 
068 
063 

°57 

052 
046 

°3S 
028 

022 

015 

008 

002 

993 
988 
980 

973 
965 

958 

95-
942 

934 
925 

918 
909 
900 

892 
883 

0.50 
0.51 
o.ô-.; 
o..-,:( 
0.Ô4 

o.ri,-, 
0.50 
0,57 
0.58 
0.59 

O.GO 
0.61 
0.6-2 
0.63 
0,64 

0.G5 
0.6G 
0.67 
0.68 
0.69 

0.70 
0.71 
0.7-2 
0.73 
0.74 

0.75 
0.76 
0.77 
0.78 
0.79 

0.80 
0.81 
0.82 
0.83 
0.84 

0.85 
0.80 
0.87 
0.88 
0.89 

0.90 
0.91 
0.92 
0.93 
0.94 

0.95 
0.96 
0.97 
0.98 
0.99 

1.00 

8(0 

°-̂ ^̂ >̂  874 
•;-•'-•* 866 

'^\''^f í!>-6 
>+'•-*" S4S 
•55494 gjg 

^•5b;3 
-16 

S30 

\. 8îo 
••%'>'" 8.0 

•5*''*^^ 802 
•5.;5.4 ^,, 

0.603S61 „ 
.61168 ' ' -

. 6194 . : , ; 

6- - ' 754 

0.64203 

.64938 

.65663 

.6637S 

•67:84 

0.6-780 

.69143 

.6981C 

•70468, 

o. 71116 i 

;s 135 

•7'"54 
-3Sr 

7 1 • 

696 

687 

676 

667 

658 

648 

638 

628 

61Q 

-73°°' 609 

-736'°, 600 

O.742I 

.74800. 59° 

•"38' 7, 
-7595̂ - l's^ 
.76514 •' 
' ^ 553 

0.77067' 
.776101 5 « 
•78.44 llt 
.78669 '"î 
.79184 5'3 
^ S°7 

0.79691 
.80188, w 
.80677 ^^^ 
.81,56 +79 

0.82,080 
.82542 « 3 

''A T/e 
• ^ ' ' ' « 

^ ' I 419 
0.84271 '°i 

l.OU 
l.Ot 

i.o-z 
1.03 
1.04 

1.05 
1.06 
1.07 
1.08 
1.09 

1.10 
1.11 
1.12 
1.13 
1.14 

1.15 
I.IG 
1.17 
1.18 
1.19 

1.20 
1.21 
1.-22 
1.23 
1.21 

1.25 
l.*26 
1.27 
1.28 
1.29 

1.30 
1.31 
1.32 
1.33 
1.34 

1.35 
1..36 
1.37 
1.38 
1.39 

1.40 
1.41 
1.42 
1.43 
1.44 

1,45 
1.46 
1.47 
1.48 
1.49 

»iíi 

0.842-0 

.84681 

.Ss-S4 

.85478 

.S5865 

0.86244 
.86614 
•86977, 

•S7333 
.8-6S0 

0.88021 

.88353 

.88679 

.8899-

.S95-8 

0.89612 

.S9910 
.902001 
.904841 
.90761! 

0.910-311 
.«/1296 

•9'S53; 
.91805J 
•9=0511 

0.92290 
.92524 
.92751 

•9-97 3 
.93190 

0.93401 
.93606 
.938071 
.94002 
.94191-

0,94376 
,94556 

•9473'i 
,94902' 

.95067 

0.95229 

•953ÍÍ5 

•95538' 

.956S6 

.95830 

0.95970 

.96105 

.96237 

.96365 

.96490 

4 " 

4°3 
394 
3S7 

379 

3-0 

363 

356 

34-

341 

326 

318 

3 " 
304 

298 

290 

2S4 

--7 
270 

265 

257 
252 
246 
239 

217 

211 

205 

2CI 

'95 
189 
185 

1 

1.50 
1.51 

1.53 
1.51 

1.55 
1.5(1 
1.57 
1.58 
1 .59 

l.CO 
1.61 
1.02 
1.G3 
1 .64 

1.50 0.96611 

175 
171 
165 
162 

,56 

•53 
14S 

'44 
140 

135 
132 
128 
125 
121 

1.65 
1.66 
1.07 
1.68 
1.69 

1.70 
1.71 
1.72 
1.73 
1.7 4 

1.75 
1.76 
1.77 
1.78 
1.79 

1.80 
1.81 
1.8:̂  
1.83 
1.84 

1.85 
1.86 
1.87 
1.88 
1.89 

1.90 
1.91 
1.92 
1.93 
1.94 

1.95 
1.96 
1.97 
1.98 
1.99 

2.00 

(-1 (í) 

0.96611 

.96728 

.96841 

.96952 

•97059 

0.97162 

.97263 

.97360 

•97455 
.97546^ 

0.97635! 

.97721 

.97804 

.97884' 

.97962 

0.98038 

.98110 

.98181 

.98249 

•9Í*3'5 

0.98379 

.98441 

.98500 

.98558 

.98613 

0.98667 

,98719 

.98769 

.98817 

.98S64, 

0.98909 

.98952 

.98994 

.99035 

.99074 

0.991II 

•99147 
.991S2 
.99216 
.99248 

0.99279 
.99309 

•99338 
.99366 
.99392 

0.99418 

•99443 
.99466 

,99489 
,99511 

0.99532 

iiin-. 

117 

" 3 

1II 

107 

103 

101 

97 

95 

9' 

86 

83 
80 

78 
76 

7^ 
7' 
68 
66 
64 
62 
59 
58 
55 
54 

5^ 
50 
48 
47 
45 

43 
4^ 
4' 
39 
37 

36 

35 
34 
32 

31 

3° 
29 
28 
26 
26 

^5 
^3 
23 

VoL. II.—.38 69.3 



TABLE IX.A. Probability of Errors. 
(Method of Least Squares.) 

í' 

0.00 

0.01 

0.02 

0.03 
0.04 

0.05 

O.Oo 

o.or 
i 0.08 
1 0.09 

1 0.10 

i 0.11 

0.12 

0.13 

0.14 

0.15 

O.IG 

0.17 

0.18 
0.19 

0.20 

0.31 

0.33 

0.33 

0.24 

0.35 

0.26 

0.27 

0.28 
0.39 

0.30 

0.31 
0.32 

0.33 
0.34 

0.35 
0.3S 

0.37 

0.38 

0.39 

0.40 

0.41 

0.43 

0.43 
0.44 

0.45 
0.46 

0.47 

0.48 
0.49 

0.50 

2 C'' 
0(í''') = -7- ^ 

•\/^J 0 

ø(pi') 

o.ooooo 

.00538 
,0107^ 

.01614 

.02152 

0.02690 

.03228 

.03766 

•04303 
.04840 

0.05378 

.05914 

.06451 

.06987 

.07523 

0.08059 

.08594 

.09129 

.09663 

.10197 

O.I073I 

.11264 

.11796 

.12328 

.12860 

0.I339I 

.13921 

.14451 

.14980 

.15508 

0.16035 

.16562 

.17088 

.17614 

.18138 

0.18662 

.19185 

.19707 

.20229 

.20749 

0.21268 

.21787 

.22304 

.22821 

.23336 

0.23851 
.24364 

.24876 

.25388 

.25898 

0.26407 

Diff, 

538 
538 
538 
538 
538 

538 
538 
537 

537 

538 

536 

557 
536 
536 
536 

535 
535 
534 
534 
534 

533 
532 

53-
532 

531 

530 

530 
529 

528 

527 

5^7 
526 
526 

524 

524 

523 

522 

522 

520 

5«9 

519 
5'7 

5'7 

515 

515 

S'3 
512 

512 

510 
509 

í' 

0.50 
0.51 
0.52 
0.53 
0.54 

0.55 
0.5G 
0.57 
0.58 
0.59 

0.00 
0.31 
0.62 
0.63 
0.64 

0.65 
0.66 
0.67 
0.68 
0.69 

0.70 
0.71 
0.72 
0.73 
0.74 

0.75 
0.76 
0.77 
0.78 
0.79 

0.80 
0.81 
0.82 
0.83 
0.84 

0.85 
0.83 
0.87 
0.88 
0.89 

0.90 
0.91 
0.92 
0.93 
0.94 

0.95 
0.98 
0.97 
0.98 
0.99 

1.00 

-"dt 

&(pi') 

0.26407 

.26915 

.27421 

.27927 

.28431 

0.28934 

.29436 

.29936 

•30435 
.30933 

0.31430 

•3'9^5 
.32419 

.32911 

.33402 

0.33892 

.34380 

.34866 

•3535^ 

•35835 

0.36317 

•36798 
.37277 

•37755 
.3-8231 

0.38705 

.39178 

.39649 

.40118 

.40586 

0.41052 

.41517 

•41979 
.42440 

.42899 

0.43357 

•43813 
.44267 

.44719 

.45169 

0.45618 

.46064 

.46509 

.46952 

•47393 

0.47832 
.48270 

•48705 
.49139 

•49570 

u. 50000 

Ditr. 

508 

506 

506 

504 

503 

502 

499 
498 

497 

495 

494 
492 
49' 
49° 
488 
486 
486 
483 
482 

481 

479 
478 
476 

474 

473 

47' 
469 
468 
466 

465 
462 
461 

459 
458 
456 

454 

452 
450 
449 
446 

445 
443 
441 

439 
438 

435 
434 
431 
43° 

í' 

1.00 
1.01 
1.03 
1.03 
1.04 

1.05 
1.06 
1.07 
1.08 
1.09 

1.10 
1.11 
1.12 
1.13 
1.14 

1.15 
1.10 
1.17 
1.18 
1.19 

1.20 
1.21 
1.22 
1.23 
1.24 

1.35 
1.36 
1.27 
1.28 
1.29 

1.30 
1.31 
1.32 
1.33 
1.34 

1.35 
1.36 
1.37 
1.38 
1.39 

1.40 
1.41 
1.42 
1.43 
1.44 

1.45 
1.46 
1.47 
1.48 
1.49 

1.50 

ø(pí') 

0.50000 

,50428 

,50853 

,51277 

.51699 

0.52119 

•5^537 
.52952 

.53366 

•53778 

0,54188 

•54595 
.55001 

.55404 

.55806 

0.56205 

.56602 

.56998 

•57391 
.57782 

0.58171 

•58558 
.58942 

•593^5 
•59705 

0.60083 
.60459 

.60833 

.61205 

.61575 

0,61942 

.62308 

.62671 

.63032 

.63391 

0.63747 

.64102 

.64454 

.64804 

.65152 

0.65498 

.65841 

.66182 

.66521 

.66858 

0.67193 

.671:26 

.67856 

.68184 

.68510 

0.68833 

i' = 

Dilf. 

428 

425 

424 

422 

420 

418 

415 
414 
412 
410 

407 
406 

403 

399 

397 
396 

393 
391 
389 

387 

384 

383 

380 

378. 

376 

374 
372 
37° 
367 

366 

363 

361 

359 
356 

355 
352 

35° 
348 
346 

343 
341 
339 
337 

335 

333 
33° 
328 

326 
323 

a 

r 

t' 

1.50 
1.51 
1.52 
1.53 
1.54 

1.55 
1.56 
1.57 
1.58 
1.59 

1.60 
1.61 
1.62 
1.63 
1.64 

1.65 
1.66 
1.67 
1.68 
1.69 

1.70 
1.71 
1.72 
1.73 
1.74 

1.75 
1.76 
1.77 
1.78 
1.79 

1.80 
1.81 
1.82 
1.83 
1.84 

1.85 
1.86 
1.87 
1.88 
1.89 

1.90 
1.91 
1.92 
1.93 
1.94 

1.95 
1.96 
1.97 
1.98 
1.99 

2.OO 

Ø(PO 

0.68833 

.69155 

.69474 

.69791 

.70106 

0.70419 

.70729 

.71038 

•7'344 
.71648 

0.71949 

.72249 

Diff. 

322 

319 
317 
315 
313 

310 
309 

306 

304 

301 

300 

.72546, ̂ ^{ 

.72841 

•73'34 

i95 

293 

291 
°-734^5, ,8 
•73714! ̂ gg 

•'''^°°°'. 2«t 
•74285 ! ° 5 
•74567 

0.74847 

.75124 

.75400 

•75674 

•75945 

0.76214 

76481 

.76746 

.77009 

.77270 

0.77528 

•77785 
.78039 

.78291 

.78542 

0.78790 

.79036 

.79280 

.79522 

•79761 

0,79999 

,80235 

,80469 

,80700 

,80930 

0.81158 

.81383 

.81607 

.81828 

.82048 

0.82266 

280 

277 

276 

274 
271 

269 

267 

265 

263 

261 

258 

257 
^54 
2^2 
251 

248 

246 

244 

242 

239 

238 

236 

234 
231 

230 

228 

i 225 

224 

221 
220 

218 

594 



TABLE IX.A. Probability of Errors. 
(Mi'thod of l.t'usi Si|iiai-is.J 

ei . ' - , - .C 
r 

3.0O 
2 . 0 1 
2 . 0 : 
2 . 0 3 
2 . 0 1 

2 . 0 5 
2 . 0 J 
2 ,07 
2 . 0 . 
2 . 0 J 

2 . 1 0 
2 . 1 1 
2 . 1 2 
2 . 1 3 
2 . U 

2 . 1 5 

2.ia 
2 . 1 7 
2.1!Î 
2 . 1 0 

2 . 2 0 

.̂-n 
0 ^ 

2.:.-i 
2 . 2 4 

2 . 2 5 

B(ft) j 

1 
0.S2266 

.S24Sl 

.S269; 

.8:9=7 
•83117 

o.S-,324 

.S5530 

•S;-34 
•S3936 

•84 '37! 

^•84335 
.S453 ' 
.S4-26 
.S4.J19, 
.^5109. 

0.85298 
.S5486 
.85671 

-85S54 
.86036 

0.86216 

.86394 

.865-0 

.86745 

.86917 

0.8-088 

2,-27 
2 . 2 8 
2 . 3 9 

2.30 
2.31 
2.32 
2.33 
2.34 

2 . 3 5 
2 . 3 6 
2 . 3 7 
2 . 3 8 
2 . 3 9 

2 . 4 0 
2 . 4 1 
2 . 4 2 
2 . 4 3 
2 . 4 4 

2 . 4 5 
2 . 4 6 
2 . 4 7 
2 . 4 8 
2 . 4 9 

2 . 5 0 

87258 

•874=5 
.87591 

•«7755 
0.87918 

.88078 
88237 

.88395 

.88550 

0.88705 
.88857 
.89008 
.89157 
•89304 

0.89450 

•89595 
.89738 
.89879 
.90019 

0.90157 

.90293 

.90428 

.90562 

.90694 

0.90825 

- ? 
214 

2:(.i 

20 + 

201 

98 

96 

95 

9 

90 

89 

88 

85 

<-•«</< 

«tp|-) 

r 

2.50 

2.51 

2.52 

2.53 

2.51 

-4.JÔ 

'2.57 

2.58 

2.50 

•2.60 
2.G1 
2.02 
2.03 

2.0; 

2.05 

2.0-,-. 

2.67 

2.68 

2.09 

2.70 
2.71 
2.72 
2.73 
2.74 

2.75 
2.70 
2.77 
2.78 
2.79 

2.80 

2.81 

2.83 

2.83 

2.84 

2.85 

2.80 

2.87 

2.88 

2.89 

2.90 

2.91 

2.92 

2.93 

2.94 

2.95 

2.96 

2.97 

2.98 

2.99 

3.00 

90825 

90954 

91 oS 2 

91 zoS 

91332 

91456 
9.57S. 

9169S 
91S17 

9'93S 

92051 

92166 

92280 

9=392i 
9=5°3' 

92613 
92721 

92828 

9Î934Í 
93038J 

93141 

93=43 

95 344 

93443 

9354' 

93638 
937 34 
93828 
95922 
94014 

94105 

9419; 
942S4 

94371 
94458, 

94543. 
94627 
94711 
94793 
94874 

94954J 
95033' 
95111! 

95'87. 
952631 

95338 
95412' 

95485 
95557 
956281 

95698! 

99 
98 
97 

96 
94 
94 
92 

9' 

90 

89 

87 

87 

85 

84 
84 
82 
81 
80 

79 

78 

76 

76 

75 

74 
73 
72 

71 
70 

3.00 
3.01 
3.02 
3.03 
3.04 

3.05 

3.00 

3.07 

3.08 

3.09 

3.10 
3.11 
3.13 
3.13 
3.14 

3.1 
3.16 
3.17 

3.18 

3.19 

3.20 
3.21 
3.22 
3.23 
3.24 

3.25 

3.20 

3.27 

3.28 

3.29 

3.30 
3.31 
3.32 
3.33 
3.34 

3.35 

3.36 

3.37 

3.38 

3.39 

3.44 

3.45 
3.46 
3.47 
3.48 
3.49 

3.50 

e{pO 

95698 

95767 

95835 
95902! 
9596SÍ 

96033 

96098 

96161 

96224 

96286 

96346 
96406! 
964661 
96524! 
96582! 

96638: 

96694 

96749: 
96804 

968S7j 

96910 

96962 

97013 
97064 

97"4J 
97163 
9 7 2 1 1 ' 

97 = 59 
97306 

9735 = 

97397 

9744= 

974S6 

97530 

97573 

97615 

97657 

97698 

97738, 
977781 

97817 

97855! 
97893! 

97930 

97967 

98003 
98039 
98074 
98109 
98143 

98176 

69 

68 

67 

66 

65 

65 
63 
63 
62 
60 

60 

60 

58 

58 

56 

56 

55 

55 

53 

53 

5= 
5' 
5' 
5° 
49 

48 
48 

47 
46 

45 

45 
44 
44 

43 
4= 

4= 

4' 

40 

40 

39 

38 
38 
37 
37 
36 

36 

35 

35 

34 

33 

3.50 

3.60 

3.70 

3.80 

3.90 

4.00 

4.10 

4.'-:o 

4.30 

4.40 

l..'iO 

4.60 
4.70 
4.80 
4.90 

5.00 
X 

® (pí') 

3.98176 

.98.182 

•98743, , 
.98962 
.99147I 

>.99302: 
•9943' 
•99539 
.99627 
.99700 

1.99760 

.99808 

.99848 

•99879 
.99905 

..99926 

.OCOGO 

ã9ã 



TABLE X. Peiroe's Oríterion. 

VALIIES OF X' FOB 11 = 1. 

m 

3 
4 
5 

6 
7 
8 
9 

10 

11 
13 
13 
14 
15 

16 
17 
18 
19 
2 0 

2 1 
3 2 
2 3 
2 4 
2 5 

2 6 
2 7 
2 8 
2 9 
3 0 

31 
32 
3 3 
3 4 
3 5 

3 6 
37 
38 
3 9 
40 

41 
42 
4 3 
4 4 
45 

4 8 
47 
48 
49 
5 0 

51 
5 2 
.53 
54 
5 5 

5 6 
57 
58 
5 9 
60 

n 

1 

1.4S0 
1.912 
2,278 

2.592 
2.866 
3.109 
3^3=7 
3.526 

^•707 
^•875 
4.029 
4^i73 
4.309 

4.436 
4^555 
4.668 
4.776 
4.878 

4-975 
5.068 
5-157 
5.242 
^•324 

5.403 
^•479 
S^SS^ 
5.622 
5.690 

5-756 
5.820 
5.882 
5.942 
6.001 
6.058 
6.113 
6.167 
6.219 
6.270 
6.320 
6.369 
6416 
6.463 
6.508 
6.552 
6.596 
6.639 
6.681 
6.720 
6.761 
6.800 
6.838 
6.876 
6.913 
6.950 
6.986 
7.021 
7.056 
7.090 

2 

1.163 
1.439 
1,687 
1.910 
2.112 
2.295 
2.464 
2.621 
2.766 
2.902 
3.030 
3.151 
3.264 
3^37» 
^•475 
^•57' 
3.664 

^•755 
3.840 
3.923 
4.002 
4.078 
4.151 
4.222 
4.291 
4.358 
4.422 
4.484 
4^545 
4.604 
4.661 
4^7 > 7 
4.771 
4.823 
4.874 
4.925 
4-974 
5.022 
5.069 
5.114 
S-'59 
5.202 

S-=45 
5.287 
5.328 
5.368 
5.408 

5^447 
5.484 
5.522 
5-559 
S-595 
5.630 
5.665 
5.699 
^•733 
5.766 

3 

1.208 
1.409 
1.589 
^•753 
1.904 
2,045 
2.176 
2.299 
2.416 
2.526 
2.630 
2.729 
2.824 
2.914 
3.001 
3.084 
3.164 
3.240 
^•3i5 
^ • 3 8 T 

3.456 
^•5=3 
3.588 
3.651 
3.712 

3.772 

3-? 9 
3.884 
^•939 
3.992 
4.044 
4.095 
4.144 
4.192 
4.239 
4.285 
4-33 ' 
4-375 
4.418 
4.460 
4.501 
4.542 
4.581 
4.620 
4-657 
4.695 
4.732 
4.768 
4.804 
4.839 
4.873 
4.907 
4.941 
4.974 
5.006 

4 

1.045 
1.229 
1.388 
1.531 
1.662 
1.785 
1.901 
2.009 
2 . I I I 

2.207 
2.300 
2.389 
2.474 
2.556 

2.634 
2.709 
2.782 
2.852 
2.920 
2.986 
3.049 
3.111 
3.171 
3.229 

3.285 
3.340 
^•394 
3.446 
^•497 

3-547 
3-595 
3-643 
3.689 
^•734 

3-779 
3.822 
3.865 
3.906 
3-947 

3-987 
4.026 
4.065 
4.103 
4.140 

4.176 
4.212 
4.247 
4.282 
4.316 

4-349 
4.382 
4.415 
4-447 
4.478 

5 

1.091 
1.242 

1-373 
1.492 
1.604 
1.709 
1.807 
1.898 
1.985 
2.069 
2.150 
,2.227 
2.301 
2-373 
2.442 
2.509 
2-573 
2.636 
2.697 
2.756 

Hl'^ 2.869 

2.923 
2.976 
3.028 
3.078 
3.127 

3-I74 
3.221 
3.267 
3.312 
3.356 

3.398 
3.440 
3.481 
3.521 
3.561 

3.600 
3.638 
3.675 
3.712 
3^748 
3.784 
3.819 
3^853 
3.887 
3.920 

3.952 
3.984 
4.016 
4.047 
4.078 

6 

1.122 
1.249 
1.362 
1.465 
1.561 
1.651 
1.736 
1.817 
J.895 
1.970 
2.041 
2.109 
2.176 
2.240 
2.302 

2.362 
2.420 
2.477 
2.532 
2.586 

2.638 
2.689 
2.738 
2.787 
2.834 
2.880 
2.926 
2.970 
3.013 
3-°5S 
3.097 
3-138 
3.178 
3.217 
^•255 
3.293 
3.330 
3.366 
3.401 
3^436 

3^47i 
Í-S°i 
^•538 
^•57i 
3.603 

3.635 
3.666 
3.697 
3.728 
3^7S8 

î 

1.018 
1.145 
1.255 
^•354 
1.445 
1.529 
1.609 
1.685 
^•757 
1.827 
1.893 
^•957 
2.oig 
2.079 

2.137 
2,194 
2.249 
2.302 
2.354 

2.404 
2.454 
2.502 
2.549 
2.594 

2.639 
2.683 
2.726 
2.768 
2.809 

2.849 
2.888 
2.927 
2.965 
3.002 

3.039 
3-°75 
3.110 
^•i45 
^•i79 
3.213 
3.246 
3.279 
^ • 3 " 
^•342 

^•373 
3.404 
^•434 
^•463 
3.492 

8 

1.053 
1.163 

1.259 
^•347 
1.428 
1.504 
1.576 

1.644 
1.710 
1.773 
1.833 
1.892 

1.948 
2.003 
2.056 
2.108 
2.158 

2.267 
2,255 
2,302 
2.347 
2.392 

2.436 
2.478 
2.520 
2.561 
2.601 

2.640 
2.678 
2.716 
2.753 
2.789 

2.825 
2.860 
2.894 
2.928 
2.962 

a.994 
3.027 
3.059 
3.090 
3.121 

3.151 
3.181 
3.210 
3.239 
3.268 

9 

1.080 
1.176 
1.261 
1.341 
1.415 

1.483 
1.549 
1.612 
1.671 
1.729 

1.784 
1.838 
1.891 
1.941 
1.990 

3.038 
2.085 
2.130 
2.175 
2.218 

2.261 
2.302 
^•343 
2.383 
2.422 

2.460 
2.497 
2.534 
2.570 
2.606 

2.641 
2.675 
2.708 
2.741 
2.774 

2.806 
2.838 
2.869 
2.899 
2.929 

2.959 
2.988 
3.017 
3.046 
3.074 

596 



TABLE X. Peirce's Criterion. 

V.M.l'l'.S OF * ' FOIl .11 = 2 . 

i 

4 
a 

6 

8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
•20 

21 

2 3 
24 
2 5 

2 6 
. 2 7 
: 2 8 

2 9 
3 0 

3 1 
32 
3 3 
3 4 
3 5 

3 6 
37 

' 38 
3 9 
40 

41 
, 4 3 
•' 4 3 

4 4 
45 

1 4 6 
1 47 

48 
4 9 

, 5 0 

i 5 1 
! 5 2 
î 5 3 

5 1 
5.5 

1 
5 6 i 57 

! .58 
1 5 9 

6 0 

1 1 

, t 
1.4S4 
1.SS7 

2.230 
2.52S 
=-"9î 
3.029 
3=4= 

3-4"-
3-0 it> 
3.-82 
3.950 
4.CS0 

4'= 15 
4^34= 
4.402 
^ • í -6 
4.6S4 

4 . - S -
4.8S5 
4 9 7 9 
5.069 
^• '5S; 
5.238 
^•3 '7 
5^394 
5^46S, 
5^539' 
5.608Í 
5-675' 
5-740 
5.;-: 03 
5.S64 

5-9=4 
5.981 
6,037 
6.092 
6-.45, 
6.197: 
6-247; 
6.297 
6-345 
6.392 

6.438J 
6.483! 
6.527: 
6.570 
6.612 

6.653 
6.694 
6^734; 
6,773 
6,811 

6,84«! 
6,885: 
6,921 
6,9571 

.6.993 j 

2 

1.235 

'•479 
1.705 
1.913 
2.102 
= • = - -

2.440 
I.5>)2 
2.-34 
i .So-
2.991 
3.109 
3.221 
3.328 
3-4='J 
3.526 

3.619 
5.-0-
3-"92 
3-874 
3953 
4.029 
4.103 
4 . ' 7 4 
4.242 
4.309 

4-373 
4 4 3 5 
4.496 
4^5 5; 
4.613 

4.669 
4.-23 
4.-76 
4.S27 
4.878 

4.927 
4-975 
5.022 
5.068 
5.113 

S-'S7 
5.200 
5.242 
5.283 
5^323 
5.362 
5.401 
5.440 
5^478 
S-S^S 

S^SS' 
^•587 
5.622 
5.656 
5.690 

3 

1.114 
1.2SS 
'•459 
1.620 
1.771 

1.915 
2.046 
2.171 
2.290 
2.403 
2.510 
2.611 

.70S 
2.S01 

.890 

2975 
3-057 
3136 
3.212 
3.286 

^•357 
3.426 
3.492 
^•S56 
3.619 

3.680 
3-739 

. 3796 
3.852 
3.906 

3^9S9 
4.011 
4.061 
4.111 
4.159 

4.206 
4.252 
4.297 
4^34' 
4.384 
4.426 
4.468 
4.508 
4.548 
4-587 
4.626 
4.663 
4.700 
4.736 
4.772 

4.807 
4.842 
4.876 
4 9 0 9 
4.942 

4 

1.025 
. . . 6 3 
1.304 
í '439 
1.566 
I.tiS^ 
1.S02 
1.910 
2.014 

2.112 
2.206 
2.295 
2.3S2 
2.465 
2.544 
2.621 
2.695 
2.766 
2.835 

2.902 
2.967 
3.030 
3.091 
^• iso 

3-208 
3.264 
3 '3 '9 
3^37= 
3-4=4 

3-474 
3-3 = j 
3-57= 
3-6ig 
3.665 

3.710 
3-755 
3.798 
3.8+0 
3.882 

3-9=3 
3.963 
4.002 
4.040 
4.078 

4.115 
4.151 
4.187 
4.222 
4^257 
4.291 
4^32S 
4^357 
4.390 
4.421 

n 

5 

1.066 
1.191 

1.310 
1.423 
1.529 
1.631 
1.727 
1.819 
1.907 
1.991 
2.072 
2.150 
2.225 
2.298 
2.368 
2435 
2.501 
2.565 
2.626 
2.686 
2-744 
2.801 
2.856 
2.909 
2.961 
3.012 
3.062 
3.111 
3.158 
3.205 
3.250 
3.294 

3-338 
3.3S1 
3.422 
3463 
3-503 

3-543 
3.581 
3.619 
3.656 
3.693 
3.728 
3.764 
3.798 

HP 3.867 
3.900 
3^932 
3.964 
3-996 
4.027 

0 

I.09S 
1.208 
I .3I0 
1.409 
1.501 

1.589 
1.673 
'•753 
1.830 
1.904 

1.976 
2.045 
2.112 
2.176 
2.239 

2.299 
2.358 
2.415 
2.471 
2.525 
2.578 
2.630 
2.6S0 
2.729 
2-777 
2.824 
2.870 
2.914 
2.958 
3.001 
3.043 
3.084 
3.124 
3.164 
3.203 
3.241 
3.278 
^•3i5 
3-35I 
3.386 
3.421 
3.456 
3.489 
3-523 
3-555 
3.588 
3.619 
3.650 
3.681 
3.711 

7 

• .. 

1.015 
1.122 
1.220 
1.312 

1.398 
1.480 
'•557 
1.631 
1.703 
1.772 
1.838 
1.902 
1.964 
2.024 
2.082 
2.139 
2.194 
2.248 
2.300 
2.351 
2.401 
2.449 
2.496 
2,543 
2,588 
2.632 
2,675 
2,717 
2.759 
2.800 
2.840 
2.879 
2.917 
2-955 
2.992 
3.029 
3.064 
3.099 
3'134 
3.168 
3.201 
3^234 
3.266 
3.298 
3.329 
3.360 

3.390 
3.419 
3.448 

8 

1.045 
1.141 

1.229 

" • 3 " 
1.388 
1.461 
1.531 

1.598 
1.663 
1.725 
1.785 
1.843 
1.900 
'•955 
2.008 
2.060 
2.111 
2.160 
2.208 
2.255 
2.301 
2^34S 
2.389 
2.432 
2,474 
2.515 
2555 

2^§95 
2.634 
2.672 
2.709 
2.746 
2.782 
2.817 
2.852 
2.886 
2.920 

2-953 
2.986 
3.018 
3.049 

3. I I I 
3.141 
3.171 

3.229 

0 

1.070 
1.157 
1.236 
1.310 
1.380 

1.447 
1.511 
1.572 
1.631 
1.688 

1-743 
1.796 
1.848 
1.898 
1.948 
1.996 
2.042 
2.088 
2.132 
2.176 
2.219 
2.260 
2.301 
2.341 
2.380 

2.419 
2-4S7 
2.494 
2.530 
2.566 
2.601 

2.669 

2.736 

2.768 
2.800 
2.831 
2.862 
2.892 

2.922 
2.951 
2.980 

3.037 
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TABLE X. A. . Peirce's Uriter on. 

Log T. 

m 

2 
3 

5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

n 

1 

9^3979' 
9.1707 
9.0231 
8.9134 

8.8259 
8.7532 
8.6916 
8.6365 
8.5882 

8,5447 
8,5051 
8.4689 

8-4355 
8.4044 

8,3754 
8,3483 
8.3227 
8.2986 
8.2757 

8.2540 
8.2333 
8.2136 
8,1947 
8,1766 

8,1592 
8,1425 
8,1264 
8,1109 
8,0959 

8.0814 
8.0674 
8.0538 
8.0407 
8.0279 

8.0155 
8.0034 

7-99'7 
7.9803 
7.9691 

7^9S83 
7^9477 
7^9373 
7.9272 

7^9'74 

7.9077 
7.8983 
7.8890 
7.8800 
7.8711 

7.8624 

^•8539 
7.8456 

7^8374 
7.8293 

7.8214 

7^8'37 
7.8060 
7.7986 
7.7912 

2 

9^S8S3 
9.3979 
9.2693 

9.1707 
9.0906 
9.0231 
8.9648 
8,9134 

8,8675 
8.8259 
8.7881 
8,7532 
8.7210 

8.6910 
8.6629 
8.6365 
8.6117 
8.5882 

8.5659 

^•5447 
8.5245 
8.5051 
8.4867 

8.4689 
8.4519 

^•4354 
8.4197 
8.4044 

8.3897 

^•3754 
8.3617 
8.3483 
^•3353 

8.3227 
8.3105 
8.2986 
8.2870 
8.2757 

8.2647 
8.2540 
8.2435 
8.2333 
8.2233 

8.2136 
8.2040 
8.1947 
8.1855 
8.1766 

8.1678 
8.1592 
8.1508 
8.1425 
8.1344 

8.1264 
8.1186 
8.1109 
8.1033 
8.0959 

3 

9.6744 
9.5129 

•9.3979 
9.3080 
9.2338 
9.1707 
9.115T 

9.0669 
9.0231 
8.9834 
8.9470 
8.9134 

8.8822 
8.8532 
8.8259 
8.8003 
8.7761 

8.7532 
8.7315 
8.7107 
8.6910 
8.6721 

8,6539 
8,6365 
8.6198 
8.6037 
8.5882 

8.5732 
8.5587 

8^S447 
8.5311 
8.5179 

8.5051 
8.4927 
8.4807 
8.4689 
•8,4575 

8.4463 

8-4355 
8.4249 
8.4145 
8.4044 

«•3945 
8.3849 

8-3754 
8.3662 
8.3572 

8-3483 
8.3396 
8.3311 
8.3227 
8.3145 

8.3065 
8.2986 
8.2908 
8.2832 
8.2757 

4 

9.7283 

9-5853 
9.4810 

9-3979 
9.3287 
9.2693 

9.2172 
9.1707 
9,1288 
9.0906 
9-0555 

9.0231 
8.9930 
8.9648 
8.9383 
8.9134 

8.8898 
8.8675 
8.8462 
8.8259 
8.8066 

8.7881 
8.7703 
8.7532 
8.7368 
8.7210 

8.7057 
8.6910 
8.6767 
8.6629 
8.6495 

8.6365 
8.6239 
8.6117 
8.5998 
8.5882 

8.5769 
8.5659 
8.5552 
8.5447 
8-5345 

8-5245 
8.5147 
8.5051 
8.4958 
8.4867 

8-4777 
8.41689 
8.4603 
8.4519 
8,4436 

8-4355 
8.4275 
8.4197 
8.4120 
8.4044 

. 

9.7652 
9.6362 

, 9^5403 
9.4630 

9^3979 

9^34i7 
9.2921 

9-2477 
9.2074 
9.1707 

9.1368 
9.1055 
9.0762 
9.0489 
9.0231 

8.9988 
8.9758 
8.9540 
8.9332 
8.9134 

8.8944 
8.8763 
8.8588 
8.8421 
8.8259 

8.8104 
8.7954 
8.7809 
8,7668 
8.7532 

8.7400 
8.7272 
8.7148 
8.7027 
8.6910 

8.6795 
8.6684 
8.6575 
8.6469 
8.6365 

8.6264 
8.6165 
8.6069 
8.5974 
8.5882 

8.5791 
8.5703 
8.5616 
8-5530 
8-5447 

8.5365 
8.5284 
8.5205 
8.5128 
8.5051 

6 

9.7922 
9.6744 

9-5853 
9.5129 

94S'4 
9^3979 
9.3506 
9.3080 
9.2693 

9.2338 
9.2011 
9.1707 
9.1423 
9.1157 

9.0906 
9.0669 
9.0445 
9.0231 
9.0028 

8.9834 
8.9648 
8.9470 
8.9299 
8,9134 

8,8975 
8,8822 
8.8675 
8.8532 
8.8393 

8.8259 
8.8129 
8.8003 
8.7881 
8.7761 

8,7645 

8,7532 
8,7422 
8,7315 
8,7210 

8,7107 
8,7007 
8,6910 
8,6814 
8,6721 

8,6629 
8,6539 
8,6451 
8.6365 
8.6281 

8.6198 
8.6117 
8.6037 
8.5959 
8.5882 

1 

9.8130 
9.7042 
9.6210 

^•S527 
9^4943 
9^4433 
9^3979 
9.3570 

93197 
9.2854 

9^2S37 
9.2242 
9.1966 

9.1707 
9.1463 
9.1231 
9.1012 
9.0803 

9.0604 
9.0414 
9.0231 
9.0056 
8.9888 

8.9726 
8,9571 
8,9420 
8,9275 
8,9134 

8,8998 
8,8865 

8,8737 
8,8613 
8,8492 

8,8374 
8,8259 
8,8148 
8,8039 
8,7933 

8,7829 
8,7728 
8,7629 
8,7532 
8,7438 

«•7345 
8,7254 
8,7166 
8,7079 
8,6993 

8,6910 
8,6828 
8,6747 
8,6668 
8,6590 

8 

9.8296 
9,7253 

9.6501 

9^5853 
9.5298 
9.4810 
9^4374 

9.3979 
9.3619 
9.3287 
9.2980 
9.2693 

9.2424 
9.2172 
9.1933 
9.1707 
9.1492 

9,1288 
9.1093 
9.0906 
9.0727 
9-°SSS 

9.0390 
9.0231 
9.0078 
8.9930 
8.9786 

8.9648 
8.9513 
8.9383 
8.9257 
8.9134 

8.9014 
8.8898 
8.8785 
8.8675 
8.8567 

8.8462 
8.8360 
8.8259 
8.8162 
8.8066 

8,7972 
8.7881 
8.7791 
8,7703 
8,7617 

8,7532 
8,7449 
8,7368 
8,7288 
8,7210 

9 

9.8431 

9.7483 
96744 
9.6128 

9^5597 
9.5129 

9.4710 
9.4328 
9.3979 
9.3658 
9^3359 

9.3080 
9.2818 
9.2571 
9.2338 
9.2117 

9.1907 
9.1707 
9.1516 
9.1332 
9:1157 

9.0988 
9.0826 
9.0669 
9.0518 1 
9.0372 

9.0231 : 
9.0095 ! 
8.9962 
8.9834 
8.9709 

8.9588 
8.9470 

89355 
8.9243 
8.9134 

8.902S 
8.S924 
8.SS22 
8.8723 
8.8626 

8.8532 

8-8439 
8.834S 
8.8259 
8.8172 

8.8087 
8.8003 
8.7921 
8.7840 
8.7761 
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TABLE X. A. Peirce's Oriterion. 
Log T. 

M 

6 1 
«2 
6 3 
6 4 
6 5 

6 6 

6 7 
6 8 
6 9 
7 0 

7 1 
f 2 

7 3 
7 4 
i o 

7 6 
7 7 
7 8 
7 9 
8 0 

8 1 
8 Í 
8 3 
8 4 
8 5 

8 6 
8 7 
8 8 
9 9 
9 0 

1 

t 

7.-S40 
7.--0S 
7.-098 

7.-029 
7.7562 

77495 
77429 
7 - 3 6 4 
- . -300 
7^7 = 37 

7^7i75 
- • 7 " 4 
-•7054 
-•6994 
-.0936 
7.6S7S 
7.6S20 
7.6764 
7.670S 
7.6653 
7.6599 
7.6546 
76493 
7.6440 
7.6389 
7.6337 
7.6287 
7.6237 
7.6187 
7.6139 

a 
8.0SS6 
8.0814 
S.0744 

8.0674 
8.0600 
8.0538 
8.0472 
8.0407 
8.0342 
6.0279 
8.0217 
8.0155 
S.0094 
8.0034 
7-9975 

7-99'7 
7.9859 
7.9803 
7-9747 
7.9691 

7-9637 
7-95^^3 
7-95=9 
7-9477 
7-94=5 

7-9373 
7.9322 
7-9272 
7.9223 
7-9'74 

8.2684 
S . io i i 
8 2540 
ií.24';'o 
^».2401 
S.2333 
8.2266 
8.2200 
8.2136 
8.2072 
8.2009 
8.1947 
8.1886 
8.1825 
8.1766 
8.1707 
S.1649 
8.1592 
8.1536 
8.1480 

8.1425 
8.1371 
8.13.7 
8.1264 
8.1212 

8.1160 
8.1109 
8.1058 
8.1008 
8.0959 

* 
8 
8 
S 
h 
S 

8 
8 
8 
8 
8 

8 
8 
8 
S 
8 

S 
8 
8 
8 
8 

8 
S 
S 
8 

' 
8 
8 
8 
8 

3970 
3897 
3825 
37 54 
3685 

3617 
3549 
3483 
34 '8 
3353 
3290 
3227 
3166 
3106 
3°45 
2986 
2928 
2870 
2813 
2757 
2702 
2647 
= 593 
2540 
24S7 

24-Î5 
23S4 
2333 
22S3 

8.2233 33 

n 

5 

8.4977 
8.4903 
8.4830 
8.4759 
8.4689 

S.4620 
8-4552 
8.4485 
S.4420 
8-4355 
S.4291 
S.4228 
8.4166 
8.4105 
8.4044 

8.3985 
8.3926 
8.3868 
8.3811 
8-3754 

83699 
8.3644 
8.3589 
8.3536 
8.3483 

8-3431 
8.3379 
8.3328 
8.3277 
8.3227 

6 

8.5806 
8.5732 
8.5659 
8-5587 
8.5516 

8-5447 
8.5378 
8.5311 
8.5245 
8-5179 
8.5115 
8.5051 
8.4989 
8-4927 
S.4867 

8.4807 
8-4747 
8.4689 
8.4632 
8-4575 
8.4519 
8.4463 
8.4409 
8-4355 
8.4301 

8.4249 
8.4197 
8.4145 
8.4094 
8.4044 

7 

8.6514 
8.6439 
8.6365 
8.6293 
8.6222 

8.6152 
• 8.6082 

8.6015 
8.5948 
S.5S82 

S.5817 
8-5753 
8.5690 
8.5628 
8.556" 

8.5506 
8.5447 
8.5388 
8.5330 
8.5273 

8.5216 
8.5161 
8.5106 
8.5051 
8.4998 

8.4945 
8.4892 
8.4841 
8.4790 
8.4739 

8 

8-7133 
8.7057 
S.6983 
8.6910 
8.6838 

S.6767 
8.6697 
S.6629 
8.6562 
8.6495 

8.6430 
8.6365 
8.6302 
8.6239 
8.6178 

8.6117 
8.6057 
8.5998 
8-5939 
8.5882 

8.5825 
8.5769 
8.5714 
8.5659 
8.5605 

8.5552 
8-5499 
8-5447 
8-539S 
8-53+5 

9 

8.7684 
8.7607 
8.7532 
8.7458 
8.73^6 

8.7315 
8.7244 
8.7175 
8.7107 
8.7040 

8.6975 
8.6910 
8.6846 
8.6783 
8.6721 

8.6659 
8.6599 
8.6539 
8.6481 
8.6423 

8.6365. 
8.6309 
8.6253 
8.6198 
8.6144 

8.6090 
8.6037 
8-5985 
!-5233 
8.5882 

Logiî. 

X 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.0 
1.7 
1.8 
1.9 

: 2.0 
2 . 1 
2 . 2 
2 . 3 

: 2.4 
, 2.5 
: 2.7 
; 2.7 
i 2.8 
i 3.9 
; 3.0 

0 

9.5015 
9-4791 
9-4575 
94367 
9.4167 

9-3973 
9-3786 
9.3604 
9.3429 
9-3259 

9^309S 
9.2935 
9.2780 
9.2630 
9.2483 

9.2341 
9.2203 
9.2068 
^•1937 
9.1810 

9.16S6 

1 

9-4992 
9.4769 
9 4 5 5 4 
9-4'347 
9.4147 

9-3954 
9-3767 
9-3587 
9.3412 
9.3242 

9.3078 
9.2919 
9.2765 
9.2615 
9.2469 

9.2327 
9.2189 
9.2055 
9.1924 
9.1797 

2 

9.4969 
9^4747 
^•4533 
9.4327 
9.4127 

^•3935 
93749 
9.3569 
^•3395 
9.3226 

9.3062 
9.2904 
9.2750 
9.2600 
9-2455 
9.2313 
9.2176 
9.2042 
9.1912 
9.1785 

3 

9-4947 
^•4725 
9.4512 
9.4306 
9.4108 

9.3916 
9 3 7 3 ' 
9^355i 
9^3377 
9.3209 

9.3046 
9.2888 
9.2734 
9.2585 
9.2440 

9.2299 
9.2162 
g.2029 
9.1899 
9.1773 

4 

9.4924 
9.4704 
9.4491 
9.4286 
9.4088 
9.3897 
9.3712 
9^3S34 
9.3360 
9.3193 
9.3030 
9.2872 
9.2719 
9.2571 
9.2426 

9.2285 
9.2149 
9.2016 
9.1886 
9.1760 

5 

9.4902 
9.4682 
9.4470 
9.4266 
9.4069 
9.3878 
9.3694 
9.3516 
9^3343 
9.3176 
9.3014 
9.2857 
9.2704 
9.2556 
9.2412 

9.2272 
9.2135 
9.2002 
9.1873 
9.1748 

6 

9.4880 
9.4661 
9.4450 
9.4246 
9.4050 
9.3860 
9.3676 
9.3498 
9.3326 
9.3160 
9.2998 
9.2841 
9.26S9 
9.2541 
9.2398 
9.2258 
9.2122 
9.1989 
9.1860 
9^i735 

7 

9.4857 
9.4639 
9.4429 
9.4226 
9.4030 
9.3841 
9.3658 
9.3481 
9.3310 
9^3'43 
9.2982 
9.2826 
9.2674 
9.2527 
9.2383 
9.2244 
9.2108 
9.1976 
9.1848 
9.1723 

8 

9.4835 
9.4618 
9.4408 
9.4206 
9.4011 
9.3823 
9.3640 
9.3464 
9-3293 
9.3127 
9.2966 
9.2811 
9-2659 
9.2512 
9.2369 
9.1230 
9.2095 
9.1963 
9.1835 
9.1711 

9 

9.4813 
9^4597 
9.4388 
9.41S6 
9.3992 
9.3804 
9.3622 
9.3446 
9.3276 
9.3111 
9.2951 
9.2795 
9.2644 
9.2498 
9^2355 
9.2217 
9.2082 
9.1950 
9.1823 
9.1698 
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