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Abstract

The first measurement of the differential tt̄ cross section at using 19.7 fb−1of all-jet

events with boosted high-pT top quark jets collected by the CMS detector at
√
s = 8

TeV is presented. A boosted top jet is one in which the subjets have merged. A

data-driven method is used to calculate the standard model background dominated

by QCD multijet production. The tt̄ cross section is extracted in bins of measured

leading top quark pT using a binned likelihood fit of the invariant mass distribution of

top jet candidates. The tt̄ cross section as a function of measured leading top quark

pT is then unfolded to parton-level in order to facilitate comparison with theory. This

is the first measurement of the differential tt̄ cross secton in the boosted regime in

the all-jet channel at
√
s = 8 TeV.

Primary Reader: Petar Maksimovic

Secondary Reader: Barry Blumenfeld
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Chapter 1

Introduction

Physics is the branch of science concerned with the nature and properties of matter

and energy. In order to even have a chance of understanding and explaining such a

massive field, Physicists usually break their study down according to a fundamental

scale such as size or characteristic interaction distance. Astronomy covers the largest

distances while Condensed Matter and Particle Physics study much smaller, generally

sub-atomic, scales. An active area of Particle Physics involves accelerating particles

(giving them more energy) and colliding them to study the properties of the collided

or created particles. By knowing the intial collision conditions and understanding the

results from the collision, information about the fundamental nature of matter can

be gleaned. The method by which these collisions and measurements are made will

be discussed in Chapter 2. This chapter will discuss the current understanding of the

nature of matter as described by the Standard Model of Particle Physics.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Graphical summary of the Standard Model of Particle Physics. Image
taken from Ref. [1].
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CHAPTER 1. INTRODUCTION

1.1 The Standard Model

In the 1960s and 1970s, the Standard Model of Particle Physics (SM) arose out

of attempts by theorists (Glashow, Weinberg, Salam1) to combine and describe the

interactions of matter. This theory predicted with great accuracy not only the exis-

tence of the W± and Z0 bosons, but also their properties. Since then, the Standard

Model has been repeatedly examined and experimentally tested. These experiments

have (with a few exceptions2) all supported the SM, leading it to be one of the most

well-tested models in Physics.

The Standard Model describes the components of visible matter and their inter-

actions, save gravity. Matter is made of particles with half-integer spin known as

fermions and mediated by particles with integer spin called bosons.

A graphical summary of the SM is given in Fig. 1.1. There are many good reviews

of particle physics and the Standard Model, but Ref. [14] serves as a fairly accessible

introduction.

1.1.1 Fermions

Fermions can be further divided into leptons and quarks. Fundamentally, there

are 12 leptons and 36 quarks, and each set is usually grouped into 3 generations,

ordered by increasing mass.

1And many, many others.
2Such as the anomalous magenetic moment of the muon (aµ) or neutrino masses.
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1.1.1.1 Leptons

Many people are already familiar with the first generation lepton, the electron.

The electron has a mass of 0.511 MeV/c2 or conventionally, 0.511 MeV(3,4,5). The

electron has electric charge of -16 and spin of 1/2. The muon (µ) and tau (τ) have

the same properties of as the electron, but with much larger masses (more than 200

and 3400 times greater, respectively).

Each lepton has an associated neutrino (ν), a nearly massless particle with 0

electric charge and spin of 1/2. The neutrinos are among the lightest particles ever

observed and generally don’t react with matter, so an accurate measurement of their

masses is quite difficult. The SM makes no prediction for the neutrino masses, so an

external correction must be added to account for them. The strongest evidence for

massive neutrino is neutrino oscillations and the 2015 Nobel Prize in Physics was

awarded for this discovery.

Electron neutrinos are created in the sun by the nuclear reaction:

p+ p →2
2 He+ γ →2

1 Di+ e+ + νe (1.1)

3In particle physics it is convention to set c (the speed of light) to 1. Then mass and energy are
treated identically, as shown by E = mc2, with c = 1. Plank’s constant, h, is also set to 1, equating
energy and momentum.

4One eV (or electronvolt) is the energy gained by an electron passing through a potential of 1
Volt.

5The unit prefixes follow the standard SI convention, the ones relevant to this analysis are:
k 1,000 (103) m .001 (10−3)
M 1,000,000 (106) µ .000001 (10−6)
G 1,000,000,000 (109) n .000000001 (10−9)
T 1,000,000,000,000 (1012) p .000000000001 (10−12)
6Electric charge is generally quoted as a number between -2 and +2. In all cases, this is to be

multipled by the fundamental charge of the electron (1.602× 10−19 Coulombs).
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where p is a proton, He is Helium, Di is Deuterium (an isotope of Hydrogen with

neutrons instead of 1), e+ is a positron, and νe is an electron neutrino. However, the

amount of electron neutrinos detected on the Earth was only 1/3 of the SM prediction.

The total neutrino flux observed was equal to the expected electron neutrino flux. The

neutrinos must have mass in order to allow the electron neutrino to osillate to the

other ones and account for the observed behavior.

In the SM, each of the six leptons described has an antiparticle and hence the total

number of leptons is 12. An antiparticle has the same mass, same spin as its partner

particle, but has the opposite charge. In the nuclear equation given previously, one

of the final particles is an antielectron (e+, commonly called a positron)7. As the

neutrinos have no electric charge, it is possible that they are their own antiparticles;

this is an open question in Physics.

1.1.1.2 Quarks

The remaining fundamental fermions in the Standard Model are quarks and anti-

quarks. As with the leptons, the quarks and their antiquark partners have the same

mass and spin of 1/2, but opposite charge. The first generation (and lightest) quarks

are the up (u) and down (d) quarks. The up quark has a mass of approximately8 2.3

MeV and electric charge of 2/3 while the down quark has a mass of 4.8 MeV and an

7Antiparticles are distinguished from their partner particle by either charge conjugation as in
this case where e+ is the antiparticle of e− or the addition of a bar (q̄ is the antiparticle of q).

8Due to many complications including quark confinement, the masses of the light quarks are not
precisely known
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electric charge of -1/3. Quark masses are extremely difficult to measure, and as a

result, the values quoted for very approximate9. The remaining quarks are generally

described as up-type or down-type10 based on whether they have a charge of 2/3 or

-1/3, respectively. The second generation down-type quark has a mass of 95 MeV

and is called the strange (s) quark and the second generation up-type quark, the

charm (c) quark, has a mass of 1.28 GeV. The third generation down-type quark is

the bottom (b) quark and has a mass of 4.18 GeV. The final quark, the up-type top

(t) quark, was discovered in 1995 and has a mass of 173 GeV.

As previously mentioned, particles and antiparticles differ in charge—for each of

the two types of electric charge (+ and -) there exists a fundamental particle. Color

is another type of charge affected by the strong force. This will be discussed in Sec.

1.1.2.3, but with regard to the number of quarks in the SM, it is enough to know that

there are three types of color charge (red, green, and blue). Each of the six quarks

(udscbt) and their antiparticle partners (ūd̄s̄c̄b̄t̄) discussed can have one of the types

of strong charge11, for a total of 36 fundamental quarks.

Unlike leptons, quarks are not observed directly in nature, a phenomenon called

quark confinement. They are always found in bound states consisting of two quarks

and one antiquark (qqq̄) known as baryons or in bound states of a quark and an

antiquark (qq̄) known as a mesons. These bound states are collectively known as

9There are many reasons for this. Part of the difficulty is that quarks are confined to hadrons
(Sec. 1.1.1.3). The quark masses are input parameters to the SM they are light (especially u,d, and
s) compared the characteric energy scale of QCD.

10Collectively known as flavors.
11A quark has color (RBG), while an antiquark has anticolor (R̄B̄Ḡ).
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hadrons and required to be colorless12. The top quark, however, is an exception in

that it does not form bound states. For a 2-body decay (like the top quark which

decays to two other particles, the W boson and the b quark), the decay rate in the

decaying particle’s rest frame, Γ, is given by the following equation:

Γ =
|M|2

32π2

|p⃗1|
M2

dϕ1 d(cos θ1) (1.2)

Here M, is an amplitude connecting the probability of a decay to a given final

state given a specific initial state13, p⃗1 is the momentum of one of the daughters (or

final state) particles, ϕ1 and θ1 are angles describing the possible decay direction of

the same daughter particle, and M is the mass of the parent (or initial state) particle.

The width has an inverse dependence on the mass of the initial particle, but the

matrix element must also be taken into account. A heavier particle has more possible

decay paths and the general result is a larger width. The lifetime of a partcle is 1/Γ,

so generally, heavier particles decay faster than lighter particles. In the case of the

top quark, the lifetime is shorter than the effective lifetime of the force that binds

quarks together in hadrons, the strong force (discussed later). This makes the top

quark a very good choice for probing the properties of quarks.

12In fact, they are required to be in a color singlet, essentially a superposition of RR̄, BB̄, and
GḠ, so they can interact colored gluons.

13Feynman diagrams are discussed in Sec 1.1.2.1.
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1.1.1.3 Hadrons

Most of the mass of a hadron is not due to the mass of its constituent quarks,

but rather due to the kinetic energy of the quarks (they are in motion “inside” the

hadron) and Quantum ChromoDynamics (QCD) processes. QCD will be discussed in

a later section, but the relevant idea is that there is a sea of energy in which quarks

and gluons14 are constantly created and annihilated.

The two most well-known baryons are the proton and neutron. The proton (uud)

has a mass of 938 MeV, spin of 1/2, and electric charge of +1 (2/3+2/3-1/3). The

neutron (udd) has a mass of 940 MeV, spin of 1/2 and no electric charge. These are

the only two stable baryons, meaning that any other baryon will eventually decay to

them.

Mesons are composed of a quark-antiquark pair. The most famous ones are the

J/Ψ (cc̄) and the upsilon (bb̄). Neither of these bound states fit with the accepted

quark model at the time it was discovered. The discovery of the J/Ψ and Υ mesons

were used as strong evidence of the existence of charm and bottom quarks, respec-

tively, thereby experimentally confirming expansions to the quark model, which would

be the basis for the SM.

14Gluons are discussed in Sec. 1.1.2.3.
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1.1.2 Bosons

All the observable matter in the universe is composed of the fermions previously

discussed. These particles interact through four forces: gravitational15, weak, elec-

tromagnetic, and strong, ordered with increasing strength. These forces are mediated

or “carried,” by particles known as bosons. All bosons have integer spin (0 or 1).

1.1.2.1 Weak Force (W±,Z0)

The weakest16 of the forces included in the SM, the weak force affects all fermions.

The weak force is mediated by theW± and Z0 bosons. TheW± are a particle/antiparticle

pair and have a mass of 80.4 GeV while the Z0 is its own antiparticle and has a mass

of 91.2 GeV. All three bosons have a spin of 1. As discussed in Sec. 1.2, the massive

nature of these bosons leads to the short lifetime and, by extension, short range of

the weak force. The W bosons are responsible for flavor changing currents. This is

the mechanism by which a quark can “change,” into another quark by the emission

of a W boson. An example of this is the emission of a electron when a neutron decays

to a proton. On a particle physics level, what is happening to the proton is shown by

in Fig. 1.2. This kind of diagram is an example of a Feynman Diagram.

In classical mechanics, the interaction between objects is definite and well-defined.

When a baseball bat connects with a baseball, the momentum and energy transfer

15Despite best efforts, gravity is not a part of the Standard Model and is beyond the scope of this
work

16Specifically with respect to coupling constants. There are times when the weak force will be the
dominant force in an interaction.
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n p

W−

u

d

d

u

d

u

e−

ν̄e

Figure 1.2: β− decay of the neutron: The decay of a neutron (the 3 bound quarks on
the left) to a proton (quarks on right) via the weak force, emitting an electron and
an antineutrino

is well-understood and the result can be accurately predicted. In the quantum me-

chanical analogue, the bat and ball have a probability to interact in several different

ways: the ball can be hit as in the classical example, the bat and ball can miss each

other, or perhaps the bat is broken by the ball17. Quantum mechanically, the result

is a superposition of these (and in fact all) possibilities18. The probability of each of

these outcomes is proportional to a quantum-mechanical amplitude (M), where M is

an infinite series of terms19. Richard Feynman devised a pictographic representation

for these complex calculations, the eponymous Feynman diagrams.

A Feynman diagram is a pictogram that represents a single specific particle inter-

action20. In a Feynman diagram, fermions are represented by solid lines while bosons

17These do occur classically, but are not relevant for this example.
18In a gross over-simplification, each of the outcomes both happens and does not happen at the

same time.
19Any number of initial conditions (ie. a slightly changed grip) could still result in a hit.
20Each diagram represents just one term in the infinite series of an amplitude.
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are represented by wavy lines. The arrows don’t indicate movement in a traditional

sense, but rather the flow of quantum numbers. For conserved quantities21, the sum

coming into a vertex must equal the sum leaving the vertex. A particle will have an

arrow pointing to the right—antiparticles will have arrows pointing to the left. In Fig.

1.2 and all other Feynman diagrams presented, time moves from left to right. In this

case, the initial state corresponds to a neutron (bound state of udd). At some point

in time, one of the down quarks in the neutron emits a W− boson and becomes an up

quark. At that point the hadron is now a proton and doesn’t participate any further.

The W− then decays into a e− and an ν̄e. Note that the ν̄e has an arrow moving to

the left while everything else moves to the right. Only the particles on the far left or

the far right can be observed—anything else is solely internal. As an infinite number

of diagrams can contribute to the same process, it’s important to remember that a

Feynman diagram only represents one possibility of what might happen. (22,23).

It is not enough to know that a reaction can happen, the rate of the reaction

is equally important, especially in particle physics. The rate of weak interactions

is influenced by the Cabibbo-Kobayashi-Maskawa (CKM) matrix shown in Fig. 1.3

(Ref. [15]). In general, any of the up-type quarks (uct) can become a down-type

(dsb) by the emission or absorption of a W boson and vice versa. However, due to

the near diagonal-nature, decays are usually intra-generational. The CKM matrix

21Such as electric or strong charge.
22Figs. 1.4 and 1.5 both represent possibilities for e+e− →e+e−. The actual result is these plus

an infinite number of other diagrams.
23Though there are an infinite number of possible diagrams, in practice only a few diagrams will

significantly contribute to a process. These are termed the Leading Order (LO) diagrams.
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⎡⎣|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎤⎦ =

⎡⎣0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012
0.00886+0.00033

−0.00032 0.0405+0.0011
−0.0012 0.99914± 0.00005

⎤⎦
Figure 1.3: The CKM matrix, representing the amplitude for a flavor-changing weak
interaction. The probability of an interaction is given by the amplitude squared, |V |2.

can be written down as a function of 4 independent parameters, which are important

inputs to the Standard Model. These values have been found experimentally. It is

worth mentioning that Fig. 1.3 isn’t the complete picture of the CKM matrix. The

true CKM matrix contains a complex phase that allows for CP-violation24.

Unlinke the W bosons which allow one type of quark to decay into another, the

Z0 always couples to a fermion and its own anti-fermion. In addition, as the Z0 is

uncharged it can interact with neutral fermions such as the neutrino, without the

need for a charged lepton to be present.

1.1.2.2 Electromagnetic Force (γ)

All particles with electric charge are capable of interacting through the Electro-

Magnetic (EM) force. The EM force is mediated by the massless25, chargeless, spin-1

photon (γ). Though the EM is the most classical of the forces in the SM, it does have

quantum effects governed by Quantum ElectroDynamics (QED). One of the most

common interactions, electron-positron annihilation, is shown in Fig. 1.4. In this

24C stands for charge conjugation (charge → anticharge). P stands for parity (mirror image rever-
sal). Combined, CP relates matter to antimatter. CP-violation means that matter and antimatter
don’t behave identically and may explain why the universe is dominated by matter.

25Specifically, no rest mass. The photon has a mass due to its momentum.
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e−
e+

e+

γ

e−

Figure 1.4: Feynman diagram of e+ e− annihilation. The incoming particles annihilate
and create a photon. The photon can then decay to any allowable state. In this case,
it decays back to a e+-e− pair.

case, an electron and positron (antielectron) meet and annihilate each other. The

energy is created in the form of a photon. This process can also be reversed—the

photon can spontaneously decay to an electron-positron pair. In addition to anni-

hilation, photons may also scatter off particles, as shown in Fig. 1.5. As they have

charge, quarks can be substituted for the leptons in these examples. Because the γ

has zero rest mass, the range of the EM force is infinite.

1.1.2.3 Strong Force (g)

The strongest force in the standard model is appropriately named the strong force.

The strong force is mediated by a set of massless, electrically neutral, spin-1 particles

known as gluons (g). The strong force only interacts with quarks and other gluons.

As discussed in Sec. 1.1.1.2, quarks are confined to bound states of qq̄ or (qqq). These

quarks are bound together by gluon exchange as in the Feynman diagram in Fig. 1.6.
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e±

e±

e±

γ

e±

Figure 1.5: Feynman diagram of e± scattering. Any combination of e+ and e− can
interact by exchanging a photon.

As both the gluon and photon are massless, it would seem likely that the strong force

should have infinite range. The nature of the strong force precludes this and is what

causes quark confinement. The strong force between two quarks can be thought of as

a rubberband stretched between a person’s hands. As the hands (quarks) are pulled

farther apart the resistance (strong force) becomes stronger and stronger. At a certain

point, either the rubber band will break or the person will not be able to pull his

hands further apart. When this happens in the quantum mechanical strong process,

the energy of the system is such that a quark-antiquark pair can be created. Each of

the original particle pairs with one of the new particles, exchanging gluons. This can

repeat many times and the resulting cascade is called a jet in particle physics26. Fig.

1.7 demonstrates what happens if the quarks in Fig. 1.6 travel apart and hadronize

in this manner.

The concept of color charge was discussed in Sec. 1.1.1.2 and the three types

26Jets and their reconstruction will be discussed in Ch. 2

14



CHAPTER 1. INTRODUCTION

gggγ

q̄

q

Figure 1.6: Feynman diagram of photon decay to qq̄ pair. The quarks can exchange
any number of gluons.

of color charge were introduced: Red (R), Blue (B), and Green (G). All observable

particles must be colorless, with the following possibilities: (RBG), (R̄B̄Ḡ), (RR̄),

(BB̄), and (GḠ). Gluons can carry net color, such as (RḠ), but they are confined to

a hadron and therefore not directly observable. This is a simplification and in fact,

there are 8 possible linearly independent color combinations, which yield 8 distinct

gluons. An example set is:

(RB̄ +BR̄)/
√
2 (RḠ+GR̄)/

√
2 (BḠ+GB̄)/

√
2

−i(RB̄ −BR̄)/
√
2 − i(RḠ−GR̄)/

√
2 − i(BḠ−GB̄)/

√
2

(RR̄−BB̄)/
√
2 (RR̄ +BB̄ − 2GḠ)/

√
6

As mentioned previously, hadrons are in a color singlet:

(RR̄ +BB̄ +GḠ)/
√
3
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g
g

g

g
g

g

γ

q̄1

q2

q̄2

q1

Figure 1.7: Feynman diagram of photon decay to qq̄ pair which then hadronizes. As
time passes, the original quark-antiquark pair, (q1,q̄1) move apart and a new quark-
antiquark pair is created (q2,q̄2). This is the idea behind jets.

1.1.3 The Higgs Boson (H)

The last fundamental particle in the Standard Model is also the most recently

discovered. The Higgs boson (H) was discovered at the European Organization for

Nuclear Research (CERN) in 2012. The discovery was long-anticipated and the 2013

Nobel Prize in Physics was awarded to Higgs and Englert27 who had theorized the

particle in 1964. The Higgs boson has a mass of 125 GeV, no electric or color charge,

and spin of 0.

In the simplest interpretation, the Higgs boson is responsible for other particles

having mass. More precisely, the Higgs boson is the result of a Higgs field that

permeates all space. The field can be thought of as a room full of people, milling

about. Then a famous person (particle) enters the room. As the person passes

27Englert had a co-author on the awarded work, Robert Brout, who died in 2011. Due to the
Nobel Prize committee’s policy of not posthumously awarding a Prize, Brout was ineligible.
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through the room, people (Higgs field) tend to clump around the famous person as

she moves through the room. The more famous the person, the more the person gets

stopped by the people in the room and the slower she moves through the room. In

the same way, a particle that has a stronger interaction with the Higgs field will have

more mass than one which interacts less.

The top quark is the heaviest quark and therefore couples the most strongly to the

Higgs boson. As the Higgs mechanism isn’t well understood, studying the properties

of the top quark is an important way to further this understanding.

1.2 Parton Distribution Functions

Hadrons are made up of quarks and gluons, collectively called partons. Rather

than being made up of two up quarks and a down quark, the proton (and other

hadrons) is made of many different partons, governed by a Parton Distribution Func-

tion (PDF). A PDF is generally presented as the momentum fraction of a parton28

(x) vs the momentum fraction times the distribution function (x× f(x)). One set of

PDFs in use is shown in Fig. 1.8. By far, the most likely parton to be found in the

proton is the gluon. However, these tend to carry less of the overall momentum (low

x).

28More specifically, x is the fraction of the proton’s momentum carried by a given parton.
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Figure 1.8: Parton Distribution Function for the proton at the LHC, plotted as the
momentum fraction (x), vs the distribution function times x, (x×f(x)). Image taken
from Ref. [2].
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1.3 Cross Sections

The chance of hitting a fixed-sized target with no long range interaction is directly

proportional to the geometric cross section of the target. In particle physics, the cross

section, σ, corresponds to how likely an interaction is to take place and is given by

Eq. 1.3.

σ ≡ N

ϵAL
(1.3)

Here N is the number of times a given process was found (for example, tt̄) and L

is the luminosity29 collected, ϵ is the reconstruction efficiency and A is the geometric

acceptance of the detector. The parameters ϵ and A account for imperfections in the

experimental setup. Several theoretical cross sections can be seen in Fig. 1.9.

The Standard Model predicts a cross section for the production of every particle

discussed in this document. Therefore, an accurate cross section measurement serves

as a test of the SM. Of special interest is the tt̄ production cross section because the

Large Hadron Collider (LHC) produces more than 30 times as many top quarks than

have ever been produced before, providing the best opportunity to measure top quark

properties. A measurement that deviates from the SM prediction would indicate new

physics. In fact, tt̄ is an important background in many searches for new physics, so

a measurement inline with the SM would be useful in these searches.

29Luminosity is a measure of how many collisions have taken place per unit time per unit area.
More accurately, it is the flux of particles through the LHC.
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Figure 1.9: Theoretical prediction for scattering cross sections of at the Tevatron and
the LHC as a function of center of mass energy,

√
s. Image taken from Ref. [3].
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The cross sections shown in Fig. 1.9 are plotted as a smooth function of
√
s. The

theoretical cross section for any process can be plotted as a smooth function of almost

any parameter, such as mass or energy. However, in practice, only a finite number of

interactions occur at the LHC, and fewer still occur that pass all quality and selection

cuts. This lack of data severely limits the granularity or “smoothness” of the cross

section that can be reconstructed. In this case, it may be more instructive to look at

the differential cross section instead. For example, the differential tt̄ cross section as

a function of transverse momentum30, dσ
dpT

, is given by Eq. 1.4:

dσ

dpT
=

1

∆pT

N

ϵAL
(1.4)

where ∆pT is a measure of how finely the measurement31 is divided.

A Feynman diagram for the hadronic tt̄ decay is shown in Fig. 1.10. The W

bosons involved in the tt̄ decay can themselves decay to leptons instead of quarks.

If one W boson does so, the result is called semileptonic32. If both W bosons decay

leptonically, the resulting process is called leptonic33. The ratio of the cross section

for a specific process to the total cross section is called the branching fraction (BF).

For the tt̄ decay, the hadronic branching fraction is:

BR =
σhad
tt̄

σtot
tt̄

=
6

9
× 6

9
=

36

81
(1.5)

30Otherwise known as pT . pT will be discussed more in Chapter 2.
31With respect to pT in this case
32Alternatively muon+jets.
33Or dimuon.
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Figure 1.10: Feynman diagram of hadronic tt̄ decay.

The value for this branching fraction is found by considering the possible decays.

A top quark always decays to a W boson and a bottom quark34. The W can then

decay to any quark-antiquark pair (6 options), or to any lepton-antineutrino pair (3

options), for a hadronic probability of 6/9. The second W has the same probabilities,

for a total branching fraction of 36/81.

The difference between the hadronic tt̄ cross section and the more general35 tt̄

cross section measured in the hadronic channel is this branching fraction.

1.4 Differential tt̄ Cross Section

At this point, the focus of this thesis can be pretty well defined. The tt̄ cross

section has been predicted by theorists and their results used to generate Monte

34From the CKM matrix (Fig. 1.3), the matrix element, |Vtb| = 0.9914. The probability of this
decay is |Vtb|2, or > 99.8% of the time.

35And theoretically relevant.
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Figure 1.11: Feynman diagram of semileptonic (muon + jets) tt̄ decay.
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Figure 1.12: Feynman diagram of fully leptonic (dimuon) tt̄ decay.
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Carlo tt̄ samples. The differential cross section for such a distribution is shown in Fig

1.13.

Theorists have taken all the Feynman diagrams for potential tt̄ production and

summed them to come up with the inclusive tt̄ cross section. The Feynman diagrams

which contribute the most to the a cross section are called the leading order (LO)

diagrams. The LO diagrams for tt̄ production are shown in Fig. 1.14. Diagrams (b),

(c), and (d) are the dominant contributions at the LHC (Large Hadron Collider) due

to the prevalance of gluons in the proton pdf36.

Each of the LO diagrams has two vertices (quark-gluon or gluon-gluon interaction

points). However, due to the nature of the strong force, “extra” gluons can be added

to these diagrams without changing the initial or final state. These constitute the

Next-to-Leading Order (NLO) diagrams, many of which are shown in Fig. 1.16.

An additional component of the NLO cross section comes from Initial State Radia-

tion (ISR) or Final State Radiation (FSR). Figure 1.15 shows two NLO constributions

to the tt̄ cross section from radiation. The full NLO cross section includes similar

diagrams for each of the processes in 1.14. A gluon will hadronize like a quark, so

ISR and FSR show up as an additional hadronic jet. As the results presented do not

require exactly 4 jets37, these processes also contribute to the measured cross section.

The next chapter will discuss the experiment and detector used to make this

measurement.

36Figure 1.8.
37Each top decays to a W which then decays to a q q’ pair, for a total of hadronic jets.
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Figure 1.13: Theoretical differential top quark cross section (blue) with CMS semilep-
tonic data (red). Image taken from Ref. [4].
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Figure 1.14: Feynman diagrams of LO tt̄ production.
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Figure 1.15: Feynman diagrams of NLO ISR (a) and FSR (b) tt̄ production. The
extra gluon can be on either the top of bottom leg of the diagram.
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Figure 1.16: Feynman diagrams of NLO tt̄ production.
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Chapter 2

Experimental Setup

2.1 The LHC at CERN

The Large Hadron Collider (LHC) located at CERN, straddling the Swiss-French

border, collides protons at some of the highest energies available to mankind. As seen

in Fig. 1.9, the production cross-section for many processes increases with increasing

energy. At particle accelerators, the energy is quantified as the center-of-mass energy

(
√
s). The energy of the output particle would be

√
s if the protons were completely

annihilated. In practice, this is never the case as protons are composite particles—

the particles created in the interaction have a fraction of
√
s energy. The accelerator

is scheduled for periods of proton-proton collisions separated by periods where the

accelerator is shutdown for maintainance and upgrades. Run I consists of data taken
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between 2009 and 2013. During this period 19.7 fb−1(1,2) of data was collected at

√
s = 8 TeV. Data-taking for Run II is ongoing at

√
s = 13 TeV and expected to last

until 20183

The LHC (Fig. 2.1) is a ring4 27 km in circumference used for proton-proton

collisions. Hydrogen gas is ionized, stripping the electrons, to get protons which go

through a series of accelerators until they are injected into the LHC as two separate

beams. Once inside the LHC, the two beams of protons are accelerated in opposite

directions until they each reach 4 TeV and then collided every 50 ns. The LHC has

four experiments5 located at collision points around the ring to collect data from these

collisions.

2.2 Compact Muon Solenoid

The Compact Muon Solenoid (CMS) (Fig. 2.26) is one of the two all-purpose

detectors collecting data from the LHC. CMS was designed to have as close to 4π

coverage around the interaction point as possible, in an attempt to collect all the par-

1A unit of area. 1 fb = 10−15 barn. 1 barn = 10−28 m2.
2As seen in Eq. 1.3, cross section and luminosity are inversely related. Cross section has units of

area (fb), so Luminosity has units of inverse area (fb−1).
3This document presents results from Run I, so all future discussions will assume

√
s = 8 TeV.

4Called a synchrotron.
5These are the Compact Muon Solenoid (CMS) detector, A Large Ion Collider Experiment (AL-

ICE), A Toroidal LHC ApparatuS (ATLAS), and the Large Hadron Collider beauty (LHCb) exper-
iment.

6Including a bonus picture of the author!
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Figure 2.1: A schematic of the Large Hadron Collider showing the eight potential
interaction points and the four detectors occupying half of them: CMS, ALICE,
ATLAS, and LHC-B. Image taken from Ref. [5].
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Figure 2.2: Picture of the Compact Muon Solenoid detector. Pictured in foreground:
Nhan Tran (left) and Dave Fehling (right).

ticles created during the collision. Many different types particles are created7, includ-

ing electrons, muons, photons, bosons, and hadrons. As previously discussed,8 these

particles can interact in many different ways necessitating many different detector

systems acting in concert to accurately reconstruct the collision. A cross sectional-

view of the CMS detector is shown in Fig. 2.3. Much more detail about the following

subdetectors can be found in the CMS technical design report (Ref. [16]).

7Fig. 1.8 demonstrates that different partons can collide and Fig. 1.9 gives an example of several
different processes that can occur after the collision

8Sec. 1.1.2.

31



CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.3: Cross-sectional view of the Compact Muon Solenoid detector, showing
how different particles interact with the individual subdetectors. Image taken from
Ref. [6].

2.2.1 Magnet

A superconducting solenoid9 lies at the heart of CMS10. The 3.8 T11 magnetic

field created by the magnet is very useful in helping other parts of the dectector

accurately identify particles. Charged particles exposed to magnetic fields travel in

curves instead of straight lines; the direction of the curve allows positive and negative

electric charge to be distinguished. The amount the path curves depends on both

the particle’s mass and velocity, so the magnetic field allows the measurement of the

9Also known as an electromagnet.
10Both literally and figuratively.
11A unit of magnetic field strength. 1 T = 1 kg

A∗s2 where kg is the SI unit of mass and A (Ampere)
is the SI unit for current. The Earth’s magentic field is 3.2× 10−5T .)
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tranverse momentum12 (pT ) of charged particles.

2.2.2 Silicon Tracker

The first part of CMS that a particle passing through the detector will encounter

is the silicon tracker (Fig. 2.4) broken into four parts: the Tracker Inner Barrel

(TIB), the Tracker Outer Barrel (TOB), the Tracker Inner Disks (TID), and the

Tracker EndCaps (TEC). In total, the tracking system consists of 75 million separate

read-out channels, providing spatial resolution from approximately 50µm to as fine as

10µm. The TIB is made of more than 65 million silicon pixels (pictured in Fig. 2.5).

Each pixel detector unit in the TIB contains 16 readout chips (ROCs) bump-bonded

to more than 65,000 pixel sensors13. The pixels are 100µm x 150µm silicon wafers

read out by the ROC in the 3rd dimension by the application of a bias voltage. As

a charged particle (such as a jet from a top quark decay) passes through the pixels,

it creates electron-hole pairs in the depleted region of the silicon. The freed electrons

and holes become separated by the bias voltage and the signal is recorded as a hit.

Neutral particles such as the photon or neutron have no ionizing effect and, as such,

are invisible to the tracker. The three remaining parts of the tracker are made up

of about 10 million silicon strips. The strips vary in size based on their location,

but they behave the same way as the pixels. The biggest difference between the two

12This will be discussed in Sec. 2.2.2 on the tracker, but many (and in fact most) particles travel
at least somewhat in the direction of the beamline. pT measures the amount of momentum that
does not, but rather travels “outward” through CMS.

13Each ROC has 80x52 = 4160 pixel sensors.
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Figure 2.4: A rendering of the CMS tracker with the four parts TIB, TOB, TID, and
TEC clearly labelled. Image taken from Ref. [7].

systems is that the pixel system is able to provide a 3-dimensional position, while

strips can generally only provide 2-dimensional information. A more in-depth look at

CMS tracking and reconstruction can be found in Ref. [17].

As events come from the collision of two equally energetic protons, many created

particles are produced nearly at rest and pass through the TIB and TOB. The TIB

consists of 3 layers of pixel sensors set 4cm, 7cm, and 11cm from the beamline and

is instrumental to reconstructing weak decays14. In many other cases, one parton in

the collision will have much more energy than the other and the created particles will

14The typical lifetime of a b-containing hadron is around 1.5ps. These particles are light and move
at nearly the speed of light and travel approximately 450µm before decaying. This is detectable with
a resolution of 10µm.
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Figure 2.5: A rendering of a silicon pixel detector unit, consisting of a readout chip
bonded to silicon pixels. Image taken from Ref. [8].

travel along the beamline. The TID and TEC detectors provide tracking in this case,

specifically the region with for 1.0 < |η| < 2.5. η is called the pseudorapidity and is

defined as:

η ≡ − ln

[
tan

(
θ

2

)]
(2.1)

where θ is the angle of the particle’s path with respect to the beamline. This is

preferred to θ because differences in η (useful for quantifying the spread of a jet) are

lorentz-invariant. This removes the problems created by collisions of partons with

mis-matched energy. The tracking detector allows CMS to reconstruct the trajectory

of a charged particle by providing up to 15 separate readings of its path.
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2.2.3 Electromagnetic Calorimeter (ECAL)

After a particle (charged or uncharged) passes through the silicon tracker, it en-

counters the Electromagnetic Calorimeter (ECAL) shown in Fig. 2.6. The ECAL

is composed of more than 75,000 lead tungstate (PbWO4) crystals. When an ener-

getic electron enters the ECAL, it gives off energy by bremsstrahlung : the electron

interacts with the electromagnetic field of the lead tungstate atoms, slowing down;

this decrease in electron energy is emitted as a photon. As the electron traverses the

length of the crystal, it repeatedly interacts with atoms and radiates photons until

it has no more energy to do so. Through measuring the light produced during this

process, the ECAL is able to measure the energy of the incident electron.

The Feynman diagram in Fig. 1.4 shows electron-positron annhilation to produce

a photon. The reverse process is possible where a photon spontaneously becomes an

e+-e− pair. The ECAL makes explicit use of this to measure the energy of photons.

More specifically, the ECAL does not differentiate between electrons and photons.

Photons that enter become electron-positron pairs that each release photons through

bremsstrahlung. These photons can either be collected to measure the energy or

themselves convert to electrons and positrons, and so on until all energy is collected.

Other particles that enter the ECAL are only slightly affected by bremsstrahlung

and react minimally with the ECAL.
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Figure 2.6: A picture of the Electromagnetic Calorimeter (ECAL) taken during con-
struction. Image taken from Ref. [9].

2.2.4 Hadron Calorimeter (HCAL)

A particle passing through CMS will next encounter the Hadron Calorimeter

(HCAL). The HCAL (Fig. 2.7) is made of alternating layers of brass and plastic.

Similarly to the ECAL, the HCAL collects photons resulting from hadron showers to

measure the energy of an incident hadron. Aside from this, the two calorimeters are

quite different. Brass is a fairly dense material15 and a particle passing through the

alloy will eventually collide with an atomic nucleus. This collision results in a shower

of many different particles including hadrons, pions16, electrons and photons. The

15As an alloy, the density of brass can vary, but it is around 8.5 g/cm3, or about 75% of the
density of lead.

16The lightest mesons, made of combinations of (q1q̄2) where q1 and q2 are either up or down
quarks.
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Figure 2.7: A picture of the Hadron Calorimeter (HCAL). Also visible in the back-
ground is the muon system and magnet. Image taken from Ref. [10].

charged particles directly ionize the plastic scintillator in the HCAL while the neutral

π0 decays to an e+-e− pair which is also collected in the scintillator as it showers elec-

tromagnetically. The hadrons continue to hit atomic nuclei, creating these showers,

until the particles created don’t have enough energy to create a new shower. Unlike

the ECAL, the HCAL only collects a small sample of the hadron’s energy. Calculating

the energy of a hadron in this manner relies on studies relating the energy of emitted

photons to that of incident particles. This is an iterative process and data from the

LHC is used to refine this response. A top jet would create a hadron shower in the

HCAL and travel no further. More information about the interactions which govern

both the ECAL and the HCAL can be found in Ref. [18].
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2.2.5 Muon System

At this point, generally two particles are left that haven’t been stopped and mea-

sured by CMS. The first is the muon, the heavier17 version of the election. The muon

is somewhat unique in that it is massive enough to not interact with the ECAL, but

light enough to pass through the HCAL. In general, muons are useful because, as with

any unstable particle18 they may give insight into physics not normally accessible.

Furthermore, muons are easily identified and can therefore be clearly distinguished

from background events.

The muon system is divided into two parts: the barrel region (Fig. 2.8) and

the endcap region. The barrel muon system is made of three concentric sets of drift

tubes; each set contains 4 drift tubes. Each drift tube consists of a charged wire in

an Ar/CO2 gas. Muons (or any charged particle) pass through the gas and ionize it

in much the same way the silicon is ionized by a charged particle in the tracker. The

electrons thereby created drift to the wire where they are read out and the muon’s

position can be calculated. The muon chambers are interspersed with the iron return

yoke. The magnetic field created by the magnet exists both within and outside the

magnet. The return yoke serves to guide the outer magnetic field, giving a more

uniform magentic field. The outer magnetic field, however, is oriented opposite to

the internal magenetic field—this can be seen in the muon in Fig. 2.3 and must be

taken into account. The muon, as a charged particle, travels in an arc because of

17About 200x.
18Such as the top quark!
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the interior magnetic field. However, once the muon has passed the magnet and is

traversing the return yokes, it curves in the opposite direction. Some work must be

done to match the track the muon makes through the silicon tracker to the track it

makes through the muon system.

The endcap muon system uses Cathode Strip Chambers (CSC) instead of drift

tubes. CSCs operate much like drift tubes, but are more robust. The CSC consists

of a series of positively charged wires in an Ar/CO2/CF4 gas. A series of negatively

charged strips are perpendicular to the wires. When a charged particle passes through

the CSC, the gas is again ionized and the electrons are collected by the wires, but the

positively charged ions are also collected by the strips. This enables a 2-dimensional

position measurement.

Most muons are not stopped in the muon system. Instead, their pT is measured

using information from both the tracker and the muon systems and their energy

calculated from this.

2.2.6 Missing Tranverse Energy (MET)

There is one particle that hasn’t be detected by any system thus far discussed:

the neutrino. In fact, CMS does not have any system in place capable of detecting

neutrinos. CMS instead relies on each of the just-discussed detectors to accurately

reconstruct everything except neutrions. If, when adding up the energy, there is an
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Figure 2.8: A picture of the CMS muon system. The system consists of drift chambers
(the silver, metallic sections) interspersed with the iron return yoke(red). Image taken
from Ref. [11].
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Figure 2.9: Schematic of Missing ET (alternatively known as MET or �
�ET ). Image

taken from Ref. [12].

imbalance19 the energy deficit is calledmissing transverse energy (MET20). This MET

is usually assumed to be a neutrino. However, it could also be due to new physics or

a mismeasurement somewhere in the detector.

2.2.7 Trigger

Collisions at the LHC occur every 25-50ns. This corresponds to 20-40 million

events every second. It would be impossible to record every one of these events21,

19Because the colliding partons have no transverse energy, conservation of energy states that the
sum of ET in any hemisphere of the detector should be matched by the sum in the other hemisphere.

20Alternatively ��ET . On the left hand side, the energy of various particles has been collected.
There should be an approximately equivalent amount on the right side—this discrepancy is called
MET.

21It would also be unnecessary because many events contain no useful or exciting physics.
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so CMS uses a series of triggers to identify potentially interesting events and record

them. CMS performs a very rough (but quick) reconstruction of an event and looks for

very specific signals such as a high-energy jet or a muon—the signals are collectively

known as the Level-1 trigger. If the event passes the Level-1 trigger, it is saved for

fuller reconstruction and the High-Level Trigger (HLT). Events that pass the HLT

are saved for future use and study. By using these triggers, the event rate drops

from 20 million events per second to about 50 thousand per second from the Level-1

trigger to approximately 150 events passing the HLT and being saved every second.

A certain fraction of events, called minBias events, are collected that have not passed

any triggers. This allows for both calibration and searches for new-physics processes

that may not pass any traditional trigger.

Even with only 150 events per second that pass the HLT, the raw information

collected by each of the detectors inside CMS can be daunting. The next chapter will

cover some of the ways in which the raw output from the detectors are collated into

physics objects that will be useful in the reconstruction of tt̄ events.
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Chapter 3

From Detector To Physics

As seen in the previous chapter, the CMS detector is a very powerful device capa-

ble of making robust and precise measurements of the particles created in the LHC

collisions. These measurements enable tests of the theoretical predictions that have

been made about the particles created. However, working with the raw measurements

from each subdetector is difficult and time-consuming. It is therefore helpful to com-

bine the different raw measurements into useful physics objects. This chapter will

cover some of the reconstruction methods and physics objects used in this analysis.

3.1 Particle Flow

The first step to combining the measurements made by the different detectors

in CMS is known as Particle Flow (PF). Particle flow takes the output from each
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detector and matches it to a single particle. For example, a muon is reconstructed by

both the silicon tracker and the muon system. Particle flow takes both reconstructed

muons, determines they are the same particle, and creates a PF muon containing the

information from both detectors. Every physics object has a Particle flow version

containing information from multiple detectors.

3.2 Jets

As discussed in Secs. 1.1.2.3 and 2.2.4, a jet is the physics object created by quark

hadronization. As a jet propagates throughout the detector, the energy spreads out

and the reconstructed jet has a roughly conical shape. There are many different

algorithms available to reconstruct jets—one class of these algorithms are called kT -

like. These algorithms characterize the distance between two particles (i and j) with

a parameter, dij:

dij = min(kn
T,i, k

n
T,j)

∆R2
ij

R2
(3.1)

where kT,i is the transverse momentum of the i-th particle with respect to the

beamline, R is a characteristic angular distance and ∆Rij is the distance between

particles i and j as in Equation 3.2.

∆Rij =
√

(∆ηij)2 + (∆ϕij)2 (3.2)
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where ∆ηij is the pseudorapdity difference between particles i and j and ∆ϕij is

the azimuthal1 difference between the particles. Another important parameter is the

the beam distance, diB:

diB = kn
T,i (3.3)

The kT -like algorithms differ in their choice of n. The kT algorithm has n = 2

while the anti-kT has n = −2. Regardless of the choice of n, each algorithm starts

with one seed particle, i, and loops through all other particles; if the minimum dij is

less than diB, the algorithm merges particle j into the jet containing i. The process

repeats until dij is greater than diB. At that point, the i-th particle is considered a

final jet. Eventually all particles are clustered into jets such as in Fig. 3.1.

The anti-kT algorithm is commonly used in particle physics because it clusters

the hardest jets first2, leading to well resolved jets. However, the anti-kT algorithm

declusters poorly and is therefore not ideal for jet substructure.

If n is set to 0 in Eqs. 3.1 and 3.3, the equations simplify to

dij =
∆R2

ij

R2
(3.4)

diB = 1.0 (3.5)

1The angle in the plane perpendicular to the beamline.
2Because n = −2, the jets with the largest transverse momenta will be preferentially clustered.
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Figure 3.1: Example of the Cambridge/Aachen jet clustering algorithm for R=1
(CA1). Each shaded area is a separate CA jet. Image taken from Ref. [13].

and the resulting algorithm is known as the Cambridge/Aachen (CA) algorithm

[19]. The CA algorithm depends only on the spatial characteristics of the jets, so it

is ideal for substructure studies, such as reconstructing boosted tt̄ jets. Specifically,

CA8 jets (jets where R=0.8) were found to work well in this reconstruction.
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3.3 Boosted Jets

Figure 3.2 overlays the Feynman diagram of a hadronic top quark decay with a

cartoon with the jet cones3. As the pT of the jet increases, the decay becomes more

collimated, with the jets from the daughter quarks (“daughter jets”) becoming closer

to one another. At a certain point4, the daughter jets of the highly-boosted parent

jet come close enough together that they merge. Instead of reconstructing 3 jets, now

only one jet is reconstructed, and information from the kinematics of the top decay

has been lost. Figure 3.3 shows the top quark decay with one jet that contains the

three previous jets. The jet clustering can be undone to recreate these as subjets of

the merged jet.

3.4 Jet Substructure

The jet clustering process groups different particles into a single jet. If both the

detector and the decay process are well understood, the jet’s substructure can be

used to help reconstruct the decay. The declustering procedure first looks at the

two parent subjets5 for well-separated clusters containing a large fraction of the total

jet pT . If both of the parent subjets pass the declustering criteria, the declustering

process is repeated with them; only one of these declusterings is required to succeed.

3CA8 jets won’t be cones, but a cone-like shape is a decent approximation.
4At approximately pT = 400 GeV, a jet becomes known as a highly-boosted jet.
5The hardest subjets should be clustered last and will be the direct parent of the final jet.
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Figure 3.2: Feyman diagram of the hadronic top quark decay with cartoon jet cones
overlaid. Three jets are clearly visible: two from the W+ decay to qq̄ and one from
the b.

Figure 3.3: Feyman diagram of the boosted hadronic top quark decay with cartoon
jet cones overlaid. The three jets are Three jets are clearly visible: two from the W+

decay to qq̄ and one from the b.
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This process enables CMS to decompose boosted jets into 3 or 4 subjets, regaining

much of the information lost when the jets merged.

3.5 N-Subjettiness

Substructure information can be further leveraged by using a parameter called N-

subjettiness. The N-subjetiness algorithm defines variables τN , where N is the number

of subjet axes, as follows:

τN =
1

d0

∑
i

pTi
×min(∆R1,i,∆R2,i, ...,∆RN,i) (3.6)

where ∆Rj,i is the distance between the subjet axis j and the candidate jet i.

Normalizing term d0, takes pT into account, with d0 =
∑

pTi
R0, and R0 is the distance

parameter (R) used in the jet clustering algorithm (R = 0.8 for CA8 jets).

N-subjettiness can be used to distinguish between top and non-top jets because

hadronic top jets should have three subjet prongs whereas the QCD background will

preferentially have one prong. A τN value near 0 means the jet likely has N subjets

or fewer; a value near 1 means the jet likely has more subjets. The ratio of τ3/τ2

(known as τ32 and itself bound between 0 and 1) has been shown to provide much

better discrimination between top and QCD than either τ3 or τ2 and is used in this

analysis.
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3.6 Subjet btagging

Because of quark confinement, b-quark from the top decay6 has to form a bound

state. The resulting B-hadrons are unstable and decay by the weak force. The nature

of the weak force allows the hadron to travel many millimeters, often one or more

centimeters, before decaying. When these decays are reconstructed, they do not

appear to originate from the interaction point (or primary vertex), but rather at a

displaced, secondary vertex. The process by which particles are identified as having

come from b-jets is called btagging. As with jet clustering, there are many different

btagging algorithms, but the Combined Secondary Vertex (CSV) algorithm has been

shown to work well with subjets. A perfectly reconstructed boosted ttbar event will

have two subjet btags.

The next chapter will detail how each of these physics objects and algorithms is

used to selectively reconstruct tt̄ jets while suppressing QCD background.

6See for example Fig. 3.2.
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Analysis

4.1 Analysis Strategy

The boosted hadronic cross section measurement begins by selecting events with

two boosted CA8 jets with pT > 400 GeV from the 2012 run of the LHC. The

clustering sequence is rewound by two steps so that each jet is broken down into

up to four subjets. The maximum b discriminator value from among all subjets is

compared to the CSV medium operating point, and a b tagged jet1 is a CA8 jet which

has at least one subjet that passes this requirement.

The jet with the largest pT is termed the leading jet and is required to be consistent

with containing 3 subjets through a requirement on τ32 [20]. The subleading jet, or

the jet with the second highest pT , is required to have a jet mass consistent with a

1This is a definition specific to this Thesis.
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top jet. The event is then categorized according to how many btags are present.

Data/MC scale factors are calculated and presented for both subjet b tagging and

N-subjettiness. These scale factors are measured in a statistically independent µ+jets

sample and applied to the hadronic tt̄ MC.

A sample of tt̄ MC events is fit together with a data-driven Non-Top MultiJet

(NTMJ) background to extract the tt̄ yield. The fit is a binned maximum likelihood

fit of leading jet mass in bins of leading jet pT .

The raw differential tt̄ cross section in bins of leading top jet pT is presented.

Additionally, the resulting distribution is unfolded to parton-level with RooUnfold

using Singular Value Decomposition (SVD) to provide the measurement of the true

differential tt̄ cross section for comparison with theoretical expectations.

4.2 Samples

The analysis was carried out using the full CMS 8 TeV dataset consisting of 19.7

fb−1 pp events collected from the LHC in 2012 [21]. Events are required to have

passed the HLT_HT750 trigger, having the scalar sum of the jet energies (HT ) > 750

GeV.

Single Muon samples were used to measure the data/MC scale factors for subjet

b tagging and N-subjettiness. The single muon data were collected using the single

muon trigger HLT Mu40 eta2p1 which requires a muon with pT > 40 GeV and |η| <
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2.1. The muons are reconstructed using the Particle Flow algorithm [22].

NTMJ events are accounted for using a data-driven method, but QCD MC is used

to check agreement. In addition, MC samples of tt̄ events are needed for measuring

the ratio of data/MC efficiences for subjet b tagging and N-subjettiness, providing

the shape and normalization of tt̄ in the fit and constructing a response matrix for

unfolding.

tt̄ events are modeled by a MC sample that was generated using POWHEG [23]

with the CT10 parton distribution function and showered with Pythia6 using the Z2∗

tune [24]. CMS detector effects are simulated using GEANT 4 [25]. These tt̄ events

were split into three Monte Carlo samples by Mtt̄ to increase the number of events in

the boosted regime as top quark pT is directly correlated with Mtt̄.

4.3 Selection

The event selection is similar to that found in Ref. [26]. Events are required to

contain one primary vertex with |z| < 24cm and NDOF > 6. Pileup must be taken

into account and subtracted. This subtraction procedure consists of two components:

charged-hadron subtraction (chs) and neutral-hadron subtraction (nhs). Charged

hadrons that do not originate from the primary vertex are discarded before particle

flow jets (the precursor to CA8 jets) are created. The remaining neutral component of

pileup is then removed by applying an area-based correction as described in Ref. [27].
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The complete selection after pile-up subtraction requires two CA8 jets with pT >

400 GeV and |η| < 2.4. Both jets are also required to have masses consistent with a

top quark jet in the range of 140-250 GeV. A tt event requires the leading jet τ32 <

0.55. In addition, to guarantee the jet is infra-red safe, the leading jet must have τ21

less than 0.1.

Figure 4.1: Normalized τ32 distribution for tt̄ MC and QCD MC. The cut at τ32 =
0.55 maximizes tt̄ while minimizing NTMJ.

The number of events passing each selection cut as well as the tt̄ MC selection

efficiency is given in Tab. 4.1.

Events passing this selection are further subdivided according to the number of

subjet b tags they have. To define a subjet b tag, we take the declustered subjets and

select the maximum btagging discriminant from them and require this value to exceed
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Requirement NData ϵMC

Initial 65576549 —
Trigger 4027708 0.005
Kin. Cuts 4027708 1
M1 > 100GeV 1057544 0.718
M2 ∈ [140, 250] GeV 88540 0.372
Jet1τ32 < 0.55 5469 0.398
Jet1τ21 > 0.1 5469 1
M1 < 250GeV 4758 0.979
Final 4758 0.0015

Table 4.1: Event counts and MC selection efficiency for analysis-level cuts.

the Combined Secondary Vertex (CSV) medium operating point of 0.679. Thus the

number of subjet b tags actually counts the number of CA8 jets with at least one

subjet b tag.

Events are divided into three exclusive categories: events with no jets containing

a subjet passing the btagging requirement, events with 1 jet (leading or subleading)

containing subjets passing the btagging requirement, and events with 2 or more jets

containing subjets passing the btagging requirement

These are referred to as 0 btags, 1 btag, and 2 btags, respectively. Table 4.2 gives

the events counts after selection for these three categories.

0 btags 1 btag 2 btags
tt̄ 92.9± 4.9 288.2± 8.4 204.1±7.0
NTMJ 3181.1±18.1 831.0± 9.3 77.2±2.8
Total 3274.1±18.8 1119.1±12.5 281.3±7.6
Data 3085 1103 265

Table 4.2: Event counts and statistical uncertainties for data, tt̄ , and NTMJ back-
ground, for pT > 400 GeV prior to fitting.
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Finally, to get the differential tt̄ cross section we divide our sample into the follow-

ing 5 regions based on the leading jet pT and independently measure the tt̄ yield in

each region: 400 GeV ≤ pT < 500 GeV, 500 GeV ≤ pT < 600 GeV, 600 GeV ≤ pT <

700 GeV, 700 GeV ≤ pT < 800 GeV, and 800 GeV ≤ pT < 1200 GeV.

Yields for these regions are given in Table 4.3.

400 0 btags 1 btag 2 btags
tt̄ 28.4±2.7 92.1±4.8 66.9±3.9
NTMJ 820.0±9.1 213.9±4.6 21.5±1.5
Total 848.5±9.5 306.0±6.7 88.4±4.2
Data 738 282 83

500 0 btags 1 btag 2 btags
tt̄ 34.0±3.0 107.1±5.1 81.9±4.6
NTMJ 1254.7±11.7 328.9±6.0 30.2±1.9
Total 1288.7±12.0 435.9±7.9 112.1±4.9
Data 1064 425 114

600 0 btags 1 btag 2 btags
tt̄ 18.0±2.1 56.2±3.7 37.8±3.0
NTMJ 554.4±6.8 145.4±3.5 14.5±1.1
Total 572.3±7.1 201.7±5.1 52.3±3.2
Data 668 210 33

700 0 btags 1 btag 2 btags
tt̄ 6.8±1.5 23.0±2.3 11.9±1.8
NTMJ 321.9±5.9 85.7±3.0 6.1±0.8
Total 328.7±6.0 108.7±3.8 18.0±1.9
Data 360 103 22

800 0 btags 1 btag 2 btags
tt̄ 5.7±1.2 9.8±1.6 5.6±1.2
NTMJ 230.2±5.4 57.1±2.7 4.8±0.8
Total 235.9±5.6 66.8±3.1 10.4±1.5
Data 255 83 13

Table 4.3: Event counts and statistical uncertainties for data, tt̄ , and background
for 400 GeV< pT < 500 GeV (top left), 500 GeV< pT < 600 GeV (top right),
600 GeV< pT < 700 GeV (middle left), 700 GeV< pT < 800 GeV (middle right),
800 GeV< pT < 1200 GeV (bottom); prior to fitting.
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4.3.1 Jet Parameters

Jet parameters for both the leading and subleading jet will be shown in the

following figures for both the tagged region (τ32 < 0.55) and the antitagged region

(τ32 > 0.55) . As shown in Fig. 4.10, τ32 for the leading jet in the tagged region has

to be treated specially because NTMJ is defined by requiring τ32 > 0.55. In order to

plot the τ32 parameter, we took the normalization of the region where τ32 > 0.55 and

scaled the region with τ32 < 0.55 to match this value. This was only done in order

to visualize the τ32 distribution—the shape of this parameter does not matter in this

analysis.
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Figure 4.2: Pseudorapidity distribution of the leading jets in the antitag (left) and
the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after
selection, but before fitting. The discrepancy of the leading jet η is well understood
and comes from the τ32 requirement.
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Figure 4.3: Pseudorapidity distribution of the subleading jets in the antitag (left)
and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection, but before fitting.
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Figure 4.4: Phi distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting.

61



CHAPTER 4. ANALYSIS

Figure 4.5: Phi distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting.
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Figure 4.6: Transverse momentum distribution of the leading jets in the antitag (left)
and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection, but before fitting.
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Figure 4.7: Transverse momentum distribution of the subleading jets in the antitag
(left) and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection, but before fitting.
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Figure 4.8: Mass distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting.
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Figure 4.9: Mass distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting.
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Figure 4.10: τ32 distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting. For the antitag distribution, the normalization for NTMJ is taken
from the sidebands.
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Figure 4.11: τ32 distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection,
but before fitting.
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Figure 4.12: Maximum CSV from all subjets of the leading jets in the antitag (left)
and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection, but before fitting.
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Figure 4.13: Maximum CSV from all subjets of the subleading jets in the antitag
(left) and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection, but before fitting.
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Figure 4.14: Number of jets spectrum in the antitag (left) and the tag (right) region
for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection, but before
fitting.
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4.4 Scale Factor Measurement

Due to a combination of mismodeled hadronic shower in PYTHIA (needed to

describe some b tagging and substructure variables) and mismodeled detector effects

in full simulation, the efficiency of a cut in data may not be the same as in MC

simulation. We correct this by applying a scale factor (SF) to MC events to make

them match data. A statistically independent µ+jets sample is used to calculate the

efficiency of a cut in both data and MC. The ratio of data efficiency to MC efficiency

is the scale factor to be applied to signal tt̄ MC in all-jet events as seen in Eq. 4.1.

As important is the uncertainty on the scale factor because it determines the degree

of understanding of the modeling of the signal. Of particular interest to this analysis

are scale factors for subjet btagging and N-subjettiness.

SF =
ϵData

ϵMC
(4.1)

The muon+jets dataset is used to derive these two scale factors as it is statistically

independent from the hadronic selection used in the rest of this analysis. The following

preselection is applied to all muon+jets events, requiring an insolated muon identified

by the Particle Flow algorithm with pT > 45 GeV. The isolation requirement is either

∆R > 0.5 between the muon and the closest jet or a relative pT > 25GeV between

the muon and the closest jet (2D isolation). The hadronic jet also requires τ21 > 0.1

for IR safety, and the leptonic “top jet” must be in the top mass window [140,250]
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GeV to kinematically match the hadronic analysis.

The muon is identified by the Particle Flow algorithm and then combined with

missing ET to create a W candidate. This W candidate is then combined with the

jet with the second highest pT to make a leptonic top candidate. (The highest pT jet

is the fully merged hadronic top.)

The data and Monte Carlo events are then further divided into the following four

disjunct regions: bt— Hadronic Jet τ32 < 0.55 and at least one subjet b tag, b—

Hadronic Jet τ32 > 0.55 and at least one subjet b tag, t— Hadronic Jet τ32 < 0.55

and no subjet b tags, and f— Hadronic Jet τ32 > 0.55 and no subjet b tags.

These regions can be seen in Fig. 4.15.

Figure 4.15: Hadronic Jet Subjet CSV Score vs Hadronic Jet N-subjettiness.

The leading jet mass distribution of each of the four regions in Fig. 4.15 is fit

73



CHAPTER 4. ANALYSIS

simultaneously with two components using RooFit. The signal top jet is represented

by a Gaussian peaking at 170 GeV that is common to all regions; there is also a broad

Gaussian background in each region that behaves independently of the background

in any other regions. The normalizations of the top signal pdfs are given by the

following set of equations:

Nbt = Ntotal × ϵb × ϵt (4.2)

Nb = Ntotal × ϵb × 1− ϵt (4.3)

Nt = Ntotal × 1− ϵb × ϵt (4.4)

Nf = Ntotal × 1− ϵb × 1− ϵt (4.5)

where Ntotal is the total number of signal events and Nbt, Nb, Nt, and Nf are the

number of events in a given region. ϵb is the reconstruction efficiency for a hadronic

jet with a btagged subjet and ϵt is the reconstruction efficiency for a hadronic jet

passing the N-subjettiness requirement. The results of these fits to MC simulation

can be found in Fig. 4.16. Results for data are shown in Fig. 4.17. The data/MC

scale factors are derived as the ratio ϵdata / ϵMC and are given in Table 4.4 along with

the errors calculated from those provided by the fit.

Single Top MC samples were originally included but have been shown to have a

negligible effect; they are not included in the analysis.
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τ32 < 0.55 subjet b tag
Data eff. 0.667 ± 0.061 0.604 ± 0.045
MC eff. 0.577 ± 0.034 0.793 ± 0.024
Data/MC 0.841 ± 0.051 1.048 ± 0.070

Table 4.4: Data/MC scale factors for analysis-level cuts.

4.5 Background Estimate

The primary background to hadronic tt̄ production is Non-Top MultiJet (NTMJ)

production. The primary component of NTMJ events is QCD, and it dominates

tt̄ production, so having an accurate measure of the NTMJ background is vitally

important to any tt̄ cross section measurement in the all-jets channel. There are many

ways to approach determining the amount of NTMJ background, but one common

problem is that many parameters good at separating NTMJ from tt̄, such as τ32, are

correlated with parameters of interest such as the invariant mass of the leading jet

used in the fit to extract the tt̄ yield. Both methods using Minimum-Pairwise Mass

(MPM) and Large-R Isolation and Separation Adjustment (LISA) were attempted

but rejected because of this correlation2.

For this reason, we use a modified ABCD method, referred to as the Alphabet

method, to estimate background in the presence of this correlation between τ32 and

leading jet mass (Fig. 4.18).

The background estimate is made by running on the hadronic Run I data and

requiring events to pass the following selection: leading jet τ21 > 0.1 for IR safety,

2LISA is not a real method. MPM is however and was rejected.
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Figure 4.16: Signal and background fit to tt̄ Monte Carlo events to determine the
MC scalefactors for subjet btagging and N-subjettiness. (Top left) bt events (Top
right) b events (Bottom left) t events (Bottom right) f events.

leading jet mass in the window [100,400] GeV (This is the variable used in the fit, so

we broaden the mass cut to include the “sidebands” of the top peak, and subleading

jet mass in the top window [140,250] GeV.

This selection is also applied to tt̄ MC, and events that pass are subtracted from

the sample to be fit to give a NTMJ-enriched sample.

The τ32-vs-mass phase space of this tt̄-depleted data is broken up into 6 regions.

These are labeled A, B, C, D, E, and F and visualized in Fig. 4.18. Regions A, B,

D, and F are the sidebands in leading jet mass. Regions A and B have leading jet
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Figure 4.17: Signal and background fit to tt̄ semi-muonic data to determine the MC
scalefactors for subjet btagging and N-subjettiness. (Top left) bt events (Top right)
b events (Bottom left) t events(Bottom right) f events.

mass in the window [100,140] GeV while regions E and F have leading jet mass in

the window [250,400] GeV. The signal region (regions C and D) is where the leading

jet mass is consistent with a top jet ([140,250]) GeV.

Regions B, D, and F where events pass the τ32 < 0.55 requirement are considered

top-like, while regions with events failing that cut (regions A, C, and E ) are considered

to be NTMJ.

The ratio of events passing the τ32 selection to events failing that selection is

measured for the sidebands. That is, the number of events in region B is divided by
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Figure 4.18: Plot of τ32 vs Leading Jet Mass. The black points show the profile
distribution of τ32 in bins of jet mass showing the correlation between τ32 and jet
mass. The plot is subdivided into the regions used in the Alphabet method. Note that
regions B, D, and F are in the low-τ32 tail of the τ32 distribution of each vertical slice
of this plot. For this reason, the Alphabet method can approximate the correlation
between “pass” and “fail” events (here below and above the line, repectively) with a
smooth linear or parabolic function.

the number of events in region A and the number of events in region F is divided

by the number of events in region E. This allows an estimate of top-like events (or

events that would pass the top selection) given a sample of NTMJ events (those that

fail the τ32 cut). This ratio is measured in the sidebands and a quadratic function,

the transfer function, is used to interpolate between low and high jet mass to get an

estimate of the pass/fail ratio in the signal region. These are then applied to events

failing the τ32 cut to estimate the NTMJ in the signal region. This procedure is done

for each of the pT regions considered in the analysis. This defines a transfer fuction
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parametrized as a function of leading jet pT and leading jet mass. In the differential tt̄

cross section measurement, every event that fails the τ32 cut is multiplied by an event

weight from the transfer function, given its jet mass. The sum of resulting weighted

events constitute the data-driven NTMJ background.

This same weighting is applied to tt̄ Monte Carlo events to account for mistagged

signal events that fail the τ32 cut and thus are in the anti-tagged region C. These

events need to be removed from the anti-tag region in order not to overestimate the

amount of NTMJ in the signal region D.
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Figure 4.19: Quadratic Transfer Functions for leading jet pT between 400 and 500
GeV (top left), 500 and 600 GeV (top right), 600 and 700 GeV (middle left), 700 and
800 GeV (middle right), and 800 and 1200 GeV (bottom).
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4.6 Systematics

4.6.1 Jet Energy Corrections (JES & JER)

In CMS, the calorimeter response to particles is not linear and therefore corrections

must be applied to jets to allow the proper mapping of the measured jet energy

deposition to the particle-level jet energy. These jet energy corrections are comprised

of Jet Energy Scale (JES) and Jet Energy Resolution (JER) corrections. For both of

these corrections, the approach recommended by the Jet and Missing Energy (JME)

group in Ref. [28] is followed. Corrections were make for anti-kT 5 and 7 (AK5

and AK7, respectively) jets, but not for CA8 jets. It has been previously found in

Ref. [29] that the AK7 corrections can be used for CA8 jets. Jets are corrected using

the START53_V27 set of corrections for MC samples and the Winter14_V5_DATA set

of corrections for data. The JES uncertainty is estimated by varying the jet energy

in bins of jet pT and jet η using the AK7 corrections and adding additional 3% flat

uncertainty to the result. Because jets in simulation have a better JER than jets

in data, the jet energy is smeared in simulation by 10%. The JER uncertainty is

evaulated by smearing an additional η-dependent amount as determined by CMS.

Templates with JES shifted ±1σ are provided to the fitter, as are templates with

JER shifted ±1σ. An additional flat 1% uncertainty is provided to the fit to account

for using AK7 corrections for CA8 jets.
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4.6.2 Pileup (pu)

The effect of pileup has been discussed previously in section 4.3. The number of

vertices in each event is compared between data and MC simulation. The simulation

is then weighted with a function describing this difference. To estimate the pileup

uncertainty, the min bias cross section is shifted up and down by 5% and the pileup

procedure rerun. The result is a pair of templates corresponding to ±1σ pileup

uncertainty.

4.6.3 PDF uncertainty (pdf)

The tt̄ MC samples were generated using the CT10 PDF sets. The value of the

PDF directly relates to the cross section generated, so the decision was made to

externalize these from the fit. The CT10 PDF set uncertainty was found by following

the PDF4LHC prescription given in Ref. [30]. The fit was repeated with the nominal

template replaced by either the ±1σ PDF template and rerun. The difference between

the fit result using the nominal template and the fit result using the PDF-shifted

template was taken as the PDF uncertainty.
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4.6.4 Subjet btagging and N-subjettiness Scale Fac-

tors (btag & nsub)

The amount of tt̄ reconstructed is dependent on both the subjet btagging and

N-subjettiness efficiencies discussed and calculated in Sec. 4.4. These were found to

vary between data and MC simulation, resulting in the scale factors shown in Table

4.4. Each of the scale factors is independently shifted ±1σ and saved as a set of

templates that are provided to the fitter.

4.6.5 Transfer Function (xfer)

The procedure by which transfer functions were created was described in Sec. 4.5.

Each pT region considered in the differential measurement is provided with a pair of

templates representing a ±1σ shift in the transfer function for that region. These are

allowed to change independently of each other.

4.6.6 Q2 (q2)

The uncertainty on the modeling of the hard-scatter process (Q2 = mtop + σp2T ),

was accounted for with dedicated tt̄ samples where the renormalization and factor-

ization scales are varied up or down by twice their nominal values. The fit was rerun

with the tt̄ MC replaced by the Q2-shifted MC. The difference between the fit with

the nominal tt̄ MC and the Q2-shifted tt̄ MC is taken as the uncertainty due to the
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Q2 systematic.

4.6.7 Luminosity (lum)

A flat uncertainty of 2.6% is applied to the tt̄ MC to account for luminosity

uncertainty [21].

4.6.8 Trigger (trig)

Uncertainty in the HLT_HT750 trigger was also considered, but found to be negli-

gible.

4.6.9 Systematic Strength

The relative strength of each of these systematics for the inclusive pT > 400 GeV

sample is shown in Tab. 4.5. For each of the 3 btag subsets (0, 1, or 2 subjet btags),

the strength of a 1 σ deviation in each systematic is shown. This serves to give the

relative strength of each systematic only; the fit is not constrained to a 1 σ change.

4.7 Maximum Likelihood Fit

The tt̄ yield is extracted from a fit of the invariant mass distribution of the leading

jet mass with the sum of tt̄ and NTMJ components. The leading jet mass is binned
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0 btags tt̄ QCD
JER 0.22 0.00
JES 13.16 0.19
xfer 0.08 18.71
nsub 8.89 0.29
btag 18.59 0.22

1 btag tt̄ QCD
JER 0.33 0.07
JES 13.11 2.75
xfer 0.89 20.88
nsub 7.92 4.69
btag 5.98 0.81

2 btags tt̄ QCD
JER 0.14 0.84
JES 12.69 28.19
xfer 0.62 27.04
nsub 8.19 25.48
btag 10.14 14.79

Table 4.5: Table showing the relative strength of the systematics in the fit for 0
subjet btags (left), 1 subject btag (center), and 2 subjet btags (right). Each entry
corresponds to the percent increase/decrease in events for either tt̄ or QCD for a 1 σ
change in each systematic.

in both pT and number of subjet btags (0,1,2). In each pT region, the btag bins

are simultaneously fit using a binned maximum likelihood fit. For each region, the

τ32-tagged events are fit simultaneously with antitag events. The binned likelihood

for each pT region is given by Equation 4.6.

L =

btags∏
i

mass∏
m

N [i,m]nie−N [i,m]

ni!

syst∏
j

ePj(i,m)

MCstat∏
k

ePk(i,m) (4.6)

where ni is the number of events having i btags, N[i,m] is the number of events

in jet-mass bin m of a template with i btags given by Equation 4.7, and
∏syst

j ePj(i,j)

contains the gaussian penalty terms for all systematics. Uncertainties due to limited

simulated statistics are included through
∏MCstat

k ePk(i,m) term: a set of uncorrelated

nuisance parameters which allow the expectation in each bin of the background tem-

plates to vary within Gaussian constraints.
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N [i,m] = N tag
tt̄ × P tag

tt̄ (i,m) + N tag
NTMJ × P tag

NTMJ(i,m) +

Nat
tt̄ × P at

tt̄ (i,m) + Nat
NTMJ × P at

NTMJ(i,m) (4.7)

where Ntt̄ is the number of tt̄ events, NNTMJ is the number of NTMJ events and

Ptt̄, and PNTMJ are the pdfs of the tt̄ and NTMJ distributions, respectively. Separate

distributions are used for events which have passed the N-subjettiness requirement

(tag) and those that have failed it (at or antitag). The shape and normalization

for Ptt̄ is taken from the simulated tt̄ template, whereas PNTMJ is created by taking

events which fail the τ32 requirement and weighting them by the transfer function.

Hadronic data and tt̄ MC events are required to pass the full selection whereas

NTMJ events must pass the full event selection except the τ32 cut. All templates are

subdivided according to how many subjet b tags they have.

In addition to these nominal templates, a pair of ±1σ shifted templates are pro-

vided for each source of systematic error described in Sec. 4.6. Combine uses these

shifted templates to allow the systematic to vary quadratically between ±1σ; out-

side this range, Combine performs a linear extrapolation. In addition, each bin in

the tt̄ MC templates as well as the data-driven NTMJ background templates is al-

lowed to vary up and down within its statistical errors, as described by Barlow and

Beeston [31]. These are provided to the fit as a set of templates, where each Barlow-
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Beeston template matches the nominal template except one bin is shifted by ±1σstat.

The fit is firstly perfomed inclusively in the leading jet pT and used to derive the

cross section in the fiducial region pT > 400 GeV. The postfit tagged and anti-tagged

leading jet mass and pT are presented in Figs. 4.20 and 4.21 correspondingly. Five sets

of probability distribution functions are then used for the differential measurement,

with each one representing one of the pT regions listed in Section 4. The results of

the individual fits of these regions (using 1 and 2 subjet btags only) is reported in

Figs. 4.22 and 4.23.Additional fits can be found in the Appendix (Sec. 6.1.2).
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Figure 4.20: (Top Panels) Mass distribution of leading jet in the antitag (left) and
tag (right) region for events with 0 btags (top), 1 btag (middle) and 2 btags (bottom)
for the inclusive (pT > 400 GeV) sample. (Bottom Panels) Ratio of data to combined
signal + background.

88



CHAPTER 4. ANALYSIS

Figure 4.21: (Top Panels) Distribution of leading jet pT in the antitag (left) and tag
(right) region for events with 0 btags (top), 1 btag (middle) and 2 btags (bottom) for
the inclusive (pT > 400 GeV) sample. (Bottom Panels) Ratio of data to combined
signal + background.

89



CHAPTER 4. ANALYSIS

Figure 4.22: Postfit results of leading jet mass for (left) 1 btag and (right) 2 btags
for (from top to bottom) 400< pT <500, 500< pT <600 and 600< pT <700 GeV for
the tagged region.
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Figure 4.23: Postfit results of leading jet mass for (left) 1 btag and (right) 2 btags for
(from top to bottom) 700< pT <800 and 800< pT <1200 GeV for the tagged region.
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4.8 Unfolding

Unfolding relies on a response matrix to map reconstructed events to MC gen-

erated events. There are three conceivable outcomes when comparing the generated

MC events to the reconstructed MC events: Pass—the generated top quark is part

of a reconstructed top jet that passes the full reconstruction and analysis-level cuts,

Fail—the generated top quark is part of a reconstructed top jet that fails any recon-

struction or analysis-level cut, and Fake—a top jet that passes the full reconstruction

and analysis-level cuts does not correspond to a generated tt̄ that would have passed.

The response matrix created by following the unfolding procedure is shown in Fig.

4.24.

We take the results from the individual pT fits and combine them into a single

distribution and unfold it to get the corresponding generated (or theoretical) distri-

bution. The pT binning was chosen to match the boosted semileptonic analysis [32].

The SVD3 method of unfolding requires a choice of regularization parameter (kreg).

This parameter was varied from 2 to nbins=5, and the optimal value was found to

be kreg = 2 by following the procedure in Ref. [33]. This procedure involves plotting

the values of the “d” vector vs. kreg (Fig. 4.26). The point at which this distribution

becomes constant is the proper value for kreg; in this case kreg = 2.

The unfolding procedure was tested for bias by dividing the dataset into two parts

and unfolding the first part with a response matrix generated by the second part. The

3Singular Value Decomposition in RooUnfold.
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Figure 4.24: Plot of reponse matrix relating generated and reconstructed pT .

test showed no bias and the result of it can be seen in Fig. 4.27.

A separate response matrix is created for a ±1σ shift in each of the systematics

in Sec. 4.6 that affect the shape of the top pT distribution. The nominal fit result is

then unfolded with each of these response matrices to characterize the effect of the

systematic on the unfolding procedure. The difference between the unfolded result

using the nominal response matrix and the unfolded result using a response matrix for

shifted systematic is taken as the uncertainty in the unfolding due to that systematic

effect. These are then added in quadrature with each other and the statistical error

in the nominal result to give the result in Fig. 4.25.
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Figure 4.25: Plot of uncertainty due to systematic effects on the unfolded result.
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Figure 4.26: Plot of di vs kreg. The point at which di starts to be constant (kreg = 2)
is the optimal kreg for unfolding.
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Figure 4.27: Bias test for unfolding procedure. Half of the data was unfolded with
a response matrix generated from the other half.
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4.9 Results

4.9.1 Inclusive Cross Section

The templates shown in the left-hand-side of Fig. 4.20 are fit to get the inclusive

cross section. The result is shown in the right-hand-side of Fig. 4.20 and leads to the

following cross section:

σtt = 1.39± 0.08 (stat)±0.09 (exp)±0.42 (theory) pb

This result is approximately 16% smaller than the expected result for POWHEG,

1.66 pb.

4.9.2 Differential Cross Section

The differential cross section was discussed earlier in Sec. 1.3 and is given by Eq.

1.3. The unfolding procedure implicitly includes both the acceptance and selection

efficiency, so they do not need to be calculated individually. Event counts:

pT (GeV) Data Stat (%) Exp (%) Th (%) Tot (%) POWHEG MC@NLO Madgraph SemiLeptonic
400-500 8.59 11.4 10.5 60.4 62.4 11.8 10.1 13.1 10.4
500-600 2.51 10.0 20.3 19.4 29.8 3.20 2.63 3.64 2.74
600-700 0.789 13.7 42.5 7.0 45.2 0.972 0.754 1.11 0.786
700-800 0.266 19.0 23.2 9.3 31.4 0.322 0.238 0.363 0.254
800-1200 0.042 23.5 31.3 19.7 43.8 0.049 0.030 0.050 0.036

Table 4.6: Differential tt cross section as a function of pT(
dσ
dpT

)(fbGeV−1) unfolded
to parton-level with uncertainty. The Data column is the result of this analysis. Also
compared are three generator and parton-shower combinations: POWHEG+Pythia6,
MC@NLO+Herwig6, and Madgraph+Pythia6. The uncertainty is divided into Sta-
tistical, Experimental, Theoretical, and Total as described in Section 4.6.
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The parton-level unfolded differential cross section is compared to different gen-

erators as well as the CMS 8 TeV semileptonic result and shown in Fig. 4.28.

Figure 4.28: Parton-level differential tt̄ cross section.

There is good agreement between the unfolded result and the theoretical input to

Powheg.

97



Chapter 5

Summary

The differential tt̄ cross section in the highly boosted all-hadronic channel at
√
s =

8TeV at the LHC has been presented. This measurement required understanding

a data-driven background that was correlated to one of the primary discriminants

of signal from background, τ32. The Alphabet method was used to overcome this

difficulty by using the sidebands to interpolate a curve to account for the correlation.

The combination of event selection and jet collection used were unique for the all-

hadronic channel, and as a result, data/MC scale factors for n-subjettiness and subjet

btagging were measured and used.

A simultaneous fit of tt̄ Monte Carlo and a data-driven background for QCD was

performed in bins of subjet btags. This fit was repeated for the pT ranges 400-500GeV,

500-600GeV, 600-700GeV, 700-800GeV, and 800-1600GeV. The fits accounted for

systematics including but not limited to jet energy corrections, scale factor errors,
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and errors in the alphabet-based background measurement. The results of the fit

were unfolded by singular value decomposition in order to compare them with theory.

The result is shown in Fig. 4.28. The result found to be in with NLO+PS simulation

calculations. The inclusive integrated tt cross section for jets with pT > 400 GeV was

also measured, and the result of σtt = 1.39±0.08 (stat)±0.09 (exp)±0.42 (theory) pb

slightly smaller than the POWHEG expectation of σtt = 1.66 pb, but agrees within

uncertainties.
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Appendix

6.1 Additional Figures and Details

6.1.1 Background Fit

Figure 6.1: Profile histogram between τ32 and Minimum Pairwise Mass (MPM)
demonstrating the correlation. Error bars are RMS.
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6.1.2 Fit
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Figure 6.2: Prefit(left) and Fit(right) of 0 btag, 1 btag, 2 btag for 400< pT <500
GeV.
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Figure 6.3: Prefit(left) and Fit(right) of 0 btag, 1 btag, 2 btag for 500< pT <600
GeV.
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Figure 6.4: Prefit(left) and Fit(right) of 0 btag, 1 btag, 2 btag for 600< pT <700
GeV.
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Figure 6.5: Prefit(left) and Fit(right) of 0 btag, 1 btag, 2 btag for 700< pT <800
GeV.

105



CHAPTER 6. APPENDIX

Figure 6.6: Prefit(left) and Fit(right) of 0 btag, 1 btag, 2 btag for 800< pT <1600
GeV.
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6.1.3 Post-fit Kinematics

Jet parameters for both the leading and subleading jet will be shown post-fit in

the following figures.
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Figure 6.7: Pseudorapidity distribution of the leading jets in the antitag (left) and
the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after
selection, but before after selection and fitting. The discrepancy of the leading jet η
is well understood and comes from the τ32 requirement.
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Figure 6.8: Pseudorapidity distribution of the subleading jets in the antitag (left)
and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection and fitting.
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Figure 6.9: Phi distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting.
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Figure 6.10: Phi distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting.
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Figure 6.11: Transverse momentum distribution of the leading jets in the antitag
(left) and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection and fitting.
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Figure 6.12: Transverse momentum distribution of the subleading jets in the antitag
(left) and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection and fitting.
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Figure 6.13: Mass distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting.
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Figure 6.14: Mass distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting.

115



CHAPTER 6. APPENDIX

Figure 6.15: τ32 distribution of the leading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting. For the tagged distribution, the normalization for NTMJ is taken from
the sidebands.
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Figure 6.16: τ32 distribution of the subleading jets in the antitag (left) and the tag
(right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection
and fitting.
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Figure 6.17: Maximum CSV from all subjets of the leading jets in the antitag (left)
and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection and fitting.
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Figure 6.18: Maximum CSV from all subjets of the subleading jets in the antitag
(left) and the tag (right) region for 0 btags (top), 1 btag (middle) and 2 btags (bottom)
after selection and fitting.
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Figure 6.19: Number of jets spectrum in the antitag (left) and the tag (right) region
for 0 btags (top), 1 btag (middle) and 2 btags (bottom) after selection and fitting.
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[24] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,”

JHEP, vol. 05, p. 026, 2006.

[25] S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Meth. A,

vol. 506, p. 250, 2003.

[26] J. Conway, J. Dolen, R. Erbacher, P. Maksimovic, K. Nash, M. Osherson, J. Pilot,

S. Rappoccio, and R. Vasquez-Sierra, “Search for BSM tt̄ production in the

boosted all-hadronic final state using pp collisions at
√
s = 8 tev,” CMS Note

2012/179, 2013.

[27] M. Cacciari, G. P. Salam, and G. Soyez, “The Catchment Area of Jets,” JHEP,

vol. 04, p. 005, 2008.

[28] S. Chatrchyan et al., “Determination of Jet Energy Calibration and Transverse

Momentum Resolution in CMS,” JINST, vol. 6, p. P11002, 2011.

[29] J. Conway, J. Dolen, R. Erbacher, B. Hegner, G. Hu, J. Ott, P. Maksimovic,

S. Rappoccio, and R. Vasquez-Sierra, “Search for BSM tt̄ production in the

boosted all-hadronic final state,” CMS Note 2011/194, 2011.

[30] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse et al., “The

PDF4LHC Working Group Interim Recommendations,” 2011.

124



BIBLIOGRAPHY

[31] R. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples,” Computer

Physics Communications, vol. 77, p. 219, 1993.

[32] M. Alyari, M. Bellis, S. Dittmer, S. Rappoccio, L. Skinnari, and J. Thom, “Mea-

surement of the differential tt̄ production cross section for high-pT top quarks in

e/µ+jets final states at 8 tev,” CMS Note 2013/343, 2012.

[33] A. Hocker and V. Kartvelishvili, “Svd approach to data unfolding,” Nuclear

Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 372, no. 3, pp. 469

– 481, 1996. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0168900295014780

125

http://www.sciencedirect.com/science/article/pii/0168900295014780
http://www.sciencedirect.com/science/article/pii/0168900295014780


Vita

Education

Ph.D. Physics, Johns Hopkins University, Expected 2017.

M.A. Physics, Johns Hopkins University, 2012.

B.S. Physics, University of West Florida, 2005.

B.S. Chemistry, University of West Florida, 2005.

Analysis Skills

Computer Programming

C++

Python

R

ROOT

126



VITA

RooFit

SQL

UNIX shell scripting

Statistical Background

Numerical Methods

Error Analysis

Model Building

Linear Regression

Monte Carlo Methods

Probability Distributions

Likelihood Analysis

Mathematical Background

Multivariate Calculus

Linear Algebra

Matrix Factorization

Fourier Analysis

127



VITA

Selected Publications

CMS Collaboration. Measurement of the differential top-quark pair-production

production cross section with boosted tops in the all-hadronic channel at
√
s=8 TeV.

In progress.

CMS Collaboration. Measurement of the production cross section in pp collisions

at with lepton + jets final states. Physics Letters B. 720:83-104. March 2013

Swartz, M.; Fehling, D.; et al. A new technique for the reconstruction, vali-

dation, and simulation of hits in the CMS Pixel Detector. Proceedings of Science:

Vertex.2007:35. July 2007

Work Experience

Research Assistant - JHU - 2014-present

Teaching Assistant - JHU - 2014-2015

Representative, Inbound Sales and Support - GoDaddy - 2012-2014

128


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	The Standard Model
	Fermions
	Leptons
	Quarks
	Hadrons

	Bosons
	Weak Force (W,Z0)
	Electromagnetic Force ()
	Strong Force (g)

	The Higgs Boson (H)

	Parton Distribution Functions
	Cross Sections
	Differential t Cross Section

	Experimental Setup
	The LHC at CERN
	Compact Muon Solenoid
	Magnet
	Silicon Tracker
	Electromagnetic Calorimeter (ECAL)
	Hadron Calorimeter (HCAL)
	Muon System
	Missing Tranverse Energy (MET)
	Trigger


	From Detector To Physics
	Particle Flow
	Jets
	Boosted Jets
	Jet Substructure
	N-Subjettiness
	Subjet btagging

	Analysis
	Analysis Strategy
	Samples
	Selection
	Jet Parameters

	Scale Factor Measurement
	Background Estimate
	Systematics
	Jet Energy Corrections (JES & JER)
	Pileup (pu)
	PDF uncertainty (pdf)
	Subjet btagging and N-subjettiness Scale Factors (btag & nsub)
	Transfer Function (xfer)
	Q2 (q2)
	Luminosity (lum)
	Trigger (trig)
	Systematic Strength

	Maximum Likelihood Fit
	Unfolding
	Results
	Inclusive Cross Section
	Differential Cross Section


	Summary
	Appendix
	Additional Figures and Details
	Background Fit
	Fit
	Post-fit Kinematics


	Bibliography
	Vita

