
EISENHOWER LIBRARY 

Csunbridge tracts in mathematics and 
mathematical physics. 
no.7 (2d ed.) I915. 









Cambridge Tracts in Mathematics 

and Mathematical Physics 

Generai. Editors 

J. G. LEATHEM, M.A. 

E. T. WHITTAKER, M.A., F.R.S. 

N o . 7 

T h e Theory 

of Optical Instruments 



CAMBRIDGE UNIVERSITY PRESS 

0. E. CLAY, Manager 

ilontron: FETTEE LANE, E.G. 

eoiiiiurgf): lOO PEINCES stbbet 

ni 
^ 

•i.i 

m 

M 

Ii| 

'f0 

jaefa l5orh: G. P. PUTNAM'S SONS 
Bomias, ffialctitfa anlr fHaBraz: MAOMILLAN AND CO., Liu. 

Eoranto: J. M. DENT AND SONS, Ltd. 
Eoftjro: THE MAEUZEN-KABUSHIKI-KAISHA 

All rights reserved 



T H E T H E O R Y 

OF 

OPTICAL INSTRUMENTS 

E; T. W H I T T A K E R 
/I 

F.R.S., Hon. Sc.D. (Dubl.) 
Professor of Mathematics in the University of Edinburgh 

C a m b r i dge: 

at the University Press 

1915 



/ , ••>, . c n 

PHYSICS 

'.'0/: i\ ,1 

ii'irst Edition 1907 
Second Edition 1915 



PREFACE TO FIEST EDITION 

STUDENTS of Astronomy, Photography, and Spectroscopy, have 
frequently expressed the desire for a simple theoretical account of 

those defects of performance of optical instruments to which the names 
coma, curvature of field, astigmatism, distortion, secondary spectrum, 
want of resolving power, etc., are given : it is hoped that the need will 
to some extent be met by this little work, in which the endeavour is 
made to lead up directly from the first elements of Optics to those parts 

of the subject which are of greatest importance to workers with optical 
instruments. A short account of the principal instruments has been 
added. 

While the tract is primarily written with this practical aim, the 
writer ventures to hope that it may be useful in drawing the attention 

of Pure Mathematicians to some attractive theorems: of special 
interest is Klein's application of the imaginary circle at infinity to 
establish the result (§ 30) that no optical instrument can possibly 

be constructed, other than the plane mirror, so as to be capable of 
transforming all the points of the object-space into points of the 

image-space. 
The writer moreover believes that the customary course of 

Geometrical Optics presented to mathematical students in Universities 
might with advantage be modified : and offers the present tract as 

a suggestion to this end. 
E. T. W. 

DuNsiNK Observatory, Co. Dublin, 
Novemher 1907. 

PREFACE TO SECOND EDITION 

The second edition is substantially a reprint of the first. 

E. T. W. 

Edinburgh, 
August 1915. 
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C H A P T E R I 

THE POSITION AND SIZE OF THE IMAGE 

1. Rays and waves of light. 

The existence of " shadows," wliiol) is constantly observed in every
day life, is most simply explained by the supposition that the influence 
to which our eyes are sensitive, and which we call light, travels (at any 
rate in air) in straight lines issuing in all directions from the "luminous" 
bodies with which it originates, and that it can be stopped by certain 
obstacles which are called opaque. This supposition of the rectilinear 
propagation of light is not exactly confirmed by more precise observa

tions : light does in fact bend round the corners of opaque bodies to 
a certain very small extent. But the supposition is so close an 
approximation to tlie truth that it may be taken as exact without 
sensibly invalidating the discussion and explanation of many of the 

most noteworthy phenomena of light. 
If an opaque screen, pierced by a small hole, be placed at some 

distance from a small source of light, the light transmitted through 
the hole will therefore travel approximately in the prolongation of the 
straight line joining the source to the hole. Light which is isolated in 
this way, so as to have approximately a common direction of propaga
tion, is called a pencil: and a luminous body is to be regarded as 
sending out pencils of light in all directions. As there is a certain 
amount of vagueness in this statement, owing to the absence of any 
definite understanding as to what the cross-section of a pencil is to be, 
it is customary to make use of that principle of idealisation which is of 
such constant occurrence in mathematics: we introduce the term ray 
to denote a pencil whose cross-section is infinitesimally small, so that 
the light can be regarded as confined to a straight line: and then the 
above idea can be expressed by the statement that a luminous body 

sends out rays of light in all directions. 
A more intimate study of the physical properties of light tends to 

the conviction that light consists in a disturbance of a medium which 

w. 1 



2 THE NATUBE of LIGHT [CH. I 

fills all space, interpenetrating material bodies: to this medium the name 
aether is given. A luminous point is then to be regarded as sending 
out waves of disturbance into the surrounding aether, in much the 
same fashion as a stone dropped into a pond sends out waves of 
disturbance in the water of the pond. In the latter case, we can 
distinguish between the crests of the waves, where the water is heaped 
up, and the troughs, where the surface is depressed below the normal 
level: these crests and troughs form a system of circles having for 
centre the point where the stone struck the water: we can speak of 
any crest or trough, or indeed any circle which has this point for 
centre, as a wavefront, meaning thereby that at all points of such 
a circle the water is at any instant in the same phase of disturbance. 
Similarly in the case of the waves emitted by a luminous point in any 
medium which is homogeneous (i.e. has the same properties at all its 
points) and isotropic {i.e. has the same properties with respect to all 
directions), the aether is in the same phase of disturbance at any 
instant at all points of a sphere'having the luminous point as centre : 
and these surfaces of equal phase are called wave-fronts. It is evident 
that the rays of light proceeding from the point are simply the normals 
to the wavefronts. 

The luminous disturbances with which we are familiar in nature 
are generally of a very complicated character, but can be regarded as 
formed by the coexistence of a number of disturbances of simpler type, 
in which those wave-fronts which have the same phase {e.g. the 
"crests") follow each other at regular intervals of distance. This 
distance is called the wave-length of the simple disturbance : and the 
time taken by one crest to move over one wave-length, i.e. to replace 
the crest in front of it, is called the period. Differences of wave-length 
or period affect the eye as differences of colour. 

The wave-fronts are propagated outwards from a luminous point, in 
the same way as the water-waves on the pond: the velocity with which 
a wave-front moves along its own normal depends on the material 
medium {e.g. air or glass) in which the propagation is taking place. 
The ratio of the velocity of light in vacuo to the velocity in any given 
medium is called the index of refraction of the medium : it is 
proportional to the time light takes to travel 1 cm. in the medium. 
The refractive index depends to some extent on the colour of the light 
considered': we shall suppose for the present that we are dealing with 

light of some definite period, so that the index of refraction has a 
definite value for every medium considered. 
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2. Reflexion. 

It is a familiar fact that light is to some extent thrown back or 
reflected from the surfaces of most bodies on which it is incident. In 
most cases the incident wave-front is so broken up by the small 
irregularities of surface of the reflecting body, that any regularity 
which it may have possessed before reflexion is destroyed: but if the 
reflecting body is capable of being used as a mirror, i.e. if its surface is 
optically smooth, reflexion has a regular character which we shall now 
investigate. 

Let the plane of the diagram be perpendicular to the reflecting 
surface and the incident wave-front, 
and let A C, A B be the traces of the 
reflecting surface and the incident 
wave-front respectively. Let D C 
be the trace of the wave-front after 
reflexion, and let B G and J.Z> be per

pendicular to the respective wave-fronts, so that they are respectively 
parallel to the incident and reflected beams of light. 

Then the time taken by the wave-front to travel from one position to 
the other is proportional to either B C (which represents the time taken 
by B to move to its new position C) or to A D (which represents the 
time taken by A to move to its new position D ) : we have therefore 

BC=AD, or BOA = DAG. 

The angle between the incident ray B G and the normal to the 
surface is called the angle of incidence: the angle between the 
emergent ray A D and the normal is called the angle of reflexion. 
The last equation may be expressed by the statement that the 
reflected ray is in the same plane as the incident ray and the nm~mal 
to the reflecting surface, and the angle of reflexion is equal to the angle 

of incidence. This is the lav: of reflexion. 

3. Refraction: Fermat's principle. 

If a thick ,piece of glass or any other transparent substance be 
interposed in air between a luminous body and the eye, the luminous 
source will in general still be seen, but will appear distorted or 
displaced in some manner. Prom this it is evident that while the rays 
from the luminous body which strike the glass are in part reflected at 
the surface of the glass, they are also partly transmitted through the 
glass, and at the same time experience a certain amount of deflexion 

1—2 



EEFRACTION [CH. 

from their original course. It can easily be shewn experimentally that 
this deflexion, to which the name refraction is given, takes place at 
the entry of the ray into the glass, and again at its emergence from, the 
glass: there is no change of direction of the ray during its passage 

through the glass, if the latter be homogeneous. 
If a ray of light passes from one medium into another, the acute 

angle between the incident ray and the normal to the interface between 
the media is called the angle of incidence, and the acute angle between 
the refracted ray and the normal is called the angle of refraction. 

Eefraction is easily explained as a consequence of the difference of 

velocity of propagation of light in different media. Let A G he the 

trace of a small part of the refracting 
surface: let A B be the trace of the 
incident wave-front, so that its normal 
B G is parallel to the incident beam: let 
D G be the trace of the wave-front after 
refraction, and A D its normal: and let 
/x and fi! denote the refractive indices of 

the media. 
Then the time taken by the wave-front to travel from one position to 

the other is proportional to /a . B G (which represents the time taken by 
B in travelling to G) or to yu-'. A D (which represents the time taken by 

A in travelling to D ) . W e have therefore, 

ji.. B G = ij! . A D , or j>.AnBAG=ij:smAGD. 

Thus the law of refraction is that the sines of the angles of incidence 
and refraction are in the ratio jji'liJ-. This is readily seen to be 
equivalent to the statement that the cosines of the angles made by the 
incident and refracted rays with any line in the tangent-plane to the 

interface are in the ratio f̂'/f̂. 
Media for which the index of refraction has comparatively large 

or small values are spoken of as optically dense or optically light 

respectively. 
W h e n the refraction takes place from a dense into a light medium, 

so that /A > /a', the law of refraction gives a real value for the angle of 
refraction only when the angle of incidence is less than sin~^ (/a'Z/a). 
This value of the angle of incidence is called the critical angle : 
when the angle of incidence is greater than the critical angle, refraction 
does not take place, all the light being reflected. This phenomenon is 
known as total internal reflexion. 

The laws of reflexion and refraction can be comprehended in 
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a single statement known as Fermat's principle, which may be thus 
stated : The path which is actually described by a rdy of light between 
two points is such that the time talcen by light in travelling from one 
point to the other is stationary {i.e. is a maximum or minimum)/or that 
path as compared with adjacent paths connecting tlie same terminal points: 
the velocity of the light being everywhere proportional inversely to the 
refractive index. In the case of reflexion the condition must of course 
be added that the path of the ray is to meet the reflecting surface. 

To shew that F'ermat's principle is equivalent to the ordinary law of 
refraction, let O A be an incident ray 
in a medium of index /a, A I the 
refracted ray in a medium of index 
fj-', B any point near to A on the 
refracting surface A B . The excess 
of length of O B over O A is evidently 

A 
A B cos O B A, and the excess of length 

A 
of A I over B I is A B cos B A I : so 
the difference between the times of 
propagation of luminous disturbance along the two paths O B I and 
O A I is proportional to 

/A. A B cos O B A -fx' . A B cos B A I , 
which vanishes in consequence of the law of refraction: this establishes 
the stationary property which is enunciated in Format's principle. 

Permat's principle is analytically expressed by the statement that 

jj-ds 

(where /a denotes the refractive index for the element ds of the path) 
has a stationary value, when the integration is taken along the actual 
path of a ray between two given terminals, as compared with adjacent 

curves connecting the same terminals. 

4. Object and image. 

In the preceding discussion of reflexion and refraction we have 

considered only the direction of the tangent-plane to a wave-front at 
some particular point: we must now proceed to consider the curvature 

of the wave-front, which of course depends on its distance from the 
luminous point from which it is diverging. The same idea can be 

otherwise expressed by the statement that we have hitherto treated 
only single rays, but are now about to study pencils. 

Consider a luminous point which is emitting waves in air; we shall 
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call this the object-point. Suppose that the light, after proceeding 
some distance from the object-point, is incident almost perpendicularly 
on a convex lens {i.e. a piece of glass bounded by two spherical faces 
and thickest in the middle). The waves before incidence on the lens 
are convex in front, so that the part of the wave-front which strikes the 
centre of the lens is originally a little ahead of the parts of the wave-
front which strike the rim of the lens-: but as the luminous disturbance 
travels more slowly in the glass than in air, that part of the wave 
which passes through the centre of the lens, and therefore has the 
greatest thickness of glass to traverse, will be retarded relatively to the 
outer parts of the wave in passing through the lens; and it may 
happen that this takes place to such an extent as to make the outer 
portions of the wave-fr'ont ahead of the central portion when the wave 
emerges from the lens, so that the wave is now concave in front. This 
concave wave will propagate itself onwards, in the direction of its own 
normal at every point, and thus its radius of- curvature wiU gradually 
decrease until the wave finally converges to a point. This point, to 
which the luminous disturbance issuing fi'om the object-point and 
caught by the lens is now ingathered, is said to be a real image of the 
original object-point. 

In any case the centre of curvature of the wave-fronts after 
emergence from the lens is said to be an image of the object-point, the 
image being called .virtual if the luminous disturbance does not 
actually pass through it. 

5. Image-formation by direct refraction at the spherical 
interface between two media. 

The fundamental case of image-formation is that in which the light 
issuing from an object is refracted at a spherical interface between two 
media. Let the refractive indices of the first and second media be /a and 
/a' respectively, and let r be the radius of curvature of the interface, 
counted positively when the surface is convex to the incident light. 
Let 0 be the object-point, A the vertex or foot of the normal from 0 
to the interface, P a point on the interface near A , P N perpendicular' 
to the axis or central line OA. W e 
shall consider the formation of an 
image by a luminous disturbance 
which is propagated approximately 

along the axis. 5 avn-IT 
A spherical wave-front originating 
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from 0 would, but for its encounter with the second medium, occupy at 

some time a position represented by the trace P U, where C is a point 
on the axis such that 0 U = 0P_. But owing to the fact that the dis
turbance does not travel with the same velocity in the two media, the 
disturbance along the axis will have reached only to a point V, where 

/a'. J. V = [I..AU 

or (/a'-p)AN~ix.NU=f>:. VN. 

But by a well-known property of circles, we have 

PN'' = NU{0N+0U), and PN^:=NA{2r-NA), 
and the equation can therefore be written in the form 

{^-^).PN^_ >..PN̂ - , 
ir-NA O N + O U ^ ' ' 

which when P approaches indefinitely near to A takes the form 

/a' — |U, /A _ 2/a' . VJV 

~ r ~ ~ O A ^ PR' ' 
shewing tliat y and P lie on a sphere of centre /, where 

fji — ytA /A [X 

~ r ' ~ OA^AI' 
This sphere evidently represents the wave-front after refraction, and 

its centre I, determined by the last equation, is the im^ge-point corre
sponding to the object-point 0. This equation shews that the range 
formed by any number of object-points on the line O A I is, in the 
language of geometry, homographic with the range formed by the 

corresponding image-points. 

6. Image-formation by direct refraction at any n u m b e r 
of spherical surfaces on the same axis. 

W e shaH consider next the successive refraction of a pencil of light 

at any number of spherical refracting surfaces whose centres of 
curvature are on the same line or axis; the object-point will be 
supposed for the present to be also situated on this axis, and the 
pencil of light to be directed approximately along the axis._ 

Let CO denote the abscissa of the object-point, measured (positively 
in the direction of propagation of the light) from any fixed ô igiri on the 
axis: and let the abscissae of the successive images he Xi, x^, ..., x'. 

Then the homographic property found in § 5 shews that x^ is given 
in terms of x by an equation which can be written in the general form 

__ a^X + /?! 

where (aj, A, yi! ^i) are constants which depend on the position and 
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curvature of the first refracting surface and on the refractive indices of 
the first and second media. 

Similarly the positions of the successive images are given by 
equations which may be written in the form 

72«i + 02 ydidi + 03 
Combining these so as to eliminate the intermediate images, we see 

that the position x of the final image-point is determined in terms of 
tlie position x of the original object-point by an equation which can also 
be written in the form 

, _ a x -I- P 
X — pi , 

where (a, /3, y, S) are constants depending on the system of refracting 
surfaces, but not depending on the position of the object-point. 

If y is zero, the system is said to be a telescopic system: the 
equation which determines x' in terms x then becomes 

, a ^ 
fct- — "X" il/ "t" "nf , 

0 0 
which by change of origin can be written 

where ^ is a constant. 

If 7 is not zero (which is the more general case), we can evidently 
without loss of generality take y to be unity: the equation can then 
be written 

xx' + Sx' — ax — l3 = 0; 

so if we now measure x from a point at a distance — S from the original 
origin, and also measure x' from a point at a distance a from the 
original origin, the equation will take the form 

where C is a constant. This equation determines the position x' of the 
final image. The origin from which x is now measured is called the 
First Principal Focus of the optical system: it is evidently the 
position in which the object must be placed in order that the image 
may be at an infinite distance, i.e. in order that the emergent 
wave-fronts may be plane. Similarly the origin from which x' is 
measured is called the Second Principal Focus: it is the position taken 
by the image-point when the object-point is at an infinite distance, 
e.g. a star. In the accustomed language of geometry, the Principal 
Poci are the "vanishing points" of the homographic ranges formed by 
any set of object-points and the corresponding image-points. 
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7. The Helmholtz-Clausius equation. 

The equation xx' = G 

determines the position x of the image formed by a given optical 
system, in terms of the position x of the object: we shall next shew 
how to determine the size of the image in terms of the size and position 
of the object, when the latter is supposed to be no longer a point but 
a body of finite (though small) dimensions. 

Let A B be an object, perpendicular to the axis A A ' of the instru
ment, and let A'B' be its image; we can regard A B and A'B' as two 

b; p' 

V 

\ 

positions of a wave-front, when small quantities of the second order are 
neglected (the ratio of the height A B to the dimensions of the instru

ment being taken as a small quantity of the first order). Let A D , 
A'D', be the corresponding two positions of another wave-front (pro
ceeding of course from another source) slightly inclined to the first. 

Then the time taken by the luminous disturbance to travel from B to B' 

~ a !i )> ;> I) J) 5) A to A 

jj )) )j )j ,, ,, ,, U hO u . 

It follows that the time taken by the light to travel the distance 
B D in the initial medium is equal to the time taken to travel B'D' in 
the final medium: or 

t>..BD = fx: .BD', 

where /a and /a' are the refractive indices of the initial and final media. 
If then we denote the heights A B , A'B' of the object and image by 

y and y' respectively, and the initial and final angles B A D , B'A'D' 
between slightly inclined wave-fronts by a, a' respectively, we have 

ixya = ix'y'a. 

This is known as Helmholtz's equation: it gives the linear magnifi
cation y'ly in terms of the angular magnification a'ja. 

It is obvious that the above reasoning does not depend essentially 
on the circumstance that the optical instrument has been supposed 

to be symmetrical about an axis: we can therefore abandon this 
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supposition, and state the theorem in a more general form due to 
Clausius*- Suppose that a small line-element I in a medium of index 
/A has for image a small Une-element I' in a medium of index /a', and 
that a ]pencil of light which has a small angular aperture u when it 
issues from a point of I has an aperture a' when it converges to the 
corresponding image-point on I': and let i/' and i/-' be the angles made 
by I and l' respectively with the normals to the pencil in its plane at 
the two ends. Then I cos \j/ will correspond to the y of Helmholtz's 
equation, and l' cos i/'' to y': so we obtain Glausius' equation 

fi,la cos 4' = H-'l'"-' COS i/''. 

8. T h e transformation of the object-space into the image-
space. 

W e are now in a position to obtain formulae which completely 
determine the manner in which an optical instrument forms an image 
of a small object situated on its axis of symmetry. 

The position of any point of a possible object, or any poi7it of the 
object-space as it is generally called, will be specified by its abscissa x 
measured along the axis (positively in the direction of propagation of 
the light) from the First Principal Focus of the instrument, and its 
ordinate y drawn perpendicularly to the axis: and similarly the 
position of a point iii the image-space will be specified by coordinates 
(*-', y'), of which x' is measured from the Second Principal Focus of the 
instrument. 

Suppose that two objects, of heights yi, y^ respectively, are at the 
points whose abscissae are x^, x^: let their images be of heights y^, yi, 
respectively. Then the equation of ̂  6 gives 

XX = G, 

so we have 
G G G 

Distance between images = = x Distance between objects. 

If therefore a denote the inclination to the axis of the ray from the 
axial point of the first object to the topmost point of the second object, 
and if o! denote the inclination of this ray to the axis after passing 
through the instruinent, w e have 

a' _ yi Distance between objects 
a 1/2 Distance between images 

* Ann. der Phys. cxxi. (1864), 1. 
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Now if /A and /a' denote the refractive indices of the initial and final 

media, we have by Helmholtz's equation 

/i'y/a' = jt.ŷ a, 

and therefore, substituting the value just found for a ja, we have 

- }̂ y\yiix̂ x̂  = it.Gŷ y,_. 

W e now suppose that the two objects approach each other so as 

ultimately to coincide in position: thus (omitting the suffixes) we have 

- /Ay V = /aC«/1 

The equation which determines the height y' of an image in terms 

of the height and position of the corresponding object is therefore 

, fy 
^ X 

where/is a constant connected with the constant G by the equation 

Thus the optical instrument transforms points {x, y) of the object-
space near tlie axis into points {x, y') of the image-space, in a manner 
defined by the equations of transformation 

x'=-^-t-, 
/J. X 

, fy 
y = ~ • 
/ X 

This transformation is of the kind called in Geometry a coUineation, 
a name which is given to those transformations of space which 
transform points into points and also transform straight lines into 
straight lines. 

W h e n the initial and final media have the same refractive index, as 
in the case of an optical instrument in air, the above equations become 

.' = -^, y'=^^. 
X X 

The constant / is called the focal length of the instrument. If the 
object is at an infinite distance {e.g. a pair of stars) and subtends 
an angle u. at the instrument, it is evident from the last equation that 
the length of the image will be fa. Thus the focal length of a 
photographic telescope determines the scale on which the heavens will 
be depicted in the photographs taken with the instrument. 
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The object-point and image-point for which the linear magnification 

y'ly is unity are sometimes called the Principal Points of the system. 
The preceding equations give for the coordinates of these pomts 

X y 

so X =f, x = -/. 

The principal points are therefore at distances from the principal foci 

equal to the focal length. 

9. The measure of convergence of a pencil. 

When light-waves are propagated outwards from a point 0 in 
a homogeneous isotropic mediuiu, the product of the refractive index /a 
and the curvature of the wave-fronts at any point P is called the 
divergence of the system of waves at the point P : the divergence 
is therefore measured by the quantity p-jOP. 

Similarly if the luminous disturbance is converging to an image-
point 0, the quantity /a/PO is called the convergence at P. Con
vergence is evidently equivalent to a divergence equal in magnitude 
but opposite in sign. 

The theorem of § 5 can thus be expressed by the statement that 
the ejfect of direct refractioii at the spherical interface {radius r) 
between two media (j. and, /a' is to increase the convergence {or diminish 
the divergence) of tlie incident pencil, by an amount {/j.' — jj)jr. This 
mode of stating the formula makes it easier to form a mental picture of 
the effect of a direct refraction on a pencil. 

10. The lens. 

W e shall now discuss the formation of images by lenses. A lens 
consists of a slab of glass, or some other transparent substance, whose 
faces are polished, and generally spherical. The line passing through the 
centres of curvature of the faces is called the axis of the lens. W e 
shall denote the refractive index of the material of the lens by /a, and 

shall suppose that the lens is placed in a medium of index unity. The 
points A, B,in which the axis meets the faces, are called the vertices, 
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and the distance AB between them is called the thickness of the lens, 
and will be denoted by t: the radii of curvature of the faces (counted 
positive when convex to the incident light) will be denoted hj r, s; so 
that refraction at the first face increases the convergence of a pencil by 
an amount (/a - l)/r, which we shall write ki, and refraction at the second 
face increases the convergence by (1 -/a)/s, which we shall write k̂ . 

Suppose that a ray O P issuing from an object-point 0 on the axis, 
and inclined at a small angle a to the axis, meets- the first face of the 
lens at P and is refracted into the direction PQ, making an angle 

"i with the axis; and is afterwards refracted at the second face of the 
lens into the direction QB, making an angle a with the axis. Let I^ 

and / b e the points in which the ray meets the axis after its first 
and second refraction respectively, so that Ii is the place of the 
intermediate image of 0 and / is the place of the final image. 

The formula of § 5, applied to the second refraction, is 

IB~ ' I,B' 
or a' = — ̂ 2 . B Q + jj.. aj 

= - h - A P + % (/A - ht), 
since B Q = A P + t.a^. 

But the formula of § 5, applied to the first refraction, is 

IA~ ' OA' 
or fJiâ  = — ki.AP + a, 

so substituting for 04 in the preceding equation, and writing a for /̂/a, 

we have 
a' = - h . A P + {l-k,a){a-ki.AP), 

or --k,.OA + {l-k,a){l-h.OA), 

since A P = a. O A ; 

hence a'la = - K . O A + l-ah, 

where K is written for the quantity k-̂  -1- 4 - akjk̂ . 
Now Helmholtz's equation shews that y'/y = a/a, where y'ly is the 

ratio of the height of the final image at / to that of the object at 0. 

Thus we have 

y_[_ 1 
y - K .OA + l-ah_ 

But it was shewn in § 8 that when an image is formed by direct 

refraction through any optical system symmetrical about an axis, the 
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ratio of the heights of the image and object is given by an equation of 

the form 

1 = 1 
y «' 

• where / is the focal length of the system and x = F A — O A is the 
distance of the object-point from the first principal focus F, measured' 
positively in the direction of propagation of the light. CompariDg 

these two equations, we have 

These equations determine the focal length of the lens and ths position 
of its first principal focus; the position of the second principal focus i*" 
is similarly given by the equation 

1 -akj 
BF' = 

K 

The position and size of the image are therefore given by th 
equations 

X =--TT:r-, where F'I= x, 
K^x ' 

and y' = -^ , 
•̂  Kx' 

which completely determine the image-forming action of the lens. 
The distance of the vertex A from the first principal point R 

is (§ 8) 

TT A — w i f '-~ '̂"'̂  1 ak^ 
H A - J ^ A - J - - ^ - ^ = — ^ , 

and the distance of the second principal point from the vertex B, 
measured outwards from the lens, is similarly -ak^jK. The distance 
between the principal points is therefore t-a{k^ + ki)IK; or if t be 
small compared with the focal length, it is approximately (/A-I)!f//A. 

It IS easily seen from the above formulae that generally speaking 
the effect of the thickness in a double-convex lens is to decrease the 
converging power of the lens, while in a double-concave lens the thick
ness increases the diverging power. W h e n one surface of the lens is 
plane, the thickness has no effect on the power. 

A single thick lens possesses what is known as an onf I 
characterised by the following property: any ray whose dir r 
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glass {i.e. between the two refractions) passes through the optical centre 
will emerge from the second face parallel to its direction at incidence on 
the first face. For if the incident ray passes through the first principal 
point of the lens, the emergent ray will pass through the second 
principal point, and by Helmholtz's equation their inclinations to the 
axis will be equal: so the optical centre is the image of either principal 
point in the corresponding face. 

In the case of a lens of which one face is plane, the optical centre 
and one of the principal points coincide at the vertex of the curved face. 
In the case of a deep meniscus, i.e. a concavo-convex lens of great 
curvature, the optical centre may be at a considerable distance from 

the lens. 

11. The thin lens. 

W h e n the lens is so thin that its thickness is negligible in comparison 
with its focal length, the vertices may be regarded as coincident in one 

point A, and the general formulae become 

FA=AF = 7r^=/ 

The principal points are now coincident at A : and the effect of the 
lens is simply to increase the convergence of an incident pencil by an 

amount (/a- 1) (- — j . This is called the converging power of the 

lens; if the lens is thicker in the middle than at the rim, it is said to be 
convergent and the focal length / is positive: if the lens is thinner in the 

middle than at the rim, it is said to be divergent, and (/a — 1) ( 

,can then be called its diverging power : the focal length is in this case 
;negative. Convergent lenses form real images of objects which are 

situated so that the first principal focus is between the object and 
the lens : for the divergence of a pencil on its arrival at the lens from 
.such an object is smaller than the converging power of the lens, so the 

.emergent pencil converges. Divergent lenses, when used alone, cannot 
form real images of real objects. 

W h e n the object and image are both real (case of the convergent 
lens, object in front of first principal focus), or both virtual (case of the 
^divergent lens, virtual object behind the first principal focus), the 
object and image are on opposite sides of the lens and the image is 
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consequently inverted, as can be seen by observing that the g 
lines joining corresponding points of the object and image 
axis at the optical centre: in other cases the image is upright relatively 

to the object. 
If several thin lenses are placed in contact, each lens will exercise 

its own converging power, and therefore the converging power of the 
whole is the sum of the converging powers of the separate lenses : that 
is, the reciprocal of the focal length of the system is the sum of the 
reciprocals of the focal lengths of the individual lenses. 

If two thin lenses of focal lengths / and / are separated by an 
interval a, each lens will resemble a single spherical surface in con
verging power, and we can therefore deduce the formulae for the optical 
behaviour of the system from the formulae of a single thick lens, by 
replacing (/a- l)/r by I//i, (1 -/a)/s by Ijf, and tlfx by a. Thus the 
focal length of the system is 

/i ji f f 

and the distance from the second lens to the second principal focus is 

/ ; ( / - « ) 
yi +/2 - a ' 

12. The spherical mirror. 

The reflexion of a pencil of light at the spherical interface between 
two media can be treated in the same way as refi'action. Let 0 be an 
object-point, A the foot of the normal 
from 0 to the interface, P a point on 
the interface near A, P N the perpen
dicular from P on the axis OA. = 

O V A N U I 
A wave-front propagated from 0, 

which on arrival at P would have occupied the position P f if there 
had been no reflexion, will actually occupy the position P V where 
V A = A U , owing to the reversal of direction of the central part of 
the wave by the reflexion. 

Let r denote the radius of curvature of the reflecting surface, 
counted positively when the surface is convex to the incid t Y ht' 
then we have 

VA=AU, or VN-AN=AN+N-(j_ 
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Now PN'- = '2r. AN, 

since r is the radius of curvature of P A ; and 

PN^ = 20A.NU, 

since O A is (in the limit) the radius of curvature oi P U ; and 

PN^ = 2AI. VN, 

since ^ / is (in the limit) the radius of curvature of P V , where / 
denotes the image-point of 0. 

Thus the preceding equation becomes 

J__l^l J_ 
AI r~r^ OA' 

1 2 1 
A I r O A 

The divergence of the wave-front is therefore increased by 2lr as a 
result of the reflexion, and the wave is at the same time reversed in 
direction of propagation. The quantity 2/r is called the diverging 
power of the mirror. 

It is easily seen from this equation that a mirror has optical pro
perties similar to those already found for the instruments which refract 
light: its principal foci are coincident at the middle point of A G, where 
G is the centre of curvature of the mirror, and its focal length is ̂ r. 

13. Astigmatism. 

The wave-fronts which diverge from a luminous point in a homo
geneous isotropic medium are spherical. If one of these spherical wave-
fronts is incident directly on an optical instrument symmetric about 
in axis, so that the axis of the instrument points exactly toward the 
luminous point, it is obvious from symmetry that the wave-front at 

3mergence will still be symmetric about the axis, and the part of it in 
;he immediate neighbourhood of the axis can therefore be regarded as 
i portion of a sphere: this is generally expressed by the statement that 
the emergent pencil of light is homocentric, a name implying that the 
•uminous disturbance is converging to (or diverging from) a single 
)oint, namely the centre of this sphere (which of course will be the 
image-point of the original luminous point). If for definiteness we 
iuppose that the pencil at emergence is converging to form a real image-
loint, its cross-section will gradually diminish after leaving the 
nstrument, until at the place of the image the cross-section of the 

w. 2 
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pencil reduces to a point: after this the cross-section will again increase 

in area; thus: 

O O o O 

When however a thin pencil of fight is incident obliquely on a 
refracting surface, the wave-front at emergence cannot m general be 
regarded as a portion of a sphere, for its curvature will be dmerent in 
different directions along its surface: and the cross-section of the 
emergent jDenoil of light will never reduce to a single point at any 
distance from the instrument, but will present in succession the 
following forms: 

0 I 0 oo - o c;;^^ 

It will be observed that the cross-section reduces first to a short 
segment of a straight line, and subsequently to a short segment of a 
straight line in a direction _at right angles to the first segment. These 
segments are called the focal lines of the pencil: their origin may be 
explained in the following way. 

Let A P be the emergent wave-front, and A the point in which it is 
met by some ray A B i R i which we select 
as the central or chief ray of the pencil: 
this chief ray will of course be the normal 
to the wave-front at A. 

It is a well-known geometrical theorem 
that all the normals to a surface touch the two caustic surfaces which 
are the loci of its centres of principal curvature. Let us apply this 
theorem to the surface A P . Let B^ and B^ be the centres of principal 
curvature of the wave-front at ̂  ; we can suppose that the plane of the 
diagram is the plane of the principal section for which R^ is the centre 
of curvature. Then any ray of the pencil which meets the wave-front 
at a point P near A touches the caustic surface through Bi at some 
point near B^, and therefore its shortest distance from the line through 
Bi perpendicular to the plane of the diagram is a small quantity of at 
least the order AF'/ABi. Similarly the distance of the ray through 
P from the fine drawn through B^ in the plane of the diaoram perpen
dicular to A B ^ is a small quantity of at least the order A P^IAR, 
These lines through B^ and B^ are evidently the focal Hues whosi 
existence was indicated above; Bi and B^ are called the foci of thf 
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thin pencil. We thus see that every ray of the pencil approximately 
intersects the two focal lines. 

The position of the focal lines is evidently not dependent on the 
particular wave-front used to obtain them, since so long as the luminous 
disturbance remains in the saniie medium its wave-fronts are a family 
of parallel surface's and have therefore the same caustic surfaces. 

In the case of the homocentric pencils which have been considered 
in the theory of direct image-formation, and which are symmetrical about 
an axis, one caustic surface reduces to the axis itself, and the other 
caustic surface has near the axis the form of a surface produced by the 
revolution of a plane curve about a cuspidal tangent; the foci ̂ i and 
Ri in this case coincide at the cusp. 

A thin pencil which is not homocentric, but diverges from two 
focal lines, is said to be astigmatic. If the pencil originally issued 
from a luminous point before the refractions, the image of this point 
on a screen placed at either of the foci will be a short segment of a 

straight line. If the screen is placed at (say) the focus Pi, the image 
of a line will therefore be quite fine and sharp if it has the same direc
tion as the focal line at Pi, since then the short segments of lines 
which are the images of its individual points will overlie each other 
lengthways: but otherwise the image will be blurred and broad, since 
then the short segments which are the images of the individual points 
of the original line will stand out more or less perpendicularly to the 
general direction of the image of that line, and so will communicate 

• breadth to it. 

The theory of focal lines is really part of the general theory of congruences: 
a congruence is a set of oo ̂  hnes, just as a surface is a set of oo ̂  points, and a 
ruled surface is a set of oo ̂  lines. Every ray of a congruence is intersected 
by two adjacent rays ; these intersections are called the/oci of the ray, and 
the two planes passing through the ray and either of its two intersecting rays 
are called focal ̂planes. The loci of the foci are called the focal surfaces 
of the congruence: every ray of a congruence touches the focal surfaces at its 
focal points, and the tangent-planes are the focal planes. 

If the focal planes are at right angles to each other for every ray of a 
congruence (as is the case in the optical application of the theory), the 
congruence consists of the set of normals to some surface (in the optical case, 
,tMs surface is the wave-front), and is called a normal congruence. 

14. Primary and secondary foci. 

The general case of the refraction of a thin pencil of light (either 
lomocentric or already rendered astigmatic by previous refractions) 

2—2 
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which is obliquely incident on a refracting surface of any curvature, is 
a somewhat complicated subject of investigation: we shall consider 
only the case which is of practical importance, namely the refraction of 
a thin pencil through an optical instrument consisting of a series of 
spherical refracting surfaces symmetrical about an axis, wnen it is 
assumed that the chief ray of the pencil is initially in one plane with 
the axis (and inclined at a finite angle to the axis), so that by symmetry 
the chief ray never leaves this plane in the course of the subsequent; 
refractions. This plane through the axis and the chief ray will be 
called the meridian plane of the pencil. By symmetry it follows that 
the principal sections of the pencil are that by the meridian plane, 
which is called the meridian or primary section, and that by the plane 
at right angles to this, which is called the sagittal ot secondary aeo'̂ a.ou; 
the corresponding foci of the pencil, which are the centres of curvature 
of the meridian and sagittal sections of the wave-front respectively, are 
called the meridian or primary focus and the sagittal or secondary 
focus. Either the meridian or the sagittal focus or any point between 
them, where the cross-section of the pencil is very small, may be 
regarded as in some sense an image of the object-point from which the 

thin pencil originally issued; but as was explained in the last article, 
the images thus obtained will be more or less blurred. 

It is evident from symmetry that the rays which are at any time in 
the meridian plane of the pencil always remain in the meridian plane 
after any number of refractions, and that the same is true of the rays 
in the sagittal plane. 

15. Oblique refraction of a thin pencil at a single spherical 
surface. 

The analytical formulae for the case of a single refraction are 
obtained in the following way. 

Let a pencil whose meridian focus is Oi and chief ray OiA be 
refracted from a medium of index /a 
into a medium of index /a' at a 
spherical interface whose centre of 
curvature is G and radius r, counted 
positive when the surface is convex 
to the incident light. Let A I be 
the refracted chief ray, and let O i P I 
be the path of an adjacent ray in the 

meridian section of the pencil, so that when P is indefinitely near to i 
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/] tends to a limiting position, which is that of the meridian focus of 
the pencil after refraction. 

Let i, i' be the angles of incidence and refraction for the chief ray. 
Then the equation 

/A sm « = /A 
when differentiated gives 

/A cos i. di = /a' 

/Acos*(-44P + -4dP) = /A' or 

or 

or 

/A cose 
. /J.P cos i A P \ 
i-o^Ar"-—)-

sin« 

cos i'. di' 

Gosi'{-PI^A + AGP) 

.,( APoosi' AP\ 
cos e j ^ — + 

V All r / 
/A cos t /A COS' « _ /A cos 'I /A cos t 
AI, Ô A 

This is the equation connecting consecutive primary foci. It m a y easily 
be interpreted geometrically as implying that the line Oili passes 
through a fixed point: and when i is replaced by zero it evidently 
reduces to the ordinary equation (§ 5) for the direct refraction of 

a pencil at a spherical surface. 

Next, let O2 be the sagittal 
focus of the incident pencil. The 

sagittal focus I2 of the refracted 
pencil is, by symmetry, at the 

intersection of the chief ray A I 2 

of the refracted pencil with the 

line of sagittal symmetry O2G. 

.The law of refraction gives 
A A 

/A sin O.2A G = [i! sin G A L 

or 

But 

and 

/A. GO2 y .GI2 

O2A ~ A h ' 

GO2 cos A GO2 = O2A cos i + r, 

G L cos A GO, = A L cos i' — r. 

Thus we have 
Or^A cos i + r 

OA = /A 
A L cos ( 

A L 

or 
/u. cos i — jU, cos I 

r A L O2A 

This is the equation connecting coiisecutive secondary foci; like the 
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equation for primary foci, when i is replaced by zero it reduces e 

equation for direct refraction. 
The union of rays at the sagittal foci is evidently, on account of the 

symmetry, one order higher than the union at the primary toci. 
Example. A smaU homocentric pencil of light is incident on and reflected 

by a spherical surface of radius r ; shew that the reflected pencil is usually 
astigmatic, and that the distance between the focal lines is equal to Vi~Vi, 
where 

I _!___ 2 1 _ 1 _ 2cosi _ 
Vi u r cos V V2 u 'I" 

i being the angle of incidence and u the distance of the origin of light from 
the point of incidence. 

16. T h e entrance-pupil a n d the field of view. 

If an object is placed in front of a single convex lens, and a real 
image is formed behind the lens, it is obvious that of all the rays of 
light emitted by the object, the only ones which contribute to the 
formation of the image are those which pass through the lens; in other 
words, the cross-section of the image-forming pencils is limited by the 
rim of the lens. In most optical instruments the cross-sections of the 
image-forming pencils are limited not only by the rims of the lenses, 
but also by diaphragms or stops, which are generally openings in the 
form of circles, whose centres are on the axis of the instrument and 
whose planes are perpendicular to theiaxis; a stop evidently obstructs 
all those marginal rays which are at too great a distance from the axis 

to pass through the opening. The rims of the lenses must of course be 
included in an enumeration of the stops of an instrument, as also must 
the edge of the iris, limiting the pupil of the eye, if the instrument is 
used visually. 

A s will appear later, a judicious selection of the image-forming 
pencils by a suitably placed stop of small aperture may effect a great 
improvement in the optical performance of an instrument. 

In order to find which one of the various stops in a given instrument 
is effective in determining the cross-section of the image-forming 
pencils, we consider the image of each stop formed by that part of the 
optical system which precedes it, and from these imao-es we select that 
one which subtends the smallest angle at the axial point of the obiect 
(which may be either in front of or behind it); this image is called the 
entrance-pupil. It is evident that the cone of rays from the axial 
point of the object to the entrance-pupil will be able to pass through 
the instrument, but that a larger cone would have its marginal rays 
cut off by that stop of which the entrance-pupil is an imao-e "̂  
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The angle subtended at the axial point of the object by the entrance-
pupil is called the angular aperture of the system; the rays wJiich 
proceed from the various points of the object to the axial point- of the 
entrance-pupil are called the chief rays of the pencils which take part 
in the representation. 

The image of the entrance-pupil in the entire instrument is called 
the exit-pupil: in those instruments which are intended for visual 
observations, the entrance-pupil of the eye should be placed at the 
exit-pupil of the instrument, when this is physically possible. 

The stops also determine the extent of the field of view of the 
instrument. In order to find which one of the stops is effective in 
limiting the field of view, we consider the image of each stop formed 
by that part of the system which precedes it, and from these images we 
select the one which subtends the smallest angle at the axial point of 
the entrance-pupil: this image has been called the entrance-window by 
M. von Bohr, and evidently determines the extreme points of the object 
which will be represented by pencils containing chief rays; its image 
in the entire system is called the exit-window, and the angle subtended 
by the en trance-window at the axial point of the entrance-pupil is 
called the angular field of view of the instrument. If the entrance-
window is not in the plane of the object, part of the object will be seen 
only by partial pencils. 

17. The magnifying power of a visual instrument. 

W e define the magnifying power of a visual instrument employed 

to examine near objects as the ratio of the angle subtended by the 
image of an object at the eye, when the object is so placed that the 
image is at a standard distance (generally taken to be 25 cm.) from 
the eye, to the angle subtended by the object when viewed directly 

with the eye at the standard distance. 
The magnifying power is therefore equal to the ratio of the heights 

of the image and object respectively when the image is situated at the 
standard distance in front of the exit-pupil of the instrument, i.e. it is 

equal to the linear magnification when the image is in this position. 
W h e n a visual instrument is used for the examination of objects at 

infinity, as in the case of the astronomical telescope, it is natural to 
define the magnifying power as the angular magnification at the pupils: 
this by Helmholtz's theorem (§ 7) is equal to the reciprocal of the linear 
magnification at the pupils, so the magnifying power is equal to. the 
ratio of the radius of the entrance-pupil to tlie radius of the exit-pupil. 
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THE DEFECTS OF THE IMAGE 

18. The removal of astigmatism from an optical instru
ment with a narrow stop. 

W e now proceed to consider the conditions which must be satisfied 
in order that an optical instrument may, as accurately as possible, 
transform pencils issuing from the various points of the object into 
homocentric pencils in the image-space, so that the image may be 
a point-for-point representation of the object without blurring: and 
moreover, that the image so formed may be geometrically similar to 
the object. 

It will be supposed throughout that we are dealing with an object 
at some definite distance from the instrument, and that we wish to 
eliininate errors in the image for an object in this position alone: 
if the object is moved to soine other position, errors will of course 
reappear in the image. It will therefore be assumed that a plane object 
is placed at right angles to the axis of the instrument: and we shall 
suppose at first that a diaphragm of very small aperture is placed 
at some point on the axis, so that the pencils of light which pass 
through it, and by which alone the image is formed, are of very small 
cross-section. Under these assumptions we shall find the condition 
which must be satisfied in order that these pencils when they finally 
emerge, into the image-space may be homocentric, i.e. that the image 
may be free from astigmatism. The treatment will necessarily be 
approximate, the linear dimensions of the object and of the lens-
apertures being supposed as in Chapter I to be small compared with 
the radii of curvature of the refracting surfaces; but the approximation 
is now to be carried to a higher order than in Chapter I. 
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Let the «th refracting surface be taken to separate a medium of 
index /Ai_i from a medium of index m, and to have a radius of 
curvature r̂ , measured positively when the surface is convex to the 
incident light; let /i_i denote the height of the intermediate image 
of the object before refraction at this surface, and k the height of the 
intermediate image after this refraction-:-let Xt and *•/ be the distances 

of the intermediate images of the diaphragm from this refracting 
surface before and after this refraction respectively (distances being 
measured positively in the direction of propagation of the light), 
and Sj and s/ the distances of the intermediate images of the object 
from the surface before and after this refraction ; and let i and i' be the 
angles of incidence and refraction at this surface for the chief ray of 
the pencil proceeding from the topmost 
point of the object. 

Then if 0, and O2 are the primary 
and secondary foci of this pencil before 
it^ refraction at the rth surface at P, 
and P , /, are the primary and secondary 

foci after tliis refraction, we have (§ 15) 

fj-t cos'^ i' fn-i-i 008^ i _ /Aj cos i' — iJ-i-i cos i _ /j-t /a^_i 

^PP POT""^ n " P J a ^ m ' 

Since, to our degree of approximation, w e have 

cos^ i=l-i^, cos''«", = 1 - i'% 

these equations give 

IH _ fiji'^ /Aj-i i^-i-ii"' _ IH _ f^i • LL _ ^>-i l^i-i • Oi O2 
PL PL PO, PO, ~ PL PL' PO, POf ' 

jXi.LL f^i-i-OiOz .fĵ i-i'̂  i^i-i-i^ 
or ^̂  5 = — ; . 

Si Si S,i Si 
Now if 3/j denote the distance of P fi'om the axis, we have 

,• _ yi yi ,•'_!«_ va 
Xi ri Xi ri 

and we have (§ 5) 

and ^,_,(l_i)=^,(l-l,) = Q^say, 
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SO our equation can be written 

H - L L _ /Aj-i- O1O2 _ ,,20 2 1 A ?_ 
si' s? ~y''*'^ v,s/ i.i_,s 

But by similar triangles we have 

4-1 ^ yi 

and we have 

Thus the equation becomes 

/A,; . P P /Ai_i . O1O2 _ fJ-i-lk-l ( Qa ( fe Y / 1 ^ 
Si' Sf Si \Hxi-HJ \f̂ iSt Mi-l«i' 

Since by Helmholtz's theorem we have 

/AjSj4 = fi-i-iSi li-l, 
this can be written 

p p 0^02 ^ / Q.i y / 1 ^ 1 

Now add together the equations of this type for all the refracting 
surfaces in the instrument. The only terms surviving on the left-hand 
side will be one involving the O1O3 of the original object and one 
involving the L L of the final image: but the former of these 
vanishes, since the pencils issuing from the object are originally 
homocentric: and the latter term must vanish if the pencils converging 
to the final image are also to be homocentric. Thus we have the 
theorem that the condition for absence of astigmatism in the final 
image is 

Q.i \' ( 1 

? G 
=0, 

kQxi-HsJ \f̂ tSi! f̂ i-iSiJ 

where the summation is taken over all the refracting surfaces. This is 
known as Zinken-Sommer's condition. 

19. The removal of astigmatism from an optical instrument 
used at full aperture. 

If an optical instrument can be constructed so as to give emergent 
pencils which are free from astigmatism even when a narrow diaphragm 
is not inserted, i.e. when the full aperture of the lenses is filled by the 
pencils, it is evident that the emergent wave-fronts will have their 

file:///Hxi-HJ
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principal radii of curvature equal at every point, and will therefore be 
spherical: that is, the emergent wave-fronts will converge to points, 
and the instrument will furnish an image which corresponds point for 
point with the object. Clearly if this absence of astigmatism for 
full pencils is to be attained, the condition found in the last article 
must be satisfied independently of the diaphragm: in other words, the 
last equation must be true whatever value Xi may have. W e shall now 
find the conditions which must be satisfied in order that this may be 
the case. 

If ht denotes the height at which a paraxial ray {i.e. a ray whose 
path lies indefinitely close to the axis), passing through the axial points 
of the intermediate images, meets the «th refracting surface, and if <̂ j_i 
denotes the distance between the i - 1th and ith refracting surfaces; we 
evidently have (the other symbols being defined as in the last article) 

X i-i = Xi + ai^i, s i-i = Si + ai-i, s i-i/hi-i = Sil hi, 

so di-i = 

or 

J Si Xi bi 

XiS i^i SiX i~i 
Xi Si X i—\ S i—i 

S i—\ Sj 

Si( ) S'i-i(- -;— 
\St Xi/ \Si-i «i-i, 

•_ jj-i-ihi-i f-i-ihj 
~ h { Q ^ - Qh) h-i {Qx, i-i - Qs, i-l)' 

1 1 di_-, 

hi{Q.i-Qsl) h\-,{Q,,i-i-Qs,i-i) i^i-ik-ihi 

Adding together equations of this type, w e have 
1 j)=i-l A 1 

Ji'i{Qxi-Qsi) j)=i hKK^-It K^{Q=a-Qsi) 

N o w the condition found in the last article for absence of astigmatism 

with a narrow diaphragm at x, is 

s / Q^ Y f 1 ^ ^ = o , 
i \Qxi-QsJ \NSi l̂ i-lSiJ 

and by use of the preceding equation this can be written 

^ U n I U ' ̂y> ^ ^̂ '̂ ' r (-̂  -̂'l = 0 (A) 
^iV-^^''\t,T^;hph^, h'{Qxi-QjVisi iH-.Si) 

file:///Si-i
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The only quantity in this equation which involves the position of the 
diaphragm is the quantity Q^i; so the equation will be satisfied for all 
positions of the diaphragm, provided the coefficients of the various 

powers of ̂  ^ are separately zero; that is, the optical instrument 

will give point-images vjhen used at full ap>erture, provided it satisfies 
the three conditions 

sftw(^,--^)=o (I), 
I \ri3i /Aj-iAi/ 

2 {i + Qjir^i' -^ir-} <i>ihl {\- -^) = 0 ...(II), 

s ji+Q^h^%' -A-y (-^- -^)=o-aii). 
i I p=l H-pnrpllp̂ iJ \f̂ iSi f̂ i-iSi/ 

These are known as Seidel's first, second, and third conditions, re
spectively* W e shall now proceed to interpret them. 

20. Seidel's first condition: the removal of spherical 
aberration. 

W e shall first interpret Seidel's condition (I). 
By comparing condition (I) with equation (A) of the last article, it 

is evident that condition (I) taken alone represents the condition that 
the instruinent shall give point-images by all pencils which can pass 
through a diaphragm specified by the condition Q ^ ~ Qsi = 0, i.e. subject 
to the presence of a narrow stop placed at the axial point of the object. 
But a narrow stop placed at the axial point of the object would allow 
the passage of a full pencil from this axial point, while it would not 
allow any light whatever to reach the instrument from the other points 
of the object. Gondition (/) therefore implies that all rays proceeding 
from the axial point of the object are accurately united into the axial 
point of the image. This is usually expressed by the statement that 
the optical instrument has iio spherical aberration. 

W h e n condition (I) is not satisfied, the rays proceeding from 
the axial point of the object do not reunite to form a single image-
point ; the marginal rays, or rays which pass through the outer zones t 
of the lenses, do not meet the axis in the same point as the paraxial 
rays. W h e n the instrument forms a real image, if the image as formed 

* Seidel, Astr. Nach. xliii. ool. 289. 
t The term zone is used to denote a ring-shaped region of one of the refi'acting 

surfaces, bounded by two circles whose centres are on the axis. 

file:///ri3i
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by the marginal rays is nearer to the instrument than that formed by 
the paraxial rays, the instrument is said to be under-coirected for 
spherical aberration: in the opposite case, it is said to be over-corrected. 

(a) (6) 

The figures (a) and (&) respectively represent an under-corrected and 
an over-corrected pencil. 

The curve drawn in the figures, touched by the rays of the pencil, is 
the caustic (§ 13): it is the evolute of the wave-front. If the light is 
received on a screen placed nearer to the instrument than the focus of 
an under-corrected pencil, the image will evidently be surrounded by 

a hard edge (where the caustic meets the screen): but if the screen 
is placed beyond the focus, the image will be surrounded by scattered 
fight. 

Spherical aberration will evidently become more and more noticeable 
as the cross-section of the pencil increases, i.e. as the aperture of the 
optical system increases. 

21. Evaluation of the spherical aberration in uncorrected 
instruments. 

When the spherical aberration is not eliminated in an optical 
instrument, its amount can be determined in the following way. 

Let A be the vertex of the «th refracting surface A P , and let 0 be 
the intersection of the axis with the prolongation of an image-forming 

ray K P in the {i - l)th medium, while / is the intersection of the axis 
with the same ray P I in the «th medium. Denote A O h y s,, + A.;_i, and 
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AI by s/ -I- A^, so that Aj measures the spherical aberration in the 
ith. medium for a ray which meets the «th refracting surface at 
a height PN=hi. 

Then if G be the centre and r̂  the radius of the refracting surface, 
we have 

t a n ^ O P = 
hi _ hi 
N 0 ~ NG+AO-ri 

nl 1 - - ^ )•+»« +^i-i-n r i [ l - ^ ) +Si + Ai., 

Si \ 2 nSi Si ) ' 

to our degree of approximation; whence we readily have 

Si ( Si 2Si \ri SiJj 

and cos^OP = l--^,. 

Similarly 

te.nAIP=h(l+l^-^), 
Si \ 2 riSi Si I 

sin^/P=^!Jl-^+|^ri-i.)}, 
Si I Si 2Si \ri Si J) • 

cobAIP = 1-^„ 

= -*, cos4dP = l-^, 
Ti 2ri 

sm A G P = ^ , cos A G P = 1- „„,. 

Now by the law of refraction we have 

^Ci-i sin {AGP-AdP) = t^i sin {AGP- AIP). 

Substituting for the sines and cosines in this equation their values just 
found, we have 

/I 1 ^ Aj-A ^ /A,-!/?//! lY 
'̂' ^ \ri Si s/ / 2Si Vj Si) 

'^' \ri Si' Si'V 2Si' Vn Si'J ' 
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Now if 6i denotes the incKnation of the ray to the axis in the 
«th medium, we have 

Gi-iSi = OiSi' = ki, 
so the equation becomes 

u..A.fl.2_ ,,. A. m. _xr)2 ' 1 ^ 1 1 
ri'-̂ î 'i /At-i'ii-i''j-i — j'-' si 'H V 

f'i-lSi f̂iSi 
Adding together the equations of this type which refer to the successive 
refracting surfaces, we have 

J5 = l \/Ajj-l f̂ p~lSp l̂ pSp J 

«'̂  ' / I IN 
SO ^̂  = 5^1 2 q%hA^~--~^\. 

t̂̂ i'h p=i M̂'p-iSp t̂ pSp / 
This equation gives the spherical aberration of the image at any stage. 

If we apply the formula to the case of image-formation by a single 
thin lens, of refractive index /a, radii r and s, and focal length /, 
so that 

we have for the spherical aberration, along the axis, of a ray incident 
at height h and proceeding from an object at infinity {e.g. a star) 

the expression 

T34. /^l n^ll 1^ /^ _/^-l 
^ ?• ' -̂ s / r (/A-1)/' Si r 

and substituting these values w e have 

^•^ \ p.1^ {H--l)fr \r (/A-I)/// 

B y appl3dng this equation to particular cases it will be found, for 
example, that a plano-convex lens is strongly under-corrected when the 
plane face is turned towards an object at infinity, but only feebly 
under-corrected when the convex face is turned towards the object. 

The spherical aberration of a lens can however be completely 
changed, and brought to any desired value, if in the process of 
polishing the faces of the lens are made to depart from the exact 
spherical form. If for example we consider a telescope objective which 
is affected by spherical aberration, so that the longitudinal aberration 
of a ray at distance h from the axis (the object being supposed at 
infinity) is ph', it can without difhculty be shewn that this aberration 
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can be completely removed by figuring the inner face so as to remove 
a film of glass whose thickness at the point h is a constant 

+ , _ -1 \ /2 J where / is the focal length of the objective and /a the 

index of the glass on the inner side. 

22. Coma and its removal: the Fraunhofer condition. 

W e next proceed to the interpretation of Seidel's second condition. 
If we write equation (A) of § 19 in the form 

X + Y{Q,,-Qsr) + Z{Q.,,-Q,:f = 0 (A), 

the three Seidel conditions are respectively 

X=0, -^=0, Z=0. 

Now equation (A) represents the condition which must be satisfied in 
order that astigmatism may be absent for that position of the stop 

which corresponds to the value of {Qxi-Qsi) in the equation : and we 
can regard the above form of the equation as a Taylor series developing 
the condition in ascending powers of {Q̂ i - Qai). The vanishing of X 
implies (§ 20) the absence of astigmatism when {Q̂ i — Q,i) is zero, i.e. 
when the stop is exactly at the axial point of the object: similarly the • 
vanishing of JT and Y together implies that the astigmatism is not 
only zero when Q̂ i — Qs, is zero, but that its rate of increase is zero 
when Qxi— Qsi is made slightly different from zero, i.e. when the stop is 
placed slightly in front of the object but very near to it. But when 
the stop is in this position, it will permit the passage of practically 
the full pencil from any point of the object which is very near the axis: 
and hence the full pencil from such a point wiU be free from astigmatism 
on emergence from the instrument. In this way we see that when 
Seidel's condition {II) is satisfied in addition to condition {I), there is 
a point-for-point representation not only of the axial point of the object, 
but also of points of the object which are inflnitesimally near the axis. 

The defect of the image which is thus removed may be further 
elucidated in the following way. 

Suppose that the instrument does not satisfy condition (II), and 
consider the full meridian pencil from an object-point 0 situated just 
off the axis. The rays on emergence from the instruinent will touch 
a caustic A B G (Fig. a). If the light be received on a screen B K 
at right angles to the axis at the place of the image, it is evident that 
no light will reach the screen above the point B, where the caustic 
meets the screen. The rays which have passed through the central 
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zone of the instrument will meet the screen at P in a bright point 
(P in Figs, a and b). The rays which have passed through a zone 
of the instrument somewhat further from the centre will (as is evident 

from Fig. a) meet the screen lower down than B (at H in Fig. a) in 
a circular section { L M N in Fig. b): and the rays which have passed 
through the outermost zones of the instrument will meet the screen 
stiU lower down, in a still larger circle { F in Fig. a, P Q R in Fig. b). 
In this way we see that the total effect on the screen is a balloon-
shaped flare of light, bright at the tip B and growing fainter as it 
expands downwards*. This defect is known as coma {koixtj, the 
hair): it is of great importance, as e.g. the definition in the outer 
parts of the field of an astronomical telescope (assuming good definition 
at the centre of the field) depends chiefly on the removal of coma. It 
is perhaps more difficult to grasp than any of the other defects, owing 
probably to the bewildering variety of (at first sight) unrelated ways in 
which it m a y be described: from one point of view we may regard it as 
spherical aberration (of the primary focus) for object-points just off the 
axis: from another point of view we may regard it as implying that the 
linear magnification of a very small object, situated on the axis of the 
instrument, is different when different zones of the instrument are used 
to form the image. To our order of approximation, and on the 
assumption that there is no spherical aberration for the axial point of 
the image, these two statements are evidently equivalent. 

The condition (II) for the removal of coma was called by Seidel 
Fraunhofer's condition, because it was found to be almost exactly 

* It is to be observed that each point of a circle such as PQB in the coma 
corresponds to two diametrically opposite points of the zone which gives rise to the 
circle, e.g. it is evident from Pig. a that the two extreme marginal rays will meet 
the screen in the same point F: one-half of a zone gives a whole comatio circle. 

W 3 



34 THE SINE CONDITION 
[ch. II 

satisfied by the Konigsberg HeHometer objective, which had been 
constructed by Fraunhofer many years before the discovery of the con
dition, and which was celebrated for the excellence of its definition. 

23. The sine condition. 

W e have seen that Seidel's equation (II) expresses the condition 
that the linear magnification of a small object on the axis of the 
instrument shall be the same whatever zone of the lenses is used 
in forming the image. In all our work hitherto, however, it has been 
assumed that the fourth power (and higher powers) of the angular 
aperture can be neglected: and we shall now shew that the condition 
just stated can be expressed analytically in a form which is rigorous 
however large the aperture may be. 

Suppose then that the lenses of an optical instrument are of any 
size; and let 0 be a small object situated on the axis in a medium of 
index ju., its height I being at right angles to the plane of the diagram. 

Let the instrument form an image / of 0, in a medium of index /a', by 
a thin sagittal pencil whose plane is at right angles to the plane of the 
diagram, and whose chief ray O P Q I makes an angle 0 with the 
axis initially, and 6' finally. Let a denote the angle between the 

extreme rays of the pencil initially, and let a' be the final value of 
this angle: and suppose that d<t> is the angle between the meridian 
planes which pass through the extreme rays of the pencil, so 

a = sin ̂ . d<J3, a = sin d'. d4>. 

Clausius' equation (§ 7) gives at once 

jxal = /x'a'l', 

or /j-sind . 1 = fx' sin 6'. V, 

so the linear magnification of a small object, when the image is formd 
by rays which pass through this zone on the refracting surfaces is 

fj. sin 6 
•/a' sin &'' 
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This result is true for all optical instruments, independently of whether 
they are affected with spherical aberration or not. 

Suppose now that the instrument is corrected for spherical 
aberration, so that the images of 0 formed by different zones are 

situated at the same point of the axis. In order that the images 
of a small object at 0 may be in all respects identical, they must be of 
the same size; and.therefore the equation 

/A sin Q 
/A sm p 

where m is the linear magnification for the image formed by the 
paraxial rays, must be satisfied by every ray which issues from the 
axial point 0. This equation is called the sine-condition. 

As might be expected, the sine-condition also ensures that the 
images formed by meridian pencils have the same magnification, 
whatever be the zones through which the pencils pass. For again 
applying Clausius' equation (§ 7) 

/A cos ̂  .la- ix cos i/''. I'a, 

we have in this case (the object and image being taken in the plane of 
the diagram, perpendicular to the axis) 

;/, = 6l, f = 6'', a^de, o: = d&, 

so the equation becomes 

/A cos Bd& .1 = ix cos 6'. d & . V. 

But by differentiating the sine-condition we have 

/A cos BdO = m\x cos & d&, 

so I'll = m, 

i.e. the magnification is m whatever zone of the lenses is employed. 

The honour of discovering the sine-condition must be shared 
between Seidel*, who first gave that approximate form of it which he 
called Fraunhofer's condition, and Clausius t, who first obtained the 
rigorous form. It remained unnoticed however until in 1873 it was 

rediscovered by Abbe and Helmholtz. 

24. Aplanatism. 

If an optical instrument is free from spherical aberration, and also 

satisfies the sine-condition, for a certain position of the object, it is said 

to be aplanatic for the object in question. 

* Astr. Nach. xliii. (1856), 289. 
t Fogg. Ann. oxxi. (1864), 1. 
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In the construction of microscope objectives, use is made of 
the fact that there is one position of the object for which a single 
spherical refracting surface is aplanatic: a result which we shall 

now proceed to establish. 
Let G be the centre of a sphere of glass of radius r and of index /a, 

situated in a medium of index 
unity: suppose that an object 0 
is embedded in the glass at a 
distance G O equal to r//A from 
the centre; and let I be the 
point on G O at a distance î r 
from 0. 

Then if P be any point on 
the spherical surface, we have 

OGIGP = PGIGl 

so the triangles O O P , P G I are similar: and therefore we have 

sm IPG sin POG ^PG 

sin 0Pg~ am OPG OG' 
-IX. 

This shews that a ray proceeding from 0 in the direction O P will 
be refracted at the surface exactly into the direction IP, whether P 
is near the axis l O G or not: in other words, there is no spherical 
aberration for the positions 0 and I of the object and image. 

But it is also true that the sine-condition is satisfied for this position 

of the object: for we have 

fx sin POG jx sm POG 

sin P I G sin O P G 
= /A. 

PC 
og' 

- = ix'. 

shewing that the linear magnification is independent of the zone of the 
spherical surface at which the refraction takes place, and is equal to f?. 
The spherical surface is therefore aplatiatic for an object in the position 
0. The application of this principle to microscopes will be discussed 
later. 

There is another well-known case in which spherical aberratiofl:; 
is perfectly corrected for pencils of any aperture, namely that in which 
the rays of light from a star are received on a concave reflecting 
surface having the form of a paraboloid of revolution whose axis is 
directed toward the star. In this case, as is obvious from the geometry 
of the paraboloid, the rays are accurately united into an image at the 
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focus of the paraboloid : but it can readily be verified that in this case 
the sine-condition is not satisfied, so the surface is not aplanatic. It is 
this want of aplanatism which causes the deterioration of definition in 

the outer parts of the field of a reflecting telescope. 

25. Derivation of the Fraunhofer condition from the sine-
condition. 

W e shall now shew analytically (what has already become obvious 
from general reasoning) that the Fraunhofer condition for absence 

of coma is simply the approximate form of the sine-condition, when 
the fourth and higher powers of the angular aperture are neglected. 

The sine-condition is (§ 23) 

sin & _ fx 
sin 6 IX m ' 

where m is the linear magnification for the paraxial rays. 

N o w considering separately the refraction at the ?th refracting 

A N 

surface,.and using notation similar to that which has been frequently 

used before, we have 

sin 61 PO {NO' + y'f _ ^^ ^ 2N0 

sin Oi" P I ~ {NP + ff ~ ATT I y' ' 
2iVP 

. ., A0-^+^ 
sm 6i 2n 2Si 

or sin ̂ i ̂  A T hii lij 
^^ 2n + 2s/ 

sm 

Consequently we have 

TT = the product of the values of .^^5_£ for the separate refractions 
Q ^ sm di 

0.1, ^ ^ t^i, >•+• «* M^ «A 2sAn SiJ 
the product pt the quantities -i. {-jj• j j . ^2 vi - - 1 \ • 

~ 2s./ Vn Si') 
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It will be observed that AO differs from Si by the spherical aberration 

A,;_i. 

N o w the product of the quantities .̂  is - 7 ^ : so if the sine-

condition is satisfied, we must have 
s,H-A,_i^ hi' f l _ l 

J , ,. ,.,. _ S i 2Si \rt Sjl , 
product of quantities —-,— T^~T\ TV " SjJ^Ai 

sl 
h t n _ ^ 
2s/ V n sl) 

/Ai_i A,; q,iU ̂  Q s M \ r, 
^ I Si Si '̂ f̂ i-lSi l̂̂ iSi J 

where -the summation is taken over the various refracting surfaces. 
Substituting for A,i_i and A^ from § 21, this becomes 

2 ( ^ 2' ^sphp' ( ^ + ^) 

f-i^i Si p=\ \ f-p-lSp l^pSp / \/AiSi /Aj-iVJ 

or ^{l + QsiArAi)QJi,^(-\-, ^)=0, 

^here A-^^ ^+ ^ ^ +... 
/AjPi'Si l̂ iViSiĵ , l̂ i+1" i+lS i+i /Ai+iO i+lSt+2 

1 1 1 
t̂ i&ihi ll-lOihî i t̂ i+l'̂ i+lhi+i 

di _ _̂  di+1 _̂  
\p-ihihî ~i /Ai«.i+iAi4-3 

The sine-condition thus becomes 

^ (1 - ^^*^^*' ^ • ]Jf-) ^^'^^ {•h-'-^)=^-

But Seidel's condition (I), which is supposed to be satisfied, is (§ 19) 

i V/AjSi /Aj-iSj/ 
Multiplying the latter equation by 

n fl 

and adding it to the former, we have 

2 {1 -H qjii "2 - ^ } Q,,A,̂  ( 1 — L . ) = 0, 
» >• J'=i H"'v"'v*-o \f̂ iSi î i-iSiJ 

and this is no other than the Fraunhofer condition already found 
in §§ 19, 22. 
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26. Astigmatism and Seidel's third condition. 

Of Seidel's three conditions (§ 19), only the third now remains for 
interpretaticm. Since the three conditions together ensure freedom 
from astigmatism over the whole field, and the two first conditions have 
been shewn to relate specially to the central parts of the field, it is 
evident that when Seidel's two first equations are satisfied, the third 
equation may be regarded as representing tlie condition for removal of 
astigmatism from the outer parts of the field. 

27. Petzval's condition for flatness of field. 

W e have seen that the wave-fronts which issue from points of the 
object wiU, after passage through an optical instrument, converge again 
to points forming an image, provided that, in instruments with very 
narrow diaphragms, the Zinken-Sommer condition (§ 18) is satisfied; 
or, in instruments for which the diaphragm is not narrow, provided 

Seidel's equations (I), (II), (III) (§ 19) are satisfied. It remains 
to consider whether this image is a faithful copy of the object. 

A condition which must obviously be satisfied if this is to be 
the case is that if the object is plane and at right angles to the axis, 
the image shall also be plane; by symmetry, it will also be at right 
angles to the axis. W e shall now find the analytical equation which 
must be satisfied by the lenses of the instrument in order that a plane 
object may give a plane image; it is usually referred to as the condition 

for flatness of field. 
Let A P be the ith refracting surface, 0^0 the intermediate image 

before refraction at this surface, L I 
the image after refraction at this 
surface, P O and P/the directions of 
the chief ray (§ 16) of the pencil by 

which the image-points 0 and / are 
formed; and let X and X ' be the 
intermediate images of the diaphragm. 

Let the radii of curvature of 0^0 and /»/respectively be Pi-i and 
PC and let the notation in other respects be the same as in previous 

articles. 
Then the coordinates of 0 referred to the vertex A are 

Sl + li-i); those of /are (sl + ^ , l^, and those of P are 
2p,;_i' "'-y ^"""^"^ \' 2p, 
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We have therefore 

J_-l/i ^/ , yi .(kulitX 
®° P / " s ; l ^ 2fts/''2ns/ 2s/^ J 
to our approximation, and similarly 

J _ = i / i fi-i , yi {h-i'yi)\ 
P O Si 1 2pi-is,i 2riSi 2s/ J 

Thus the equation (§ 15) 

/Aj cos i' — fii_i cos i _ jH^ _ ji-i-x 
ri PI PO 

becomes 

H-t^i-i i^ii"'-N-J^^ IH fi V , yi {^j-yif 
-'^^ " -' 2ns/ 2.-'̂  

-.2 7̂ 
' »-l 

[ch. II 

n 2n s/ I 2pis/ 2ns/ 2s/'' 

Si \ 2pi-iSi 2riSi 2s/ J 

Q- •' Qxiyi • y* 
Since « = , * = /Ai t̂i—i. 

li~l = -^-^ (Vm "~ Qsl), H = ^~ {Qxi — %<)) 
/Ai-l /Aj 

this equation becomes 

1 1\ {Qxi-QsiT , /Aj /̂i fs 

+ ^ ^ ^ i ^ M - f ^ ^ + (^ \ ^ { Q x i - Qsi)-iy, 
lx-i--,Pi-i riSi si l/Aj-î  J 

Q.j \ V 1 1 \ 1 /1 1 + _ _ _ 
f̂ iPi P-i-iPi-1 VQw—Qsj/ \H-i-iSi i>-iSi) ri\p.i ixi_-̂j 

Adding together the various equations of this type which refer to the 
various refracting surfaces, we see that if the original object and final 
image are each plane we must have 

5 {(zr^rT (-^- ^) + - (- - -)l=0-
% [\Qxi-QJ V/Aĵ iSj H-iSiJ ri\p.i ixi^j) 

The first sum is however known to be zero, since the instrument satisfies 
Zinken-Sommer's condition (§ 18): and hence we see that tlie condition 
for flatness of field is 

i n ^p-i p-i-xJ 

This condition was given by Petzval in 1843, and is known by his name.-

file:///H-i-iSi
file:///Qxi-QJ
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If the instrument consists of a number of thin lenses in air, 
the refractive index and focal length of the kth. lens being /aj, and f„ 
respectively, the condition obviously becomes 

1 

k PhJk 
0. 

It is interesting to observe that the Petzval condition does not depend 
in any way on the distance of the object from the instrument, or on 
the separation of its component lenses. 

28. The condition for absence of distortion. 

Having now secured flatness of field, it remains to ensure that the 
object (supposed to be a plane figure at right angles to the axis of the 
instrument) shall give rise to an image which is geometrically similar 
to itself. W h e n this is not the case, the image is said to be affected by 
distortion. 

Distortion, in an optical instrument symmetrical about an axis, 
simply means that the magnification of the image is not the same 
in the outer parts of the field as at the centre. W h e n the magnification 
is greatest at the centre, a straight line in the outer part of the object-

field will evidently give rise to an image-line which is curved, with its 
concavity turned towards the centre of the field: this is known as 
"barrel" distortion. If on the other hand'the magnification is greatest 
at the margin of the field, a straight line in the outer part of the object-

field will give rise to a curved line in the image-field, with its con
vexity turned towards the centre of the field: this is known as " pin
cushion " distortion. All single lenses, whether consisting of one lens 
or of several lenses cemented together, produce distortion: it is there
fore necessary for most purposes in Photography to use objectives 
in which there are one or more intervals between the lenses. 

W e shall use the same notation as in the preceding articles; and 

shall in addition denote by 4>i the angle which the chief ray of the 
image-forming pencil of a point I of the intermediate image makes 
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with the axis of the instrument in the medium /a^; and we shall denote 
by xl + Ei the distance from the «th refracting surface A P of the 
intermediate image X ' of the diaphragm, formed by this pencil in the 
medium /â , so that P; really represents the spherical aberration of this 

image of the diaphragm. 
The distance of the intermediate image 0 from the axis before this 

refraction is O K (where O K is the perpendicular to the axis from 0), 
or ZXtan<^i_i, or (a;.;-i-Pi_i - Sj) tan <)bj_i; and its height after this 
refraction is I L = {xl + Ei-sl) tan 4>i. If there is no distortion, the 
product of the ratios ILj O K s,t the various refracting surfaces must he 
independent of the position of the point 0 in the object; so the 

product 
•̂  {xl + Ei-sl)tan4>i 
i (a;,; + Pi-i - Sj) tan >̂ i_i 

must be independent of the height yi at which the chief ray P I meets 
the ith refracting surface. 

„ tan</,j NX 2n ^'^^^-^ 2ri 

tan</>j.i N X ^ x , _ u t â l + E i ^ y ^ 
2n 2n 

so the product in question is 
Fi \ /, . Pj-

n 
<-•-•'(-S^)"('-^-5fc.) 
fe-.,)(l + ̂ 'fcL)^.(l+^_J^ 

Neglecting factors which do not depend on y^, this product is 

^i + ~^)fi.^-^) 
V Xi~Si/ \ Xi 2riXiJ 
1 -I--

Ei^\ ( Ei yi 
Xi - sJ \ xl 2rixl) 

as this reduces to unity for paraxial rays, it must be always unity: we 
must therefore have 

^(^^^Ei^_yl_^_Ei^_Ei vl\ 
i\xl-sl Xi 2riXi Xi~Si xl 2n«// 

„^ S f l̂ iĴ i Mi-iPj-i ^ yi (\ \\\ ^ 
1 U l ' {Qxi - Qsi) xi {Q^i - q,i) + 2^, \^i - ̂ J ] = 0-

But applying to Pj the formula (§ 21) for the spherical aberration 
of the intermediate image of an object, we have 

I h F _ iH^^iEi^ _ / I 1 X 
™'2 „2 - 2 "̂  xiyi I • ; I . 
^< «i yp'i-iXi p-iXiJ 



28] DISTORTION WITH N A R R O W STOP 43 

The condition for absence of distortion is therefore 

5,j={^^(-^-^)-Hl(i-,-l)} = 0. 
» ^Qxi-QsiKp-i-iXi p-iXiJ ri \Xi XiJ) 

No w by Helmholtz's theorem, /A.j-.i4-î i-i is a constant for all the 
images; but 0i-i = hilsi, so 

fXî ili--̂  _ constant ̂  
Sj hi ' 

and since (§ 18) we have 

^'~Si{Q^-Q,D' 

,-, , constant 
we see that y, k{Qxi~Q,i)' 

The condition for absence of distortion may therefore be written 

«- ^ 1 1 \ .,1(1,.1)1=0. 

•0, 

hi'Qsi{QZ-Q,o'r'*̂ ''-''\ mVi*, 

'"j \ • /Aj-1 pi/) 

i hi {qxi~ Qsi) '^Qxi~Qsi \P-i-iXi P-iXi / ri \Xi X, 

Writing 

i _ ̂  for i , and - - -^ for -,,-
ri /Aj_i Xi ri p.i Xi 

this becomes 

^ Qxi ^2 ( 1_ _ _ 1 \ ̂  ̂ J_ _ i\ 2fe-' 
iV{Qxi-Qs.)'\^'^\i^i p-\J W i f̂ i) Ti 

or 

, {Q^-Qxlff 1 , i\ Q 
n \ /Aj-i h ) »• 

or 

2 ĝ ^ in. -^_1_ _ J_A , ( & z M ' / l _ ̂ ^ l = 0 
7/^/fe(«.j-Q.j)M^'"*V/Aj-iSj Pisl) ri \p.i PiJi ' 

or 

g Qxi [ _ g k _ f ^ L U I A _ M l 0 
i -̂ Z & {Qxi - & ) 1(̂ 0)4 - Q«)' \ M«-i «i /̂*Si V n \ Pi Pi-Ji 

This is the required condition far absence of distortion, wlien the 
diaphragm is at the position x; it being assumed that the instrument 
already satisfies the Zinken-Sommer condition and the Petzval 

condition. 
If it is required that distortion should be absent when the image is 

formed by pencils filling the whole aperture of the optical instrument, 
we must find the condition in order that the last equation may ̂ be 

file:///P-i-iXi
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satisfied whatever value x may have; it being now assumed that the 
instrument afready satisfies the three Seidel conditions of § 19, and the 

Petzval condition (§ 27). For this purpose we substitute for „ "'^ 

its value (§ 19) 
p-i g 1 •> 

1 + hi Qs, l̂ ŝ  ^ ^ ^ ^ + j^iq^:rq^}' 

making this substitution, and omitting terms which vanish in con
sequence of the conditions already satisfied, the condition for absence 
of distortion becomes 

s J-^~h+hiqsii - ^ ^ W i i + h i q ^ a — ^ 
i 'H Hsi ̂  p=lf̂ p"'pit'p+iJ LI p=ll̂ p'ip"'i 

dp 1V 1 1 

''p+il V/̂ j-iSj PiSi 

= 0, 
n \Pi P-t-i. 

This does not involve the position of the diaphragm, so is th 
required condition Jor absence of distortion with full pencils. 

If we denote 

l-^U+q,ihi'%^-^\ by Pj, 

and q^^.kif~J—-J--\hj ®i, 
\/Aj-lSt /AjAj / 

we see, on collating the results of the preceding articles, that the 
condition for absence of 

spherical aberration is S®j = 0, 

coma „ S®iPj = 0, 

astigmatism ,, S®i Ui = 0, 

curvature of field ,, S—( 1 = 0, 
ri \Pi p-i-f 

distortion „ S {®j Ui +1(1- L^ uX = 0. 
I- n V/Aj p-i-iJ J 

In each case it is assumed that the conditions occurring previously in 
the list are fulfilled. 

It is however to be remembered that all these conditions have been 
derived on the supposition that terms of orders higher than the third 
in the angular aperture and angular field of view can be neglectedt 
when the field of view is large, as in the case of photographic objectives, 
or when the angular aperture of the pencils is large, as in the case of 
microscope objectives, terms of higher order must be taken into account. 
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29. Herschel's condition.. 

Sir John Herschel formulated the condition which must be satisfied 
in order that an instrument, which is free from spherical aberration for 
the standard position of the object, may also be free from spherical 
aberration for positions of the object indefinitely near to this, i.e. that 
a shght displacement of the object along the axis may not introduce 
spherical aberration. 

It was shewn by Abbe that this condition caij be expressed in 
a form which is applicable to instruments of any aperture however 
large, just as the Fraunhofer condition for absence of coma can be 
extended in the form of the sine-condition. W e shall first establish 
Abbe's condition, and then deduce Herschel's condition by supposing 
that the fifth power of the angular aperture can be neglected. 

The condition in question, viz. that spherical aberration shall vanish 

for a second position of the object, adjacent to the one for which it is 
already known to vanish, is evidently equivalent to the condition that 
the magnification of a small segment of the axis, situated at the position 
of the object, may be the same whatever zone of the refracting surfaces 
is used to form the image. Let I be the length of this segment, I' the 
length of its image, p- and p! the refractive indices of the initial and 

final media. Suppose that the image is formed by a thin meridian 
pencil whose chief ray makes an angle 0 with the axis in the initial 
medium, and makes an angle 0' with the axis in the final medium. 
Applying Clausius' theorem (§ 7), we have 

pl sin 6. dO = p!l' sin 6'. dff. 
A AI 

Integrating this, p-l sin̂  ̂ =l^'i' sin̂  5-, 

the constant of integration vanishing since 6 and 6' vanish together. 
N o w the general equations of image-formation by paraxial pencils, 

namely (§ 8), 

/«-'/' - fy 
o)'= - • - < - , y = - , 

p X '' X 
da! /a' f p! y'' 

give — = — — = —. ^ , 
dx p.'x' p- y'' 

so if m denotes the linear magnification of a small object at right angles 
to the axis, we have 

I' 1̂ ' 2 
— = — m'. 
I p. 
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Substituting in the preceding equation, we have 

7A'̂ /»̂ sin̂ |-6>' = /Â sin=̂ 6l 

[ch. II 

or 
sin ̂ 6' _ ̂ A 

sm -g-y p-m 

This is Abbe's condition: it is obviously impossible to satisfy it and the 
sine-condition simultaneously, save in exceptional cases. 

W e shall now proceed to derive Herschel's condition from this. 

At the refraction at the «th surface, 
we have p/ 

sin' JSj-i = K l - cos Oi_D = 2 (l ~ p ^ ) 

1 r, f, PN'\-i 
= 2 V - V ^ N 0 ' ) 

so 

and 

1 PIP _ Ĵ  PN^ -A 
4. NO' 16 >0*,̂ PP̂ °̂ -' 

. 1. _ l P N r 3PN'\ 

^'''''^*-'-2NdV~8NO')' 

3PN' 
sinM N O 8 N r 
sin|-Ai_i N I _ ^ _ 3 P N ' 

or, in our usual notation, 
8 A^O' 

sin 10. ff'j 
Sj-i-A,_i-^I 3 hi^ 

8 sl' 

' 4- A — _ 1 _ _ * 
' 2 r i ^ 8 si 

sin |-6lj_i" 

If Abbe's condition is satisfied, we must therefore have 

^ V Si 2riSiJ V 8 sl') 

or 

or 

-̂ j-i 

1 + 

Si 

hi \ /, 3 hl\ 
2riSl)\' 8 si) 

•^1, 

3 Aj 3 Aj" • _ hi 
2nsj "̂  2ns/ 8 Si" "̂  8 s, 

1 
/AjSj p̂i y } - i F ( i ? - ^ . ) - . 

2 J ^ _ ^ ' , :^5!^/J 1 
sl '̂  2 

since hilsi = di_^. 
f-ii N~iS 

-^(^o'-V) = 0, 
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The summation occurring here is the same as that occurring in the 
derivation of Fraunhofer's condition from the sine-condition: so the 
equation can at once be written in the form 

1 + Qaihi S T—^ r k̂siiOi 1 — 
I- p=i p-pnji/ip̂ ij v/A; 

-l{o,'-o,') = o. 

This is Herschel's condition. It is evidently compatible with the 
Fraunhofer condition only when Oo = ±0n; this happens either when 
the object is at a point for which the angular magnification is ± 1, or 
when ^|,_and 6^ are both zero, i.e. when the system is telescopic and 
the object at infinity. 

30. The impossibility of a perfect optical instrument. 

Although'it is possible to construct lens-systems satisf3ring the 
conditions which have been found, and therefore giving a satisfactory 
image for some definite position of the object when the aperture and 
field of view are not too large, we shall now shew that it is theoretically 
impossible to construct a really perfect optical instrument, i.e. one 
which wiU transform all points of the object-space into points of the 
image-space with some degree of magnification or minimisation. The 
proof is due to Klein*. 

Suppose for the moment that such a perfect instrument exists. 
Since not only are points transformed into points, but lines (rays of 
light) are transformed into lines, the transformation of the object-space 
effected by the instrument is a coUineation. 

N o w it is known that all the spheres of space have in common an 
imaginary circle at infinity, which contains the cyclic points of all the 
planes of the space t; an (imaginary) straight line which meets the 
circle at infinity is called a minimal line. Suppose then that the ray 
incident on one of the refracting surfaces of the instrument is a minimal 
line : the sine of the angle formed with the normal to the surface is 
infinitely great, and as conversely a minimal line is characterised by 
this infinitely large sine, it follows from the law of refraction that the 
refracted ray is also a minimal line. 

This applies to each refraction; and therefore the coUineation 

transforms each minimal line in the object-space into a minimal line in 
the image-space; so that the circle at infinity in the object-space is 
transformed into the circle at infinity in the image-space. 

* Zeitschrift far Math. u. Phys. xlvi. (1901), 376. 
t For two similar and similarly situated quadrios intersect in one plane curve at 

a finite distance and one at infinity: and spheres are similar quadrios. 
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From this it follows at once that the coUineation is merely 
a simihtude: it may be either direct or inverse {i.e. one which 

interchanges right and left). 
In order to find the ratio of the simiUtude, suppose that c, c 

denote the velocity of light in the object-space and image-space 

respectively. W e can suppose that the simUitude is direct, as if 
inverse it can be changed into a direct simiUtude by the addition of 

a plane mirror to the instrument. 
Let the time taken by the fight to travel from a point {x, y, z) to 

its image-point {x', y, »') be denoted by X {x, y, z). Let («i, y^ «i) be 
a point on one of the rays from {x, y, z) to {x', y, z'), at a distance r 
from {x, y, z); and let {x2, 2/2, 2=2) be a point on another ray from 
{x, y, z) to {x', y', z), also at a distance r from {x, y, z). Then if A. 
denote the ratio of similitude of the image-space and object-space, the 
distances of the image-points {xl, yl, zl) and {xl, yi, zi) from {x, y',z) 
are each \r, and (since the simihtude is direct) they are each behind 
{i.e. beyond) {x, y', zl). The time from {x„ j/i, zl) to its image is 

therefore 

-̂ (â > y>«) - - + 7 ; 

and the time from («3, 1/2, zl) to its image is the same. So the times 
from {xi, 2/1, zl) and {x2, yi, ẑ ) to their respective images are the 
same: but these are really arbitrary points in the object-space, so the 
time from any point in the object-space to its image is the same for all 

object-points. Hence we have 

X{x, y,z)-'^^ + ~^ = X{x,y, z) 

or X = -, 

so the dimensions of the object-space are to those of the image-space 
as c to d. Thus when the instrument works in air, so that c = c', the 
image is merely a life-size copy of either the object, or of the image 
obtained from the. object by reflexion in a plane mirror. 

31. Removal of the primary spectrum. 

As already explained, the refractive index of a substance depends 
on the colour, i.e. the wave-length, of the light used in its determination. 
The behaviour of an optical system, which has been calculated in terms 
of the refractive indices, is therefore different for light of different: 
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colours: the position of the principal foci, the focal lengths, and the 
aberrations, will in general vary when the wave-length of the light is 
varied. As ordinary white light contains rays of all colours, there will 
therefore be a certain degree of confusion in the images formed by 
the optical instrument with white light: to this the name chromatic 
aberration is given. With a simple uncorrected lens of tolerably small 
aperture, the chromatic aberration is much more serious than the 
spherical aberration; with a convex lens of crown glass, if the red rays 
from a star are brought to a focus at a point R, the violet rays will 
intersect the plane through R perpendicular to the axis in a circle 
whose radius is about -^ that of the lens, whatever be the focal 
length. 

A n optical system which is so contrived as to have the same 
behaviour for two standard wave-lengths is said to be achromatic. In 
order to achieve this, we must evidently secure that the row of images 
of the same object in light of different colours shall be doubled on 

itself, so that the images shall coincide in pairs: thus in an ordinary 
achromatic lens which is intended for visual observations, the yellow 
image is united with the dark green image, the orange-red with the 
blue, and the red with the indigo. Obviously at one end of this 
doubled row there must be two coincident images which differ 
infinitesimally in wave-length, i.e. there will be an image for which the 
rate of change of position with change of wave-length is zero: thus 
in the achromatic lens just mentioned, - the images formed by the 
yellowish-green rays are closely united and focussed at minimum 

distance from the lens. 
This pairing of images does not ensure an entire absence of 

chromatic aberration, since the images in three different colours will 
not coincide: but other terms, which will be mentioned later, are 
employed to denote a more complete freedom from colour troubles. 
The coloured fringes due to this outstanding colour-0,berration are 
generally referred to as the secondary spectrum; a simple method (due 
to Sir G. Stokes) of observing the secondary spectrum of a lens is 
the following. Focus the lens on a vertical white fine on a dark 
ground, and cover half the lens by a screen whose edge is vertical. 
Then evidently the yeUow and green rays, which form an image nearer 

the lens than the mean image, wiU (coming from the uncovered half 
of the lens only) pass the mean image on one side of it, namely the 
side on which the screen is: while the red and blue rays, which form 
an im&ge beyond the mean image, wiU pass on the other side of the 

4 
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mean image.. The image will therefore have a citron-coloured margin 

oil one side and a purple margin on the other. 

32. Achromatism of the focal length. 

The variation of behaviour of a transparent substance for light of 
different wave-lengths is usually measured by its dispersion or dispersive 

power, 
•m = dp.l{p - 1), 

where p. is its refractive index for some standard wave-length and 
p, + dpia its index for some other standard wave-length not far removed 

from this. 
Consider now the colour-variation of focal length of a single thin 

lens, for which we have (§ 11) 

Differentiating this equation logarithmicaUy, we have 

The focal length of a compound lens consisting of two thin lenses 

in contact, of focal lengths/i and/a, is the reciprocal of 

I//1+I//2: 

so if the compound lens is to be achromatic, we must have 

dfi.dfi_n. 
fi f r ' 

or y + -F = 'J, 
J\ Ji. 

where ra-j and ra-j denote the dispersive powers. This equation repre
sents the condition that the focal length, and consequently also in this 
case the position of the principal foci, may be the same for the two 
standard colours. The combination is therefore achromatic for all 
distances of the object. 

The above equation shews that one of the lenses (say (1)) must be 
convergent and the other (say (2)) divergent: if the focal length of the 
whole is to be positive, we must have/i < —/a, and consequently oti < OTj, 
so the divergent lens must have the greater dispersion. As flint glass 
has a greater dispersion than crown, the convergent lens is taken to be 
a crown and the divergent lens a flint. Koughly speaking, a flint 



31, 32] ACHROMATISM OF THE FOCAL LENGTH 51 

whose diverging power is 2, wiU achromatise a crown whose converging 
power is 3, leaving a converging power of 1 for the compound lens. 

The Petzval condition for flatness of field (§ 27), 

/^l/l + M2/2 = 0, 

requires however that /aj should be less than p^; so the convergent 
lens should have the higher refractive index, though having the. 

smaUer dispersive power, a condition which it was impossible to fulfil 
until the Jena glasses were introduced. 

Consider next a system consisting of two thin lenses separated by 
an interval a. The focal length of the combination is (§ 11) the 
reciprocal of 

/i /s Jif 

so if the focal length is to be achromatised we must have 

dfi _ d f , «^i adf 
fi fi + f^f '*' r f2> 
Ji Ji Jiji J1J2 

or Q = -^ + 
OTg a {vij + •ml) 

J\ • f% JlJ-2 

In such a system the two lenses would usually be of the same kind 
of glass, in order that whatever degi-ee of achromatism is attained for 
two colours may as far as possible be attained for all colours: taking 
therefore •zu-i equal to •zctj, we have 

/l''/2 /1/2' 

or a = \ (/i +fl), 

so the distance between the lenses must be half the sum of their focal 

lengths. This condition is applied in the construction of eyepieces. 
It is to be observed that the positions of the principal foci of the 

combination have not been achromatised, so that we have achromatised 
the size but not the position of the image. It is in fact impossible to 
achromatise a system of two non-achromatic lenses separated by 
a finite interval for both the size and position of the image: for if it 

were possible, the intermediate image, which is at the point where the 
line joining the object-point (supposed slightly off the axis) to the 

centre of the first lens intersects the line joining the image-point to 
the centre of the second lens, would be the same for every colour, and 
therefore each lens separately would be achromatic. 

4—2 
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33. The higher chromatic corrections. 

It is possible to remove the secondary spectrum, or more strictly 
speaking to replace it by a " tertiary " spectrum, by uniting tlie images 
in three instead of two colours. This can be effected for a combination 
of two lenses provided the Jena glasses are available: with the older 
glasses three lenses are required. 

The variation of spherical aberration with the colour must also be 
taken into account. In the ordinary telescope objective, the citron 
image is corrected for spherical aberration, so the red image is under-
corrected and the blue image is over-corrected: this defect is, in the 
case of the visual telescope, masked by the secondary spectrum: but 
with objectives of large angular aperture and short focal length, e.g. 
high-power microscope objectives, the correction of chromatic difference 
of spherical aberration is of greater importance than the elimination of 
the secondary spectrum. 

Optical systems in which the spherical aberration is corrected for 
more than one colour, but in which the secondary spectrum is not 
removed, are called semi-apochromatic; while systems which have no 
secondary spectrum and are aplanatic (§ 24) for more than one colour 
are called apochromatic. 

34. The resolving power of a telescope objective. 

Nothing in our investigations hitherto has suggested the existence 
of any limit to the magnification attainable by means of an optical 
instrument; and it might therefore appear as if it were possible to 
construct a telescope of moderate dimensions which should reveal the' 
minutest details of structure on the heavenly bodies. As a matter, 
of fact, it is not possible, or at all events not profitable, to apply 
a magnifying power greater than a certain amount to a telescope with 
a given objective : and the reason for this is to be found in the 
circumstance that the wave-front by which the image of a star is formed 
is not a complete sphere, but is merely that fragment of a spherical 
wave which has been able to pass through the rim of the objective. 
This mutilated wave-front does not converge exactly to a point, as 
a full spherical wave would do, but forms a diffraction pattern in 
the focal plane of the objective, consisting of a bright disc whose 
centre is the image-point of the star as found by the preceding theory, 
surrounded by a number of dark and bright rings concentric with it. 
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In order to determine the dimensions of this pattern, let a denote 
the diameter A B of the telescope objective, 
and S the centre of the diffraction pattern. 
The disturbance which is brought to a focus 
at a point T in the focal plane is the-
disturbance which at some preceding instant 
occupied the plane G O D , perpendicular to 
the line O T which joins T to the centre 0 

of the object-glass. Let S O T = 0, and let 
(p, <̂ ) denote the polar coordinates of a 
point in the plane G O D referred to 0 as 
origin and the line of greatest slope to the 
plane A O B as initial line. 

The disturbance at the point (p, <̂ ) is proportional to 

pdpd4). sin 2-7r (— -

where t denotes the time, t the period of the light, A. its wave-length, 
and z the perpendicular distance of the point (p, </>) from the plane 
AOB. 

But z = p6 cos <i>, 

6 being regarded as a small quantity. 
The total disturbance at T is therefore 

, ,, • ^ (t pO cos (t> 
pdpdrp . sin 2-7r ( — 

integrated over the circle G O D , 

27rt '"i" '•2' 
or s m / I pdpd<l>. cos 

"̂  Jo Jo 

2irp6 cos <̂  

since the elements of the integral involving sin — ~ ~ cancel each 

other in pairs. 
Expanding the cosine in ascending powers of its argument, and 

integrating term by term, this becomes 

Tra' . 2irt ( m ' m^ m" ] 
— sm — |1 - ^ - j ^ 2 + 37^21)^- ^ 7 ^ 2 +•••]-> (1 !)^ ' 3 . (2 !)^ 4 . (3 !)^ 

where m denotes 7r6a/2\.*. 

' The series in brackets is a well-known Bessel-funotion expansion, .being in 

fact -J"i(2ot). 
m 

Cf. Whittaker and Watson, Modern. Analysis, p. 350. 
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The first dark ring in the diffraction pattern wiU occur at the first 
point T for which the disturbance vanishes, i.e. it will correspond to the 
lowest value of m whichtmakes the series in brackets to vanish: this is 

found by successive approximation to be 

»M = l-92, 

giving 0 — V22-. 

The radius of the central diflraction-disc of a star (measured to the 
first dark ring) farmed in the focal plane of a telescope objective of 
aperture a and focal length f is therefm-e 1 •22X//a. 

A telescope is usually estimated to succeed in dividing a close 
double star when the centre of the diffraction-pattern of one star falls 
on the first dark ring of the diffraction-pattern of the other star: when 
this is the case, it follows from the preceding equation that the angular 
distance between the stars in seconds of arc is 1'22 x 206265 x X/a. 
If we express a in inches, and take X = 1/50,000, this gives for the 
angular distance between the stars, 

5" 
aperture in inches" 

This is known as Dawes' rule for the resolving power of a telescope 
objective. 

35. The resolving power of spectroscopes. 

The power of spectroscopic apparatus (prisms or gratings) to 
separate close spectral lines involves the same principles as the power 
of telescope objectives to separate the components of double stars. 
Each spectral line is really a diffraction-pattern, consisting of a narrow 
bright band at the place of the geometrical image of the line, flanked 
by alternate bright and dark bands: and the spectroscope is said to 
resolve two lines of adjacent wave-lengths when the centre of the 
central bright band arising from one wave-length falls on the first dark 
band of the pattern arising from the other wave-length. 

The difference between the telescopic and the spectroscopic cases is 
that in the telescope we are dealing with the circular diffraction-pattern 
of a point-source, formed by a circular beam, while in the spectroscope 
we are deahng with the banded pattern of a Une-source, formed by 
a beam of rectangular cross-section. The latter case is analytically the 
simpler of the two, since all sections of the beam at right angles to the 
spectral lines are similar to each other, and the problem can therefore 
be treated as a two-dimensional one. 
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Let AB be the wave-front, limited by an aperture AB of breadth a, 
of a pencil of paraUel fight of wave-length X, 
representing one of two vibrations which are 
just resolved. Draw .BG at right angles to 
A B , and take B G equal to A. Then the first 
dark band of the diffraction-pattern corre
sponding to the disturbance A B will fall at the place to which a 
wave-front occupying the position ^ C is brought to focus: for the 
phase of the J.P-disturbance at 0 differs by a whole wave-length from 
the phase at P, i.e. from the phase at A, and consequently every point 
in ̂ C wiU have a corresponding point in the other half oi A G which 
is in exactly the opposite phase, and so will interfere with it to produce 
total darkness. 

Thus the disturbances represented by A B and A G will be just 
resolved: so if SO denote the angle between two wave-fronts of approxi
mate tvave-length A, the disturbances will be just resolvable when the 
beams are of breadth a, provided that 

S0 = -. 
a 

As the product of the inchnation of two plane wave-fronts and their 
diameter is,- by Helmholtz's theorem, unaltered by passage through any 
system of lenses, it is evident that the resolvability of two adjacent 
disturbances is not altered by passage through any lens-system which 
does not introduce new diaphragm limitations, and so depends solely 
on the prisms or grating. 

The resolving power of a spectroscope is defined by Lord Rayleigh 
to be XjhX, when two spectral lines of wave-lengths A. and X + SX 

respectively can just be resolved, the slit of the spectroscope being 
infinitely narrow. But the result obtained above gives 

A^_ M 
sx~'^dx-

Thus the resolving power of any grating or train of prisms is 
measured by the product of tlie breadth of the emergent beam of parallel 
light and the dispersion; the dispersion being defined as the rate of 
change of deviation with wave-length *-

* The resolving power can be regarded from a different point of view as equal 
to the number of separate pulses into which a single incident pulse of light is 
broken up by the spectroscope. For references to this aspect of the theory, cf. a 
paper by the author in Monthly Notices of the Royal Astron. Society, lxvii. p. 88. 
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SKETCH OF THE CHIEF OPTICAL INSTRUMENTS 

36. The photographic objective. 

The simplest form of photographic objective is a single convergent 
lens*; the light from an object at some distance is rendered convergent 
by the lens, and the real image thus formed is received on a gelatine 
film containing emulsified bromide of silver: this salt is acted on by 
light, and after undergoing the processes of development and fixation 
yields a permanent image in metallic silver. 

The rapidity of action of the lens depends only on its aperture-
ratio, which is the ratio of its focal length / to its diameter: if the 
diameter be fjn, the time of exposure required is proportional to n'; 
for the exposure is inversely proportional to the light falling on unit 
area of the image, and is therefore proportional to the area of the 
image divided by the total light received by the lens from the object: 
but the area of the image is proportional to f , and the total light 
received is proportional to the area of the lens, i.e. to {fin)': so the 
time of exposure is proportional to n'. 

This theorem appUes equally to objectives which are not constituted 
of a single lens, provided that instead of the diameter of the lens we 
take the diameter of the entrarice-pupil. For an average photographic 
objective, n is about 7 when the full aperture is used: for portrait 
lenses, which are very rapid, n m a y be as low as 3. 

* If a single non-achromatio convergent lens were used, it would be best to 
select a deep meniscus with its concavity turned towards the object (this secures 
considerable depth of focus and a large field of fair definition) and to use a narrow 
stop in front (which reduces the spherical aberration and curvature of image): when 
the focus is being obtained, a weak convex lens must be inserted, so as to reduce 
the visual focal plane to the place which the focal plane of the actinic rays occupies 
when this lens is absent. 
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The single convergent lens is practicaUy useless, on account of the 
defects which have been discussed in the preceding chapters; and it is 
necessary to design objectives formed of more than one lens, with a 
view to the special requirements of terrestrial photography, which are 
the following: 

1. The system must be achromatised in such a way that the visual 
hnage, which is used in finding the focus, may coincide with the 
actinic image which acts on the sensitive plate: the D line of radiation 
of sodium is generally united with the blue H ^ radiation. 

2. The definition should be such that points of the object are 
represented by dots of (say) not more than yj^- of an inch diameter, 
over a field of (say) 50° square: in the case of portrait lenses, this 
requirement is sacrificed in order to obtain the greatest possible 
rapidity: a portrait lens will not usually cover a greater field than 
about 25° square. In any case, the standard of definition is much lower 

, than is demanded of telescope objectives, but the field is much wider. 
The definition is usually improved by stopping doivn, i.e. narrowing 

the aperture of the diaphragm : but this involves a loss of rapidity. 
3. Distortion must as far as possible be eliminated: objectives 

consisting of lenses cemented together, with the stop in front, always 
give barrel distortion (§ 28), while if the stop is between the lens and 
the image there is pincushion distortion. If we combine these two 
systems into a doublet, i.e. a system of two compound lenses separated 
by an interval in which the stop is placed, the two opposite distortions 
neutralise each other and we obtain an objective which is rectilinear, 
i.e. free from distortion. 

4. The objective must have a certain amount of depth of focus, 
i.e. must be able to give fairly sharp images of objects which are in 

front of or behind that object-plane which is accurately focussed. 
Depth of focus is usually measured by the range of object-distance for 
which the pencil meets the sensitive plate in a disc of less than a 
certain diameter: it depends on the object-distance, focal length, and 
aperture, but does not vary much with the type of lens. The depth of 
focus is obviously increased by stopping down, since then all pencils 
become narrower: with equal aperture-ratios, the depth is greater for 

small focal lengths than for large ones. 
5. A m o n g minor requirements may be mentioned freedom from 

flare, i.e. from light which has been reflected at some of the refracting 
surfaces, and which on reaching the sensitive plate interferes with the 

hriUiancy of the image. 
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It is of course not possible here to enter into details regarding the 
construction of the various types of photographic objective which are 

at present on the market. 

37. Telephotography. 

W h e n an object at a great distance is photographed with an 
ordinary photographic objective, the image is inconveniently small and 
the details difficult to distinguish. A more convenient image can be 
obtained by making an enlargement from this photograph: but owing 
to the grain of the sensitive plate, and the insufficient definition of the 
primary image, it is not. practicable to enlarge many diameters. It is 
therefore desirable to obtain a primary image as large as possible. 
N o w in order to obtain a large-scale image, the camera must have an 
objective of great focal length : and as with most objectives the length 
of the camera is nearly equal to the focal length, this requires an 
inconvenient or impossible extension of the camera. The difficulty is 
surmounted by removing the principal point of the system (which is at 
a distance fi-om the principal focus equal to the focal length, and is 
generaUy near the objective) to a considerable distance in front of the 
objective, so that although the focal length is great, the distance from 
the objective to the sensitive plate is comparatively smaU. This is 
effected in telephotography, in which a divergent lens is introduced 
between the convergent objective and the sensitive plate: this divergent 
lens diminishes the convergence of the pencils which fall on it from 
the convergent combination, so that they become practically the same 
as the pencils which would have proceeded from a convergent lens of 
great focal length, placed at a considerable distance in front of the 
actual position of the objective. 

38. The telescope objective. 

The conditions which must be satisfied by the objectives used in 

astronomical telescopes, whether visual or photographic, differ greatly 
from the conditions which must be satisfied by the objectives used in 
terrestrial photography. In the latter, definition which will bear a 
feeble magnification is required over a field of (say) 50° square: in the 
former, definition which will bear a much higher magnification is 
required, but over a much smaller field: the field seen at one time in 
a large visual telescope is only about \° in diameter, and the region 
depicted on the sensitive plate of a photographic telescope is usually 
only of about the order of magnitude of a square degree. Consequently 
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the defects of astigmatism, curvature of field, and distortion, which 
come into prominence at the outer parts of a wide field, are much less 
important in celestial than in terrestrial work: while on the other 
hand the defects of spherical aberration and coma, which affect the 
central parts of the field, must be more carefully eliminated in the 
astronomical objective than in the ordinary photographic lens. More
over, since aiiy diminution in light-gathering power is to be avoided at 
aU costs in astronomy, it is not permissible to correct errors by means 
of diaphragm effects. For these reasons the doublet, which is pre
dominant in terrestrial photography, is abandoned by astronomers in 
favour of an objective consisting of two or three lenses fairly close 
together, designed to make the corrections for spherical aberration and 
coma as perfect as possible. 

The colour corrections also differ in the two cases. In the 
terrestrial lens, the actinic image must be made to coincide in position 
with the visual image which is used in focussing: but as in astro-
photographic work the focus is found by taking trial plates, there is no 
need to trouble about the visual rays, and consequently the colour 
correction can be devoted wholly to the improvement of the actinic 
image, the blue H ^ radiation being generally united with a violet 
radiation emitted by mercury. In the visual telescope there is no need 
to take account of the actinic image, and the yellowish-green rays are 

brought to the minimum focus. 
W e shall now shew how the equations found in Chapter II can be 

applied to design what may be called a Fraunhofer objective : this will 

be defined as a telescope objective consisting of two lenses whose 
thickness wiU be neglected, in contact at their vertices, and having their 
four radii of curvature chosen to satisfy the following conditions 

(i) Given focal length Pfor the objective as a whole, 

(ii) Achromatism, 

(iii) Absence of spherical aberration for an object at infinity, 

neglecting the 5th power of the aperture, 

(iv) The sine-condition for an object at infinity, neglecting the 

5th power of the aperture. 

Let n, rs, rj, r̂, denote the radii of the refracting surfaces in order 
(aU taken positively when convex to the incident fight), p., p! the 
refractive indices of the lenses, ra-j, -nra their dispersions for the radiation 
which it is desired to have at minimum focus, f and /2 their focal 

lengths. 
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Conditions (i) and (ii) may be written 

1 _ 1 1 -my •̂> _l\ 

Thus if K denote •mj'm2, we have 

1 ̂  1 1 K 
frf{i-k)' f- f{i-k)' 

and therefore 

1 1 1 J 1 1 K 
and — • n r2 F{1-k){p-1) "̂'̂  r, r r P ( I - « ) (i^'-1)' 

These equa,tions are satisfied identically if we write 

P(l-c) P(l-.) P(1-k) .. P(1-k) 
'" ih • "̂ '̂  I ' '^-^^TIT' ''- _^,^ -c ' 

/A—I -̂  /A —I 

where ̂ 1 and ̂ 2 are now to be determined from conditions (iii) and (iv). 
These conditions (iii) and (iv) are 

(Spherical aberration condition, § 20) 

Qiih + Qiih + Q'U3.+ QiUi = 0, 

(Sine-condition, § 25) 

q^lh + Q2U2 + QiUa + Q4M4 = 0, 

where Oi = =«,( 
ri Xl \ri X2 

\r2 X2I J's Xi 

and similar equations hold for ̂ 3 and §4: x-̂., X2, x^, Xt, x, being the 
distances of the object and its successive images from the objective; 
and where 

I I I I 1 1 1 1 
Ui = , Ma = , Us = —, , M4 = T- . 

pX2 Xl X-i PJC2 p-Xi Xs Xs pXi 
Now since the object is at infinity, we have 

Xl X., pri Xs ^' ' \ri r.J' 

Xi p.' \»-i r,/ /aVs ' a/g F' 

and consequently 
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Substituting in terms of pi and jOa, we have (neglecting common 
factors) 

Q^=Pi, Qi=Fi-~i, Qs=P-2, Qi=P2 + ^^, 
f̂  — X fĴ  — J. 

{p.~l)pi , u'-l u'-l 
«1- -i , ««2=l-«i, lh = TTT-Pi 7-, Ui=-K-U3. 

/A p.- -"̂  fX 
Substituting in the conditions (iii) and (iv) above, we have 

f(*-.-^)^ (--.-?!)' 

.1-1+?! 
5)(*%-^)-"(?-v-^)'=«. 

, /A-l-1 p. + 1 p. P.k' 
and pi~K '——r- «2 ^ + K - - 7 - ^ = 0. 

p. p. M ^ l A* — 1 
The second equation gives p2 as a linear function oi pi; substituting 
in the preceding equation, we have a quadratic for pi, which can be 
solved: the radii of curvature of the surfaces of the objective are thus 
determined. 

39. Magnifying glasses and eyepieces. 

For the rough examination of small objects, the magnifying glass 
is used. This in its simplest form consists of a single convergent lens, 
held between the eye and the object, at a distance from the latter 

somewhat less than its own focal length: an enlarged virtual image is 
thus formed at some distance behind the object, and this is examined 
by the eye. The pupil of the eye is the diaphragm effective in limiting 
the aperture of the image-forming pencils, and the rim of the lens 
(supposing it to be of greater diameter than the pupil) is the diaphragm 
effective in Umiting the field of view. 

Closely allied to the magnifying glasses are the eyepieces which are 
used to examine the images formed by the objectives of visual 
telescopes and microscopes. These consist usually of two lense^ 
separated by an interval: the lens which is nearest the eye is called 
the eye-lens, and the other the field-lens. 

In Huyghens' eyepiece the lenses are placed at a distance apart 
equal to half the sum of their focal lengths, in order to satisfy the 
condition of achromatism found in § 32. The focal length of the 

field-lens is usually three times that of the eye-lens, but in some 
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modern eyepieces, especially those used for low-power magnification 
with the microscope, the ratio of the focal lengths is smaller than this. 
The lenses used are plano-convex, with the convex sides turned 

towards the image to be examined. 
The first principal focus of Huyghens' eyepiece falls between the 

lenses, and consequently the image to be examined (which must be 
placed at this point in order that the emergent wave-fronts may be 
plane) can only be a virtual image: in other words, a Huyghens' 
eyepiece, when used with a telescope objective, must be pushed in nearer 
to the objective than the place at which the objective would form 
a real image of the object. On this account the Huyghens construction 
cannot be used in inicrometer eyepieces, in which it is desired to place 
a framework of spider-lines in the plane of the image formed by the 
objective, and to examine the spider-lines and the image together by 
the eyepiece. 

The image formed by high-power apochromatic microscope objectives 
is usually examined by a compensating eyepiece, which is specially 
corrected chromatically in order to neutralise the chromatic difference 
of magnification due to the objective. 

In Bamsden's construction, which is always used in micrometer 
eyepieces, the first focal plane of the combination does not fall between 
the lenses, and the eyepiece can consequently be used in order to 
simultaneously examine the image (formed by the objective of the 
telescope or microscope) and also a reticle of spider-lines, placed in its 
plane with a view to micrometric measurements. In this construction 
the two lenses are usually plano-convex with the convex sides turned 
towards each other : they are taken to be of the same focal length, and 
therefore if the condition of achromatism were satisfied the interval 
between the lenses would be exactly equal to this focal length: with 
this arrangement however the field lens would be exactly in the focus 
of the eyedens, which is undesirable ; and the interval is consequently 
taken to be shorter than the focal length, the resulting chromatic 
error being (in the best eyepieces) removed by substituting achromatic 
combinations for the simple field-lens and eye-lens. 

The field-lens is so near to the real image examined, that its 
principal effect is to deflect the chief rays of the pencils towards the 
axis of the instrument, without greatly altering the inclination of the 
other rays of the pencils to the chief rays : the function of magnifying 
is therefore performed almost wholly by the eye-lens. 
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40. The visual astronomical refractor. 

The astronomical refracting telescope, as used visuaUy, is formed 
by the combination of an astronomical objective (§ 38) with an eyepiece 
(§ 39) which is used to examine the image formed by it. In the typical 
normal case the eyepieCe is so placed that its first focal plane coincides 
with the second focal plane of the objective: under these circumstances 
the parallel pencil of light from a star is made to converge to an image 
situated in this focal plane, and is re-converted into a paraUel pencil 
by the eyepiece. Short-sighted observers find it convenient to push 
the eyepiece nearer to the objective, so that the emergent pencils are 
divergent. 

The diaphragm effective in limiting the apertures of the pencils is 
the rim of the objective: this is therefore the entrance-pupil (§ 16). 
The exit-pupil, which is the image of the objective formed by the 
eyepiece, is outside the instrument and behind it, and the eye is placed 

there. The field of view is generally limited by a diaphragm placed in 
the focal plane of the objective: if this were not present, the field 
would be limited by the rim of one of the lenses of the eyepiece, and 
there would be a "ragged edge" of the field seen only by partial 
pencils. The field of view is of course the angle subtended at the 
centre of the objective by this diaphragm. 

The magnifying power (§ 17) is readily seen to be the ratio of the 
focal lengths of the objective and eyepiece. A telescope is usually 

furnished with a battery of eyepieces, giving various magnifications. 
W h e n the eyepiece is of such short focal length that the magnifying 

power of the telescope is greater than a number which may be roundly 
stated as equal to the diameter of the objective in millimetres, the 
definition is spoiled by the diffraction effects discussed in § 34: from 
this to one-half of it may be regarded as the useful range of magnifying 

power, since below this limit the capabilities of the objective are not 
being used to their full extent. This corresponds to an exit-pupil of 
1 to 2 mm., which is much smaller than the pupil of the eye. 

If the object viewed is a star, which may be regarded as a 
mathematical point, the briUiancy varies directly as the light gathered 
by the objective, i.e. as the square of the aperture, and is independent 
of the focal length. The same consideration applies to the rapidity of 
an astro-photographic objective. 

The aperture-ratio (§ 36) of a telescope objective is usuaUy about 
15 : but for small telescopes it is frequently smaUer. In the old 
telescopes which were constructed before the discovery of achromatic 
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combinations,.the aperture-ratio was very large: this was in order to 
take advantage of the fact that the infiuence of chromatic aberration 
on the distinctness of an object is inversely proportional to the 

aperture-ratio. 

41. The astronomical reflector. 

In the astronomical reflecting telescope, the Ught from a celestial 

object is received on a concave mirror, which serves the same purpose 
as the objective of a refracting telescope, namely to form a real image 
of the object in its own focal plane. This image can either be allowed 
to impress itself directly on a sensitive plate, or may be examined by 
an eyepiece. In the latter case, it is necessary to insert a small plane 

Fig. a. Pig. 6. 

mirror obliquely in the path of the rays after leaving the large mirror, 
in order to divert them to the side of the telescope, where the image is 
formed and examined: otherwise the head of the observer would obstruct 
the passage of the incident light to the large mirror. This con
struction is known as the Newtonian reflector (Fig. a ) : the path of the 
rays from a star P to its real image p will be obvious from the diagram, 
q being the large mirror and R the flat. The magnifying power, as 
in the case of the refractor, is the ratio of the focal lengths of the 
objective and eyepiece. 

In certain cases, e.g. the photography of planets, it is desirable to 
obtain on the sensitive plate an image on a larger scale than would be 
furnished directly by the concave mirror: this is achieved by making 
use of what is essentially the same principle as that on which 
telephotography (§ 37) is based, namely receiving the rays from the 
large, mirror on a small divergent {i,.e. convex) mirror before allow
ing them to form a real image. This is known as Gassegrain's 
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construction (Fig. b). The path of the rays from the star P to its real 
image p, after reflexion at the large mirror q, the convex mirror R, and 
the flat S, will be obvious from the diagxam. 

The diaphragm effective in limiting the aperture of the image-
forming pencUs of a reflector is the rim of the large mirror. The field 
of view of a visual reflector is limited by the rim of one of the eyepiece 
lenses, or by a diaphragm placed in the plane of the real image in 
order to exclude the part of the image formed by partial pencUs. 

The correction for spherical aberration of the large mirror is effected 
by flguring it to a paraboloidal form: as we have seen however (§ 24) 
this does not remove coma, which is accordingly an outstanding defect 
in all reflecting telescopes. 

The reflector is of course perfectly free from cliromatic aberration, 
and this involves a further advantage over the refractor in that it 
permits the construction of reflectors having a much smaller aperture-
ratio than refractors, and consequently much greater rapidity for 
objects with an extended area. 

The aperture-ratio of the large mirror of a modern reflector is 
usually about 5 : the addition of a convex mirror, which usually gives 
about a threefold magnification, raises the aperture-ratio to about 15 
in Cassegrain's construction. 

For the above reasons, and also because it is easier to construct a 
mirror than an objective of the same diameter, and therefore easier to 
secure light-gathering power, the reflector is specially suited for the 
photography of nebulae. 

42. Field, Marine, and Opera Glasses. 

The visual astronomical telescope cannot be applied to terrestrial 
uses without modification, since the image which is formed by the 
objective and examined by the eyepiece is inverted. It is possible 
to surmount this difficulty by the use of an erecting eyepiece, 

which is in principle similar to the .microscope (§ 43), forming 

a second (erect) real image in its 
interior: but the instrument so con

stituted is of considerable length and 
cannot be supported steadily in the 
hands without difficulty. Accordingly 
field-glasses were untU recent years 
always formed of a convergent ob
jective combined with a divergent 
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eyepiece: the rays after leaving the objective and before reaching the 
plane of the real image were intercepted by the eyepiece, which 
destroyed their convergence and rendered them parallel at emergence; 
The path of the rays will be evident fi'om the diagram. 

Since no real image is formed in this construction, which is known 
as the Galilean telescope, there is no inversion of the object. The 
diaphragm effective in limiting the field of view is the rim of the 
object-glass, and the diaphragm effective in limiting the aperture of 
the pencils is the pupil of the eye. The magnifying power, as in other 
telescopes, is the ratio of the focal lengths of the objective and 
eyepiece. 

The Galilean telescope has a much smaller field of view than 
an astronomical telescope of the same magnifying power; on this 
account the best modern field-glasses have reverted to the astronomical 
type of telescope, with a device suggested originally by Porro for 
re-erecting the object and shortening the 
tube-length of the telescope. This device, 
which is represented in the annexed 
diagram, is to interpose a prism in the 
path of the light when it has travelled 
some distance from the objective: the rays 
fall normally on the hypotenuse face of 
the prism, and after passing through the 
glass to one of the other faces are totally 
reflected, passing thence to the third face 
where they are again totally reflected: 
after this they travel through the glass 
to the hypotenuse face again and emerge 
normally from the prism. The effect of 

the two total reflexions has been to reverse 
the direction of the beam, so that the rays 
are now travelling back towards the ob
jective : after proceeding some distance in 
this direction they are again intercepted 
by a double-total-reflexion prism, with its 
principal section at right angles to that of 
the first prism: this once more reverses the 
direction of the beam and sends it on to 
the eyepiece, whence it passes into the eye. 
A field-glass, formed of two telescopes of 

ass^^^^^iss. 
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this construction (one for each eye) is called a Prismatic Binocular • 
the folding up of the path of the rays by the two reversals greatly 
•reduces the length of the instrument, and the total reflexions perform 
the other necessary function of erecting the image. The magnifying 
power of a Prism Binocular usually ranges from 6 to 12, and the field 
ranges from 3° to 8° in diameter. 

43. The Microscope. 

The simple magnifying glass (§ 39) cannot advantageously be 
constructed to give magnification above a certain limit, owing in part 
to the excessive smaUness of the lens which would be required for 
a high magnification. In order to pass beyond this limit, we can 
conceive an astronomical telescope placed immediately behind the 
magnifying glass, so that the pencil from a point of the object off the 
axis, after being converted by the magnifying glass into a pencil 
of nearly parallel rays, passes through the telescope and thereby 
increases its angle of divergence from the axis of the instrument. In 
this way we attain a magnifying power which is roughly the product of 
the magnifying powers of the magnifying glass and the telescope. 

This arrangement is essentially a microscope, the combination of the 
magnifying glass and telesdope objective being called the objective 

of the microscope, and the telescope eyepiece being the eyepiece of the 
microscope. The object to be viewed is placed in front of the 
microscope objective (which always consists of a combination of several 
lenses, and has a very short focal length) at a distance from it slightly 
greater than the focal length: a real enlarged image is consequently 
formed by the objective and examined by an eyepiece. 

The magnifying power of the entire instrument, which we have 
defined in § 17 as the ratio of the linear dimensions of image and 
object when the image is at the standard distance of distinct vision, is 
readily found to be approximately equal to 

LengtJi of tube x Conventional distance of distinct vision 
Focal length of objective x Focal length of eyepiece 

A microscope objective must be designed to give the best possible 
definition when a smaU field of view is seen by pencils of very wide 
angular aperture: the incident cones of light have apertures as great as 

150°. Consequently of the aberrations discussed in Chapter II, the 
most important in the construction of microscope objectives are, 
spherical aberration, coma (the sine-condition), and chromatic aberration. 
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The pencils are of such wide angle that spherical aberration must 
be much more completely removed than would be the case by the 
satisfaction of the approximate condition found in § 20; this further 
spherical correction is usually known as " spherical zones.'' Moreover 
the same circumstance^the wide angle of the pencils—causes the 
chromatic variation of the spherical aberration (§ 33) to assume 
serious proportions, and in all good objectives it is specially corrected. 
In the best or apochromatic objectives (§ 33), the secondary spectrum 
is also removed. 

In high-power objectives, advantage is taken of the property of the 
aplanatic points of the sphere discussed in § 24; the front lens of the 
ohjective is a hemisphere with its plane face turned towards the object: 
below this is a film of cedar-wood oil (whose refractive index, 1"51, is 
practically the same as that of the hemisphere), separating the 
objective from a cover-glass, usually 0'18 m m . thick, which protects the 
object. In this way the object is virtually within a sphere whose 
refractive index is that of the glass, and in fact is situated at the 
internal aplanatic point of the sphere, a magnified image being formed 
at the external aplanatic point. 

A n immersion objective {i.e. one in which the oil is used) collects 
a wider cone of light from the object than a dry objective would do: 
for if the cone of light on emerging from the cover-glass passes into air 
(as happens with dry objectives), its rays are bent outwards by the 
refraction, and consequently the outermost rays of the cone will pass 
outside the rim of the objective; in the immersion objective they are 
not refracted on emergence from the cover-glass, and so pass on into 
the objective. 

W e must now discuss the resolving power of the microscope. The 
object will first be treated as if it were self-luminous, ignoring the 
fact that it is actuaUy seen by light directed on it from another 
source. 

Let the semi-vertical angle of the cone of light issuing from the 
object to the objective be 0, and let the semi-vertical angle of the cone 
forming the image be 0'-. let p denote the refractive index of the 
cedar-wood oil, p being replaced by unity in the case of dry objectives. 
The quantity jusin 0 is called the numerical aperture of the objective, 
and is generally denoted by the letters N.A.* 

The wave-front from the object, being Umited by the rim of the 

* It is approximately equal to the ratio of the radius of the hack lens of the 
objective to the focal length of the objective. 
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objective, wiU form a diffraction-pattern at the image; regarding the 
objective as compounded of a magnifying-glass and a telescope-objective 
in juxtaposition, we can apply the theorem of § 34, which at once shews 
that the radius of the central diffraction-disc at the image is 

1-22 A. 
2 tan 0' 

where X is the wave-length of the Ught. If m denote the magnification, 
it foUows that the centre of the image of one object wiU fall exactly 
on the first dark ring of the diffraction-pattern of a second object, 
provided the distance apart of the objects is 

0-61 A 

m tan 0'' 

Now the sine-condition gives the equation 

P-sinO ..^ ^ . „, 
—.—7^ = m, or N.A .=msmO, 
sm ^ 

and as sin 0' and tan 6' are practically equal {0' being a smaU angle), we 
see that the distance apart of two objects which can just be resolved is 

0-61 A 

N.A.-

The best immersion objectives have a numerical aperture of 1"4: 
taking X='0005 mm., we see that two objects which can just be 

resolved with these objectives will be approximately at a distance apart 
equal to 

0-61 X -0005 ^^„„„ 
— mm., or 00022 m m . 
1"4 

In this discussion we have however neglected one fact of importance, 
namely that the object studied by the microscope is not truly self-
luminous, but is illuminated by another source of light. The importance 
of this distinction was first shewn by Abbe, who observed that the 
fight incident from the source is diffracted by the object, and that in 
order to obtain an image correctly representing the structure of the 
object it is essential that the objective should receive the whole of 
this diffraction-pattern. If this condition is not satisfied, the image 
, obtained will represent a fictitious object, such as would give rise to a 
diffraction-pattern consisting of those parts of the actual diffraction-

pattern which are transmitted by the objective. 
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44. The Prism Spectroscope. 
A spectroscope is an instrument designed for the work of analysing 

any given composite radiation into its constituent simple radiations, 
each with its own wave-length. In the prism spectroscope, this is done 
by taking advantage of the fact that the refractive index of glass for any 
kind of Ught depends on the wavedength of the Ught, and that conse
quently radiations of different wave-lengths can be separated from each 
other by causing them to pass through a glass prism, i.e. a piece of 
glass bounded by two optically-plane faces inclined to each other. 

If for example the light which it is desired to analyse is that 
produced by the flame of a Bunsen burner, in which a salt-of sodium is 
volatilised, the usual practice is to throw an image of the flame (by 
means of a convergent lens) on a narrow slit between two jaws of metal, 
so that the opening of the slit is strongly illuminated by the yellow 
light. This slit is placed in the focal plane of a telescope objective, so 
that the sodium light which is able to pass between the jaws of the 
slit travels on to the objective and is there converted into a parallel 
beam. In this condition it is received on one face of a prism, and 
passes through the glass and out at the other face; the beam is then 
received normally on another telescope objective, in the focal plane of 
which two images of the slit are formed close together; these images 
correspond to two kinds of yellow radiation emitted by the sodium 

flame, which have' followed slightly different paths in the prism and 
have thus become separated. Each kind of radiation emitted by the 
original source of light will give rise in this way to a distinct flnal image 
of the slit: these slit-images are called spectral lines, and collectively 
form the spectrum of the source of light: they may be allowed to 
impress themselves on a sensitive plate, or may be examined visually 

with an eyepiece. 
The slit and the first telescope objective are together called the 

collimator: and the collimator, prisms (the Ught may pass through 
more than one prism successively), and final telescope, constitute a 
prism spectroscope. 

W e shall first find the dispersion produced by the train of prisms, 
i.e. the differential effect of the prisms on two radiations of slightly 
different wave-lengths. Suppose that the light consists of two kinds 
of radiation, for one of which the refractive index is typified by p and 
for the other hj p. + 8p: and let BO denote the angle between the two 
emergent beams corresponding to these two kinds of radiation: we 
shall now find 80*. 

* The method is due to Lord Rayleigh. 
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Let P Q be a wave-front at incidence on the prism-train, P'Q' the 
corresponding piece of a wave-front for 
the radiation p after emergence from the 
prisms into air. P P ' and qQ' the paths 
of the rays from P to P' and from q to 
Q' for this radiation, B Q ' and SP' the 
paths from the wave-front P Q to Q' and 
P' for the light p. + 8/a, and T the point 
in which the path SP' meets the wave-
front of the light p,+ 8p. through Q'. 

pr 

Then ^ = p ' q ' T ^ - ^ , 

= p,„, X Difference of values of \{p + 8p) ds 

taken along the paths /SP and SP', since along P ' P we have /a + S/a = 1. 

Thus P'q'.&0= {p + Sp)ds-
JnQ' 

{p. + Sp) ds, 

the integral having the same values along the paths S T and Bq', since 
it is proportional to the time of propagation of the (/a + 8/a) wave. 

Now I p-ds= / p-ds, 
JsQ' Jqq 

by the stationary property of //a& (§ 3) 

p.ds. 

since the time of propagation of the p- wave is the same from any point 
on P Q to the corresponding point on P'Q', 

SF' 
pds. 

by the stationary property of jp.ds. 

Thus we have 

P'q'.SO=f 8/A. 
PP' 

S/A. ds 

Sp. ds— j 8/A. ds, 
QQ' JPP' 

to our degree of approximation. 
If the prisms are all formed of the same variety of glass, this 

becomes 

P'q'.80 = Sp.[ ds-Sp.( ds, 
Jqq' Jpp' 



72 THE PRISM SPECTROSCOPE [CH. Ill 

where the integration is now to be taken only over those portions of 
the path which are inside the prisms, omitting the parts which are m 
air. Thus if t denote the difference of the lengths of path travelled m 
glass by the two sides of the beam, and if a denotes the breadth of the 

emergent beam, the last equation can be written 

a80 = tSp. 

N o w if X and A + 8/a denote the wave-lengths of the two radiations 
/A and /A-fS/A, the resolving power of the spectroscope is (§ 35) «S6l/8A.. 
Thus we have the result that the resolving power of a prism spectroscope is 

dp 
Ux' 

where t detiotes the difference of the lengths of path travelled in the glass 
of the prisms by the two sides of the beam, and dp-ldX is the rate of change 

of refractive index with 'wave-length. 
In the most usual case, one side of the beam passes through the 

refracting edges of the prisms, i.e. it does not travel any distance at aU 
in the glass: and t then denotes practically the total length of those 
sides of the prisms which are opposite the refracting edges. Roughly 
speaking, one cm. of glass is required in order to resolve the yeUow 
light of sodium into its two component radiations. It must, however, 
be remembered that the formula has been derived on the assumption 

that the slit is infinitely narrow: the smaU though measurable breadth 

of the slit diminishes the power of resolution. 
In the early prism spectroscopes it was customary to use a large 

number of smaU prisms—often 12 or more—in order to obtain a high 
resolving power. The same end is now better attained by using a 
smaUer number of prisms—generally not more than four—of much 
larger size. In the older arrangement the large dispersion caused a great 
separation of the different coloured beams even before their passage 
through the last prisms of the train, and consequently made it impos
sible for them to pass all together through the last prism: the fuU 
resolving power of the instrument was therefore only displayed over a 
very narrow range of the spectrum at once. This, though not a matter 
of much consequence in visual spectroscopes, where different parts of 
the spectrum can readily be brought to the centre of the field in turn, 
would be a serious defect if it were desired to photograph the spectrum. 
The loss of light by reflexion at the faces of the prisms was also much 
greater in the old than in the new type of spectroscope. 
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