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PREFACE

TaE object of this book is to present in an elementary manner,
in English, an introduction to Lie’s theory of one-parameter groups,
with special reference to its application to the solution of differen-
tial equations invariant under such groups.

The treatment is sufficiently elementary to be appreciated, under
proper supervision, by undergraduates in their senior year as well
as by graduates during their first year of study.

While a knowledge of the elementary theory of differential equa-
tions is, not absolutely essential for understanding the subject
matter of this book, frequent references being made to places where
necessary information can be obtained, it would seem preferable to
approach for the first time the problem of classifying and solving
differential equations by direct, even if miscellaneous, methods to
doing so by the elegant general methods of Lie; and this book is
intended primarily for those who have some acquaintance with the
elementary theory. To such persons it should prove of great inter-
est and undoubted practical value. An attempt has been made
throughout the work to emphasize the réle played by the Lie theory
in unifying the - elementary theory of differential equations, by
bringing under a relatively small number of heads the various
known classes of differential equations invariant under continuous
groups, and the methods for their solution. Special attention may
be called to the lists of invariant differential equations and applica-
tions in §§ 19, 28, 30; while the two tables in the appendix include
most of the ordinary differential equations likely to be met.

Only as many examples involving the solution of differential

equations as seem necessary to illustrate the text have been intro-
iii
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duced. The large number usually given in the elementary text-
books seems ample for practice.

The short chapter on cortact transformations, while not essential
to the work, has been added for purposes of reference and to give
the student sufficiently clear ideas, so as to provide a working
knowledge, in case he has occasion to apply them. For the same
reasons, the rather sketchy note on s-parameter groups has been
added, where an attempt is made to bring out, as concisely as
seems consistent with clearness, the relations between 7-parameter
groups and their infinitesimal transformations. An exposition of
the general theory would be beyond the scope of this work.

To a large extent Lie’s proofs and general mode of presentation
have been retained, both because of their elementary, direct char-
acter, and because the. subject is so essentially Lie’s own. An
attempt has been made, however, at a more systematic arrange-
ment of the subject matter and at identifying more closely the
classes of differential equations invariant under known groups with
those considered in the elementary theory.

The author takes pleasure in expressing his appreciation of the
valuable suggestions made by Dr. J. R. Conner, who kindly con-
sented to read the proofs.

ABRAHAM COHEN.
JoHNs HOPKINS UNIVERSITY,
BALTIMORE, MD., August, 1911,
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LIE'S THEORY OF
DIFFERENTIAL EQUATIONS

CHAPTER 1
LIE'S THEORY OF ONE-PARAMETER GROUPS

1. Group of Transformations. — The set of transformations

(1) n=¢(x,, a), n=y(x,y, a),*

each one being determined by some value of the parameter @, con-
stitutes a group if the transformation resulting from the successive per-
formance of any two of them is one of the transformations of the
aggregate. In other words, assigning a definite but arbitrarily selected
value to the parameter @, and then any second value 4 (where 4 may
or may not be equal to &), this second transformation being

(Ib) Xy = 95(961, Y &); o= 1//<x1; Y é):
the transformations of type (1) form a group if the results of eliminat-
ing x; and y; from (1) and (1), Ze.

Xy = ¢[¢(x, ) ‘Z): 1//(96, Y a): é]’ Y= ‘/’[¢(x: Js a): Sb(x’ Yy @), b]

# Here ¢ and y are supposed to be generally analytic, real functions of the three
quantities x, y, a; and, unless especially stated, it will be understood that x and y are
real, and that @ takes such values only as render x; and y; real. Besides, ¢ and  are
independent functions with respect to » and y, alone; Z.e.

9 0
dr dy
v o #o;
d0x Oy

so that equations (1) can be solved for x and y.
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reduce identically to
%= ¢, 3, 0), J2=¥(x, 3, O,

where ¢ is a function of @ and 4 only. If (1) be represented by 7,
and (1,) by 7}, the group property nfay be expressed symbolically

7.7,= 7.

We shall speak of 7,7 as the product of 7, and 7;; and shall under-
stand that it represents the transformation resulting from the succes-
sive performance of 7, and Z7;, in the order named. With this in
wind, the group property of a set of transformations may be expressed
in the words, #e product of any two transformations of the group is
equal to some transformation of the aggregate.

As an example, consider the Zrenslations*
1 x1=x N1=y+ a.

After having fixed upon some value @ of the parameter, a second transformation
of the set, corresponding to the value 4, is

X2=x1, y2=y1+0.
The result of the successive performance of the two is
X =% Yo=y+a+b

which is again a translation of the set, with @ 4- # as the value of the parameter.
Hence, all translations of the type I form a group. ‘
As another example, consider the rofations

II Xy =xcosa—ysine, y =xsina-+ ycosa.

* It will frequently be found convenient to consider this subject from a gcometrical
point of view. A transformation of the form (1) may be looked upon as transforming
the point (x,y) into the point (xy, ;). The effect of a transformation I is, obviously,
to carry any point the distance « in the direction of the axis of . So that the effect on
all the points of the plane is that of a translation of the whole plane over a distance a
in the direction of the axis of y.

1 Obviously the effect of a transformation of this type on the various points of the
plane is that of a rotalion of the whole plane, through the angle @, about the origin.
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The result of first performing the transformation corresponding to some definite
value of ¢, and then a second one,
Xy =x) €0S b — yysind, yo = x)sind + y; cosd,

is xp=xcos(a+0)—ysin(a+46), ys=uxsin(a+td) + y cos (a + ),
-which is again a rotation of the set, with @ + & as the value of the parameter.

Hence, all rotations of the type II form a group.

The affine* transformations,
II1 X1 =x, y1=ay,
form a group, since the result of two transformations in which the values of the
parameter are ¢ and 4, respectively, is

xo =%, Yo = aby,

where a6 is the value of the parameter.

In the same way it is readily seen that the perspective or similitudinous t
transformations,

v X1 =ax, y1=ay,
form a group.

In the groups considered in the Lie theory it is presupposed that
the transformations can be arranged in pairs, the members of which
are mutually zzeerse} ; that is, if (1) be solved for x# and y, their
values in terms of x; and y, assume the forms
(i) &= ¢‘(xl’ D ‘_l): Y= ‘/’(xlr N, Zl):
where z is some function of a.

Thus in the examples above we have the inverse transformations :

I & =y y=y—a; here a=—a.
II. x=uwx1cosa+yising y=—x;sinatyicosa; @a=—a.
1 _—
I11. 2= i, ¥ =-y1; a==.
a a
1 1 _ 1
IV. X =-ux, y=-11; a=-
a a . a

# Following Lie, this name is used here in a restricted sense to apply to transforma-
tions of the types 111 and I1I’, § 19. The term goes back to Mocbius (1790-1868), and
usually includes all entire linear transformations x; =ay x + by y +¢1, y1=asx+ bay + co.

+ So called because the effect of any one of them is to stretch the vector going from
the origin to the point (x, ) in the ratio %, leaving its direction unaltered. Any figure
in the plane is, therefore, transformed into one similar to it by a transformation IV.

t Such groups will be referred to as Lie groups when this property is to be em-
phasized.
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Since the successive performance of two mutually inverse trans-
formations results in the identica/* transformation, the latter must
always be a transformation in every group considered in this theory ;
hence, there must always exist a value, @,, of the parameter which
reduces the corresponding transformation to an identity

(1) {xl = ¢(x, 3, ap) = %,

Nn=y(x,, a)=y.

It is readily seen that in the case of I, II, III, IV the values of @ are 0,0, I, 1
respectively.

Since ¢ and y are continuous functions of the parameter e, if we
start with ‘the value @, and allow @ to vary continuously, the effect
of the corresponding transformations on x and y will be to transform
them continuously ; that is, for a sufficiently small change in @ the
changes in x.and y are as small as one pleases. Looked at geometri-
‘cally, the effect will be to transform the point (x, ¥) to the various
points on some curve, which is known as a pa#i-curve of the group.

Thus in the case of I, the point (&, ») is transformed into the various points
on the line through it, parallel to the axis of y; in the case of II, the path-curves
are obviously circles having the origin for center; in III the path-curves are
again lines parallel to the axis of y, while in IV the path-curves are straight lines
through the origin.

It is evident that when x and y are considered as constants while
x; and »; are taken as variables, the equations (1) are the parametric
equations of the path-curve through the fixed point (x, y). Hence,
the jﬁal/z-:ztrzm corvesponding to any point (x,y) may be oblained by
eliminating a from the two equations of (1).

* Identical transformation is the name given to a transformation that leaves un-
altered all the elements upon which it operates.

'+ Groups exist in which the parameter enters in such a way that there is no iden-
tical transformation, (See Lie, Zransformaltionsgruppen, Vol. 1, § 44.) *Such groups
will not be included among those considered here.



§1 THEORY OF ONE-PARAMETER GROUPS 5

Remark 1.—1t is readily seen that, in .general, the path-curve
corresponding to any point corresponds equally well to every other
point on it.

There is a possible exception to this statement. A point may be left un-
altered by every transformation of the group; as, for example, the origin in the
case of II. Such a point would naturally not have a path-curve. In the case of
111, every point on the axis of « is left unaltered; hence, a line parallel to the
axis of » is the path-curve of every point on it, except the point where it cuts the
axis of x. In IV a line through the origin is the path-curve of every point on it,
except the origin, which is left unaltered.

Remark 2.— The parameter may appear in various forms in the
transformations that determine a given group.

Thus 1 = x, y1 =y + &2 also determines the group of translations I. In this
case ¢ must take imaginary values, as well as real ones, in order to give all the
transformations of I. As a matter of fact @ = Zz. On the other hand, a negative
value for @ determines the same transformation as the corresponding positive
value.

The group of rotations II can also obviously be written

x1=aVIi—a®—ya, yy=xa+yV1— al

It is always possible (and in an indefinite number of ways) to
choose as a new parameter such a function of the parameter appear-
ing in any group that the value giving the identical transforma-
tion is any desired number. For example, this number will be 4 if
@ is replaced by ge*=°. In particular it will be zero if « is replaced

by aqe”.
Thus if III and IV, where ¢, = 1, are written
x1 = x, y1 =% and x1 = %, y1 = ¢%),

respectively, 2 = o will determine the identical transformation. In this form,
complex values of @ are necessary to determine transformations which cor-
respond to negative values of the parameter in the original forms of the trans-

formations of these groups.
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Show that the following transformations constitute a group. Find
the respective values of the parameter that give both the inverse and
the identical transformations. Also find the path-curves : —

1 .
Ex. 1. x, =ax, n=_7 Ex. 2. x=d%, y,=ay.

Ex. 8. x,=da’x, y,=a¥.
Ex. 4 oy=4+Vi¥tz2a,=+Vi —a.
Ex. 5. x;=xcosh a 4 ysinh @, y, = xsinh @ + y cosh a.

X
Ex. 6. Xy = s = J .
I —ax I —ax

Ex. 7. wy=ax+(a— 1)y, p=1.
Ex. 8. @ =¢*"(xcosa—ysina), y,=e(x sina + y cos a).

2. Infinitesimal Transformation. — Since ¢ and y are continuous
functions, the transformation

x1=¢(x, ¥, ay+ 8a), n=y(x,y, g+ 8a),
where a, is the value of the parameter determining the identical trans-
formation and &« is an infinitesimal, changes x and y by infinitesimal
amounts. Developing by Taylor’s Theorem

= (x, 9, a5) + <g§>8¢z A+ ey

ag

d
et a0 (W o
Noting that ¢(x, y, @)=, Y(x, ¥, @)=y, the changes in x and y
due to the transformation are

xl—x58x=<g§é>8a+ ity

a

ay

Ay
—— = =y (A 8 “ee
h—y=by <3a> a4 -,

ap
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where terms in higher powers of 8 are indicated by dots. Since «,
is a fixed value of the parameter, the only variables remaining in

<a—‘ls> and <3—> are  and y. Writing

da da
<%>a055(x’ ), (3—‘5) =n(x, ),

the transformation takes the form
Sx={(x, p)ba+ -+, Sy =(x, y)8a + -

Higher powers of the infinitesimal 8z may be neglected, provided at
least one of £ and 5 does not vanish identically (z.e. for all values of
x and v), and neither of them isinfinite. In this case the transforma-
tion producing an infinitesimal change in the variables is

(2) dx =£(x, y)8a, 8y =y(x, y)da.
This is known as an ¢nfinitesimal transformation.

Remark 1. —Since A3z, where % is any finite constant different
from zero, is an infinitesimal when 8z is, the latter may be replaced
by the former in (2). Hence, the infinitesimal transformation (2) is

he smeras o mr. Be e —bale. )l

On the other hand, if /(x, y) is not a constant,

ox =[x, y) - &(x, y)da, By =f(x> 7) - (%, y)Sa
is distinct from (2).
Remark 2. —In case (‘3—‘1)) and (gl—p> are both identically zero,

s @
or if one of them is infinite, the method of this section for finding an
infinitesimal transformation of the group must be modified. In Note I
of the Appendix #he existence of an infinitesimal transformation of
the group is established in every case, and a method for finding it is
also given. Moreover, in the same note it is proved that @ one-param-
eter group contains only one distinct infinitesimal transformation.
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In general, the method of this section for finding ¢ and 5 will be
found applicable ; when not, that of Note I may be employed.

In the case of I the infinitesimal transformation is

X =%, y1=y -+ 0a,

or bx =0, 0y =0da;
. d¢ ¥
Ls =0, = 1. =0, 4~ =1.
“ E=o m [aa da ]
For II, the infinitesimal transformation is
x1 = x cos (8a) — y sin (a), y1 = x sin (8a) + y cos (8a).

3
Since cos (9a) =1 ~(iﬂ'l2+ .-+, and sin (8a) = da — Q;'—)+ -++, and infini-
2! !
tesimals of higher order than the first may be neglected, cos(da) may be re-
placed by 1, and sin (82) by da. Hence,
dx = — yda, 0y = xda;

= v (@) (@)oo

Similarly, it is readily seen that for
III f=0, 1=y,
v e

Ex. Find the infinitesimal transformations of the groups in the
exercises of § 1.

3. Symbol of Infinitesimal Transformation. — In the. infinitesimal
transformation
(2) S = £(x, ) 8a, & =17 (x, y)3a,
8 is the symbol for differentiation with respect to the parameter «;
but in a restricted sense, since it is used to designate the value
which the differential of the new variable x; or y assumes when ¢ =
@o.*  Thus

r=¢da= (%—’Z‘)Sa Sy =ndz= (%)aa

* The exceptional cases noted in Remark 2, § 2 are due to the way in which the
‘parameter enters and are not peculiar to any group. (See § 4.) Hence, no modifica-
tion of the statement made in the text need be insisted upon, provided it is understood
that the parameter is chosen in proper form.
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If f(x,5) is a generally analytic function of x and y, the effect
of the infinitesimal transformation on it is to replace it by
S(x+ {8a, y+nda), which on expanding by Taylor's Theorem

becomes

F@+ £8a, y+n8a) = (x, 3) +(fg—fx+ng’§>8a+

(e, U
Hence, 8f_<$53}+"1@>8a+

Lie introduced the very convenient symbol Jf for the coefficient
of 8z in this expansion ; so that

Sf: U_fs(l + ceey
where '
Y T
U=éL 492,
(3) J=&z—+m 5
It is readily seen that Uf= <%>
@/,
where S =S (2, ).
In particular Ue=¢& Uy=n.

Since Uf can be written when the infinitesimal transformation (2)
is known, and conversely, (2) is known when Uf is given, Uf is said
to represent (2). For convenience of language we shall usually
speak of “ the infinitesimal transformation /" instcad of “the trans-
formation represented by /.’ But it must be borne in mind that
Uf is not a transformation ; it is only the representative of one.

The infinitesimal transformations in the cases of I, II, III, IV are

UEQ[,UE—(—;[ §Z,UE Qf,UE QI+'—9Z
e ra i e T e P
respectively.
Remark.— The differential operator U= ¢ ai —+—7756}~} has striking
i

properties, many of which will be brought out in the course of this
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work. Itis, to a large extent, because of these properties that Lie’s
introduction of the idea of the infinitesimal transformation has

provefi so prolific of results.

4. Group Generated by an Infinitesimal Transformation. —In § 2
was given a method for finding the infinitesimal transformation of a
one-parameter group when the finite transformations are given. Con-
versely, the finite transformations can be obtained when the infini-
tesimal transformation is known.

Attention was called in Remark 2, § 1, to the fact that the
parameter may be made to enter in such a way that the identical
transformation is given by any desired value of the parameter. It
is frequently convenient to have the parameter in such a form
that its vanishing gives the identical transformation. In future,
when this is specifically understood, # will be used for the param-
eter. In the general case, when this form is not insisted upon,
will be retained.

The infinitesimal transformation f= ¢ % -+ ng—j: , or

(2') O = §<x: y>8f; 8}) = "7(‘”) _J’)Sl:

carries the point (x, ) to the neighboring position (x + &7
y +nd). The repetition of this transformation an indefinite
number of times has the effect of carrying the point along a path*
which is precisely that integral curve of the system of differential
equations

dx ay
(4) = =@, Sl=n(an, ),

e

which passes through the point (x, ). At any stage of the above
process x and y have been transformed into ., and y, and the

* This is obviously the path-curve (§ 1) of the group, corresponding to the point
(5.
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formulae of transformation are given by those solutions of (4) or of
their equivalents

@)
) = d

dy -
§(~\'1, ) 7](‘x13 }’1) 1’

for which &, reduces to x and », to y for £=o.
The first two members of (5) being free of # form a differential
equation whose solution may be written

u (o0, yy) = const. = u(x, ),
since .y =ux, yy=y when f=o. Zhis is the equation of the path-
curve corresponding to the point (x, ).
Solving #(x;, 31) = ¢ for onle of the variables,* to fix the idea, say
x=w(y, ¢), and replacing x; in 5 by o, the resulting differential

equation dy
1

— =
n [w(.yla £>: )’1]

can be solved by a quadrature. Replacing ¢ by its value in terms of
2, and y; this solution takes the form
v(xy, 31) — = const. =v(x, ).

Hence it follows that

(6) { ”(xh J'l) = u(-x; _}’),
W<x1; }’1) = z/(x, _y)+ t;

determine x, and y; as those solutions of (4) or (5) which reduce to
x and y respectively for 7=o.

Looking upon (6) as a transformation, the following may be noted :

1° The result of the successive performance of two transformations

u(xli ,yl):”(x; y) } aid { Z{(.X‘g, ,J"z): 7" (-xla _}'1)1
v (%), yy)=2(x, )+ ¢ v (g yo)=1v(%1, y1)+ 7',

* At times it will be more practical to use some of the other methods given in
the author’s Elementary Treatise on Differential Equations (in future referred to as
El Dif. Eq.) § 65 for finding a second solution of (5).
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is the same as that of the single transformation

u(%5, 35) = u(, ¥),
(s, yo) = v(x, y)+ 2+ 2.

2° The value — # determines the transformation inverse to that
obtained by using £

3° #=o gives the identical transformation.

Hence the aggregate of all the transformations (6) for all values
of 7 constitute a group of the kind considered in the Lie theory ( §1).
This group (either in the form (6) or when solved for x; and y,)is
known as the group generated by the infinitesimal transformation (2).*

. Ox
Moreover, the parameter enters in such a way that < 6;)0: &0, 9,

<%>0= n(x, ). Since there was no re\striction placed on the ¢ and
nin (2'), other than that they are generally analytic, which is always
presupposed, we have shown that it is always possible to put the finite
transformations of @ one-parameter group in such form that the ex-
ceptional cases noted in Remark 2, § 2 will not arise.
e _dn_d
6] I I
u(xy, Y1) =x = &,
v(@L,y)Ey =y +2
axy dyy  dt
HTmoT
i cu(ay y1)=x 4 % = a4 2
Using method 3°(a) of § 65, £ Dif. Eq.
x1dyy — y1dxy
x1? 4 i
1

v(x, ) Etan‘lzz tan‘l’; + 2z

In I, equations (5) are

In II,

=

* Since the finite transformations of a group can be calculated when its infiniiesi-
mal transformation is known, the latter may be looked upon as the representative of
the group. ' We shall often speak of “ the group (/7" understanding by this ““ the group
whose infinitesimal transformation is represented by U£”
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To solve these two equations for ay and y1, so as to obtain the transformation
in the usual form, one may proceed as follows :
Taking the tangent of each side of the second relation,

) )+ T
2L ed , where 7 =tan 4
X1 X — y7r

Adding 1 to the square of each side and taking account of the first relation,

1+ T2
x2 (r—yr)?

X —y7 .
‘Whence X1 = N [ xcost— ysin{
Vi + 72
I T .
since ————=cos? and ——— =siny;
V1 + 72 Vi + 72
xT 4y .
and = #: xsin ¢ + y cos-Z
Vi+ 12

In III, it is readily seen that
u(xy, y1) =a1 = 7,
v(xy, y1) =logyr =logy + 4 or y1 = ety.

Note. — 1t is evident that the solutions of (5) need not always be found in the
form (6). Other forins may be easier to solve for x; and ;. Thus in IV

log 1 =logx + ¢ and log yy = logy + ¢
are a pair of obvicus solutions of the differential equations (5), and lead at once to

B =y Wi =d P

Find the groups whose infinitesimal transformations are the follow-
ing:

o v

Ex. 1. xa—— 3 Ex. 5. yﬂ—{—x

B
v Y, Y
Ex. 2. 2x5§+y@- Ex. 6. xzax+xyay
4 4 s
= peil s . 7. =,
Ex. 8. 2xax—|—3) Fr Ex (x-i—y)ax

) )
Ex. 4. - ———> . Ex. 8. (x'—y)%+(x+y)£-
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5. Another Method of Finding the Group from its Infinitesimal-
Transformation.— Starting with an infinitesimal transformation

7 :‘6_f Q-/_.
va—'ééx_l_n

dy’
it was seen in § 4 that the finite transformations of the group
(I,) x1:¢(x7 Vs t)’yl_—_"ib(x; Vs t)

generated by it can be found in such form that

=) v-(2)

The finite transformations can be obtained (expanded in powers
of 7) -without integration by means of the following considerations :

The effect of any transformation (1') being to replace x and y by
2, and yy, it will change any function f(x, y) into f(xy, 37). Assum-
ing f(x, y) to be generally analytic, since f(x,, 3;) depends upon #it
can be developed by Maclaurin’s Theorem.

h=/+ (%f;>‘)z‘+ (g{l>0:—21 -

where J=/(x, ), A=/ (2, ). Writing likewise
a v ) i)
flfai;; 7]15_5_;)0;./ =& f‘l‘ M= f
so that (&)o=2¢, tpo=1n, (ULA)e=Uf, it follows that
S /A
T U, /i, whence (8;‘)0_ ur

Moreover Gf Uf1 U, U fi= U2

Hence (

a;1>0= ugr=U.

Similarly ( f) =UUUf=U%; and so on. Hence the effect of
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any finite transformation (1') on /'is given by

(1 f1=f+(7z‘+(/2f:_j+...*

In particular the finite transformations of the group are given by
the formula (7) when fis simply &+ and y, thus

2
n=¢=x+Uxt+ szil—}— e,
(8) zo.
=ty =y Oyt U e,
2|
where, it will be recalled (§ 3), Ux =§, Uy =1
It is readily seen that for the group in the form (8) as in the form
(6) § 4 i =i, t=—1¢ fh=o.

Inl UE%'

Ur=o0, Ulx=0,-+; Up=1, Uy =0, Uly =0, -

Hence rn=x,n=y+4¢
mi U=—y & 4 LY
G
Ur=—y, Ux=U(—y) =—x, Ubx=U (— x)=y, and so on.
1 3 5
Hence xlzx(l—ﬁ—f—li—- ---)-y(z_i_+t___...)
2! 4! 3! 5!

=xcost— ysins

5 2
Similarly ylzx(t—f-'_;_%_...)+y(1_t_+/___...)
LIS

2! 4!

=xsin £ 4 ycos 4

Wi vz Y
ay

Ux=0,U%x=0,--35 Uy=y, U% =y, Uy =y, -

22, 28
Hence xlzx,}q:y(l-{-t-ki_‘—]-?_f....)
= yet

# Symbolically this may be written f; = ¢!Uf
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In exactly the same way the'finite transformations of IV are found to be
X1 = el Yy :)/g‘,

Ex. Solve the problems of § 4 by the method of this section.

6. Invariants.— A function of the variables is said to be an zzva-
riant of a group (or invariant under the group) if it is left unaltered
by every transformation of the group.

Thus, it is immediately obvious that any function of x alone is invariant under

the groups I and III, while any function of 4% + »? is such under II.

We saw (§ 5) that
(1) Sy y)— f(x, 3) = Uft+ U?ff—! P

In order that f(x,, y)=/(x, ») for all values of « and y, and the
corresponding values of &, and y; into which they are transformed by
each of the transformations of the group, 7.e. for every value of 4 it
is necessary and sufficient that each coefficient in the right-hand
member of (7) be zero for all values of x and y. In particular, it is
necessary that

%) )
) WE§£+1/5§=0

Moreover, since U%f = UUf, Uf=UU?, -, it follows at once
that (9) is also the sufficient condition that A(xy, y)=/{z, y) for ail
values of x, y, and £# Hence, the

THEOREM. — The necessary and sufficient condition that f(x, y) be
invariant under the group Uf is Uf = o.

Remark. — This theorem may also be expressed as follows : Z%e
necessary and sufficient condition that f(x, v) be invariant under a
one-parameler group is that it be left unaltered by the infinitesimal
transformation of the group. On succeeding pages will be found
conditions for invariance of curves, families of curves, differential
equations of various types, and so on. In each case it will be found
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(although specific mention of the fact will not be made) that the con-
dition for invariance under the group always reduces to that of in-
variance under the infinitesimal transformation of the group.

To determine invariant functions, it is necessary to solve the partial
differential equation

[]f £ f—l—'qg; 0.

The corresponding system of ordinary differential equations is
(x0) dx_ay_ .
& 7 o
f= const. is one solution of the system.

If, besides, #(x, y)= const. is the solution of the equation involving
the first two members, the general solution of (9) is, by Lagrange’s

method,* = F).

In T and III 2 o,
o g o
“ u=x; and = F(x).

In II 224 325 and f= F(x% 4 y2).

N
III

In IV w=2; and f= F(l’).
X X
Ex. Find the invariants of the groups in the problems of § 4.

7. Path-curves. Invariant Points and Curves.— As was seen in
‘§ 4, the differential equation of the path-curves of a group is readily
obtained from the infinitesimal transformation of the group. Thus,
using x and y as the variables, it is

@ _1

dx &
o a: a)

X dy
1T LAY

* See £/.. Dif. Eq. § 79.
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The general solution of this equation,
u(x, y) = const.,

is the equation of the faraily of path-curves. As # (x,y)is an invariant
of the group (§ 6), it follows that #e eguation of a path-curve is
obtained by equating an invariant to a constant.  Moreover, it is clear
that zhis property is characteristic of an invariant; that is, if equa-
ting a function to any constant whatever gives the equation of a
path-curve, that function must be an invariant.

But this is not the only form in which the equation of a path-
curve may appear.* A path-curve is an inwariant curve of the
group, hence its equation must be invariant. If /(x, y)=o0is to be
an dnvariant equation, fix,, y;) must vanish for all values of x; and y
into which the various values of x and y which satisfy /(x, ¥) = o are
transformed by the transformations of the group. Now, we have seen

€ Ser, 1) = A, )+ Qe+ UQfZﬁer

If the right-hand member is to vanish whenever f(x, y) does, for every
value of 7 it is necessary and sufficient that each coefficient should do
so. In particular, it is necessary that

(12) Uf = o, whenever f(x, y)=o,

that is, {J must contain f(x, y) as a factor.t

But if f = o(x, 3) /(% 1)

then Uf=U0=Uvf+ olf=(Us+ o")f;

i.e. U%f also contains f(x, v) as a factor.

* Thus, while £ = ¢ is readily seen to be the equation of the family of path-curves
x
ar a7
of the group Uf=x7-+r
granp LS g dy
does not vanish for all values of x and y; but it does vanish for those values satisfying
the equation of the path-curves ; see (12) below.
+ It is presupposed that /(x, ¥) contains no repeated factors.

, y—cx = ois another form forit, U(y—cx)=—cx+y
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In the same way it can be shown that every coefficient in (7) con-
tains (v, v) as a factor, whenever f does ; for if

Uf=6(x, ) (v, 3), U™ f= UU=(U8+bu)f

Hence the vanishing of Uf whenever f(x, y) does is both the necessary
and sufficient condition that f(x, y)=o be an invariant equation.

In case {f=o for all values for x and y, the above condition is
fulfilled. But this we recognize as the condition (9) that /(x, y) be
an ‘invariant. Hence, not only is f(x, y)=o0 a path-curve, but
Jf(x, y)=any constant is one in this case.

Remark.— 1t should be noted that

F=tZ il

may vanish because £ =0 and p=o0* for certain values of the vari-
ables. In general these two equations determine a finite number of
values of the variables. Remembering the significance of £ and «,
these values of the variables are left unaltered by all the transforma-
tions of the group ; so that the points having these values for coordi-
nates are inwvariant points. If it happens that ¢ and 5 contain a
common factor, @ (s, y), it is obvious that w(x, y)=o is an invariant
curve, in that every point of it is invariant. Following Lie, and
desiring to preserve the significance of the name, we shall not include
this class of invariant curves among the path-curves.

Summing up the results of this and the preceding section we
have the

THEOREM. — 7 e necessary and sufficient condition that f(x, y)=o
be invariant under the group Uf is that Uf = o for all values of x and
y for which f(x, y)=o0, it being presupposed that f(x, y) has no
repeated factors.

9 J9r

# Still another possibility is that EP =oand 7 = o0 whenever /= o. But this is
X J/

excluded by the restriction that /(«, y) have no repeated factors.
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Points whose cobrdinates satisfy the two equations &(x, J) =0,
n(x, y)=o0 are invariant under the group. If &(x, y)=o0 and
n(x, ¥) =0 whenever f(x, y)= o, this curve is composed of invariant
points.  Curves of this type are not included among the path-curves
of the group.

1In all other cases f(x, y) =0 is a path-curve.

If Uf=o for all values of x and y, f(x, y) is an invariant, and
J(x, y) = any constant (including zer0) is a path-curve.

Is 1, f=o, n=1.

. w=x = const. is the equation of the path-curves.

There are no invariant points.

In II, t=—y, n=2x.

o w=x%+ »2 = const. is the equation of the path-curves.

There are no other invariant curves. The point ¥ = o, = 0 is invariant.

In 111, £=o, n=y.

. w=x = const. is the equation of the path-curves.

» =0 is an invariant curve, each point of which is invariant.

Ex. Examine for invariant curves and points the groups appear-
ing in the problems of § 4.

‘8. Invariant Family of Curves.— A family of curves is said to be
invariant under a group, if every transformation of the group trans-
forms each curve into some curve of the family. We shall consider
at this time families containing a single infinity of curves only, that is,
those whose equations involve a single parameter or arbitrary constant.
Writing the equation of the family in the form

S&x ) =q

it will be invariant, if

Sy ) =/, 7, ), Y (x, , ] = olx, y, )= e
is the equation of the same family of curves for every value of 7 ¢
and ¢’ being arbitrary constants,

A single infinity of curves determined by an equation involving
an arbitrary constant is equally determined by a unique differential
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equation of the first order, of which the equation involving the arbi-
trary constant is the general solution. If f(x, y)=r¢and o(x,y, £)=¢'
are to be the same family of curves, these equations must be solutions
of the same differential equation of the first order. Hence the left-
hand member of the one must be a function of that of the other,* Z.e.

= F(f)
Making use of the relation (7) § s, viz.

Sy )=, (%, )+ Ut + U”f; A ns,

we see that f(x;, 1) will be a function of f(x, y) for all values of #if
and only if each coefficient in the expansion on the rightis a function
of f(x, ¥). In particular we must have
(13) Uf= F().
If (13) is true,
) aF adF
Uf= Ul = UF(f)= ,;ff ) g = a;f) 7P,

which is again a function of £

In the same way each coefficient on the right is seen to be a func-

tion of f; for if U=®(f), U= UUf= U<I>(f)=%ﬁ(/>
Hence (13) is both the necessary and sufficient condition that the
Jamily of curves Slx, p)=¢

be inyariant.

# The differential equations arising from these equations are

ar af ow dw

L dx+ZLdy=o0and —dx+ —dy=o.

dx 7 = Ed

In order that these be one and the same equation it is necessary and sufficient that

o ¥
de By =o.
Jw Jw
dx Oy

But this is the condition that w be a function of /. See El. Dif. Eg., Note 1 of the
Appendix.
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Remark.— A special case should be noted. If Uf = o for all values
of x and y, f{xx, y)=c is a family of path-curves, each one of which
is invariant, hence the family is. This particular family is charac-
terized by the fact that its differential equation is

ndx —Edy=o.

The problem of finding all the families of curves invariant under
a given group U will be considered later in another form (§ 18).
The general type of such families* may be found by noting that
Sz, y) must satisfy (13), wheré #(f) is some function of /, not de-
termined. As a matter of fact, 7 () may be taken as any convenient
function of / as may be seen from the following consideration :

The family of curves f(x, y)=¢ may equally well be written
@[ f(x, y)]= const., where ®(f) is any holomorphic function of f,
Applying (13) b 7

o8(1=2 =2 R
This will be any desired function of £ say Q(f), if

o : Q)

DL =) ; i B(f :f_ay.

7 3 e 20=) 2
Since the family of path-curves is excluded, #(/)#o. Hence the
function ® can be obtained by a quadrature, such that when the equa-
tion of the invariant family of curves is written @[/ (x, j)]= const.
the right-hand member of (13) will assume the desired form Q(f).

In the case of I, equation (13) is Uf= gz =.F(f)
i 4

From the corresponding system of ordinary differential equations

ax _a&y _ _df
o 1 F(f)

# In this discussion the family of path-curves is excluded, since a method for find-
ing thesc curves has already been given (§ 7).
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the general solution is seen to be of the form
— ()=,

where ¥ is an arbitrary function, and ¢ = fF(f) Solving for /; this takes the

form =20y —¢(x).
The most general family of curves invariant under the group Ufz—gZ is then
®(y — ¥(x)) = const., or simply y — ¢ (x)=c.

Geometrically this is obvious at once. For such an equation represents a
family of curves all of which may be obtained by moving any one of them con-
tinually, in either direction, parallel to the axis of y.

=, __ —L,whence the general
-y & H))

solution is of the form tan‘lg — ()= (2 + 32,

I — % 4+ 29 FFY) leads to
o0x dy

or f:@(tan—lgé—yb(x?—l-;ﬁ))-

The equation i’ = ¢, representing the family of straight lines through the origin

is a simple example under this head, as is immediately obvious geometrically.
As an exercise, the student may show that

nx)=c
is a general type for III, while  xy (%) =5
is such for IV. Simple examples are
22 + l:: 1, a family of central conics of fixed transverse axis {or ITI,

ox? 4+ By? = ¢, a family of similar central conics for TV,
as is readily obvious geometrically, and as may be verified easily analytically.

9. Change of Variables.— The form of the transformations of a
group depends upon the choice of variables that are operated upon
by them.

Thus it is obvious that while the group of rotations II affecting the rectangu-

r cobrdinates is . .
la Xy =xcosa—ysinag, y =xsina+ ycosa,
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when operating upon polar <odrdinates, it is
m=p =0+a,

which, in form, is identical with the group of translations I.

To find the effect of the change of variables *

(14)‘ I:F(x,y), y=<1>(x,y),

which, of course, carries with it

(14') xy=1 (%, ), Y= ‘I’(xl: J’l);

on the form of the finite transformations of the group

<I) x1:¢(x’ s a)} n=y(x,, ”)’

x, ¥, 2, 3, must be eliminated from the six relations, (14), (14), (1)
and the resulting two relations solved for x; and g;. This elimination
is usually effected by solving (14) and (14/) for x, ¥, x1, 1, and substitu-
ting these in (1). '

#The introduction of new variables in a transformation involves the following
processes :
Designating by .S the transformation of variables (14), or (14’), and by S-1 its inverse

x=Fy, y=®(xy

obtained by solving (14) for » and y, the new codrdinates (x, y) of any point are ex-
pressed by means of S-1 in terms of the old coérdinates (x, y). These in turn are
transformed by (1) or 75 (§ 1) into (x1, ¥{) of the new point. Finally .S transforms the
latter into (x1, yy), the new codrdinates of this point. Designating by T, the transfor-
mation in the new variables corresponding to 7 in the old, the above may be expressed

symbolically T,= S-1T,S.

The transformation T, is known as the #ansform of T, by S.

That the aggregate of the transforms of all the transformations of the group (1) form
a group follows, of course, from the fact that the transformations imply certain opera-
tions which are independent (exceptas to form, but not as to effect) of the kind of
variables operated upon by them. It is very easy to verify this, however, as follows:

T. Ty = S-1T,SS1T,S= S17, 1S = S17.S= T,

since $5-1 is the identical transformation, and 7uZh = 7 (§ 1).
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In the case of the above example the formulae for the change of variables will

be chosen in the inverse form
x=pcosh, y=psiné.

Eliminating a, y, x1, 31,
p1 cos @ =pcosfcosa — psinbsina=p cos(f + a),

p18in ) = p cos 8 sin @ + p sin @ cos 2 = p sin (0 + ).

‘Whenge, solving for p; and 6y,
pr=p, 01 =0+a.

(The other possible solution, p; = — p, 6; = 6 + w -+, while exactly the same
geometrically is not to be used here, since the above transformation must reduce
to the identical one for @ = 0. In the above transformation of variables, it is
understood that p = + Va2 + 32).

In general, the actual work required to carry out this process is
long, to say the least; on the other hand, the problem of finding the
‘new form of the infinitesimal transformation is a very simple one.
For, remembering that

_[9x\ _ 9x(dx dx/oy\ _ . 9x , Ox
£x 9 _<6a >%_ 6x<6ez>,,o T <6a N ‘o175

- E(x, y)= Ux.

Similarly n(x, y)= Uy.
Hence by o
(15) Uf(x,y)= Uxa—{— Ty 5;,

where Ux and Uy are to be expressed in terms of x and y by means
of (14).
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In the above example, choose (14) in the form
p=+ViZ+ 2 0=tan12.
&

ince f: yax xé))’
E=UVa2+2=0, n:Utan"lJ—/zL
x
UfEQ[.
do

10. Canonical Form and Variables.— It is always possible theo-
retically, and often practically, to find the change of variables that
reduces the group to a desired form. Thus, in order to have the
group take the form

=t Lin?

any convenient pair of independent solutions of

» Ux= ¢(x, y)g—';—i—?](x, y)?—;=§(x, v),
16
Uy= &(x, ) g—fc +n(x, ) g—;’ =10 9),

may be taken as the new variables x and y. In particular, to reduce
the group to one of translations in the direction of the axis of g,

when it takes the form Uf Egjj, the equations to be integrated are
Y

ax ; ax
© ox ay )y

(16"
0y Oy _
for T3

The first of these is (9), § 6; so that for x may be taken any con-

venient invariant of the group, «(x, 1).
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To solve the second equation, Lagrange’s method leads to the sys-
tem of ordinary differential equations

de_dv_dy
¢ g 1’
which are equations (5), § 4. Making use of the fact that #(x, y) =

const. is the solution of —(gg = @, y may be obtained by a quadrature.*
7

Following Lie we shall say that the group is in the canonical form
when it has the form {f= %, and the variables which reduce it to

this form will be called canonical variables. The above result may
then be stated :

I

Lvery group can be reduced to the canonical form Uf= 5" In
Y

order 1o find the canonical variables, it is only necessary to solve the
differential equation of the first order

& _dy

& 7’
and to follow this with a quadrature. In case an invariant of the
group (or what is the same thing, the equation of its path-curves) is
known, a quadrature alone is necessary.

Remark.— If the equations (16) cannot be solved readily, it may
be practicable to find the canonical variables for both the original
and the desired forms of the group. A proper combination of these
will then give the required transformation of variables.

In 11, £=—y, n=x. Here, as was secen (§ 4), u=ax%43?2 v=tan~172.
x

These are a possible set of canonical variables. But it is customary to choose
Vu instead of u for x, thus giving the usual polar codrdinates. In III, £=o,

» * Inspection of equations (6), § 4 shows that the transformation X = #(x,y), ¥ =
v(x, y) reduces the group to the form

I X1= X, y1=y—|—t.
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ay .
n=y. Here, as was also seen (§ 4), u=x, v=logy. In IV, %{2;)/ glves

#=”, which may be taken as x. By composition the system of equations

&

8% - B, 2 gives et S @; whence y = log (x + ).
x y I x4y I
Another set of canonical variables for this group is of some interest. By com-
position, after having multiplied numerator and denominator of the first member
xdx +ydy _ zz_y
22 + g2 1
log V4% + 2. Choosing this form for y and tan—! % = tan—ﬂ—; for x, the canoni-

by « and of the second member by y, we have ; whence y=

cal variables are very similar to the usual polar cobrdinates, in that the old

variables, in terms of them, are

x=4é¥cosx, y=2éYsinx.

From their nature, it is obvious that in passing to the usual polar cobrdinates
the transformations IV assume the form of the affine transformations 111, as may
also be verified readily analytically.

Ex. Find the canonical variables of the groups in the problems
of § 4.

11. Groups Involving More than Two Variables. — The previous
theory of one-parameter groups involving two variables can be gen-
eralized in twd directions : the number of variables can be enlarged,
and the number of parameters can be increased. In this section*
will be considered one-parameter groups involving more than. two
variables ; and as the argument'is almost the same for 7 variables as for
three, the latter number will usually be employed.  As a matter of fact,
the previous arguments for two variables hold, with only slight modi-
fication, for a larger number ; hence, as a rule, only the facts will be
given here, it being left as a reviewing exercise for the student to
Gll in the supplementary arguments.

* A brief extension of the above theory to groups involving more than one-pa
rameter will be given in Note VI of the Appendix.
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Starting with the transformations

=N, 1, 5, a),
[1] n=ylv oy 5, a),
5= X(;\.) Vs 3 (l),

where o, ¢, x are supposed to be generally analytic, independent,
real functions of .v, 3, 5, @, they will constitute a Lie group provided
the set has the following properties : )

° The result of carrying out in succession two transformations of
the aggregate, determined by any two values @ and 4 of the parameter,
is the same as performing a single transformation of the set determined
by some value ¢ of the parameter, where ¢ is a function of @ and .

2° Solving [1] for &, v, z in terms of &y, y), 2, the resulting
formulae take exactly the same forms as [1], some function of & tak-
ing the place of @. In other words, the transformations of the group
occur in pairs of mutually inverse ones.

As a consequence the group contains the identical transformation.

A group of this type contains one and only one infinitesimal trans-
formation (§ 2, and Remark, Note I of the Appendix), which may be
written * -

d
1 U=t 9% tnl 9+ i 595,

where, in general,
_0x__(9¢
S+ —<aa>.,,,’

=V _[(
= a <6{Z>a0,

F
=5 =(3%).
# For » variables we have likewise
31 =Y 4 f+ e, L

Yx, Oy Oz,
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The finite transformations of the group may be obtained from the
infinitesimal transformation either in the form of a power series in the
parameter (§ 5)

i 2
xy=x + Uxt+ U 2—l—l+ ey
2
[8] n=y+ Gt ULty
2!
42
5 =2+ Ust+ ngziT—i_ ey

or as.solutions of the differential equations (§ 4)
[5] i — D — % _dat
‘f(xli }’1» zl) 77<x1) _yh zl) :(xl; _yl’ Zl) I

If ) (2, 31, 7) = const. and u,(xy, 31, 2,) = const. are the solutions of
the first two equations (not involving £), and v (xy, 3y, 2,) — £= const.
is a third solution of the system independent of the other two, then

(30, Y1y 51) = (%, 9, 2),
(6] ufx), Y1, 7) = 1o, 3, 2),
v (o, yyy &) = 0%, 9y 5) + ¢
determine the finite transformations of the group.
In both these cases the parameter # enters in such a way that 7=o
gives the identical transformation, and 7= — ¢ determines the inverse
transformation.*

# In the case of 7 variables, the development form of the finite transformations is
exactly the same. To obtain the second form, the system of differential equations is

5] dry _dwy _ . g _dt
N 5 8 o1
and their solutions are of the form
u(xy, 2y e ') =g (wy, g, 000, H),
’
[&] My (21, o'y or, Hn') = Wy (gs gy ey ),
z/(xl',xi’,---,xn') =7}(x11 X, "'xxn) S

Primed letters are used here to designate the transformed variables, since the sub-
script, previously employed, is'no longer available.
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The effect of a finite transformation of the group on any function

f(.\‘, Js z): is (§ 5)

[7] S 3 2)=f @ 5, )+ Yt UF o e
A function f(x, y, 2) is invariant under the group Uf if
_ L L
U =g e - =
[9] 74 §5x+776y+£6z o

for all values of x, 1, 5 (§ 6).

This equation, involving three independent variables, has two inde-
pendent solutions. Hence a one-parameter group in three variables
has two independent invariants. Since #(x, y, 2) and wyx, y, ) are
such a set, every invariant of the group is a function of # and u,.*

Those points whose codrdinates satisfy the three equations

&x, 9, 5)=0, 5(x,, 5)=0, {3, 2)=0

are invariant under the group (§ 7). In general, that is, in case the
three functions are independent, there is only a finite number of
such points. But if only two of the functions are independent (which
will show itself by having their Jacobian vanish, without all of its first
minors doing so) the two independent equations will be the equations.
of a curve, every point of which is invariant. If all the two-rowed
determinants in the Jacobian vanish, there is only one independent
equation, and it is the equation of a surfage, every point of which is
invariant under the group.

The path-curves are obtained-

1° either by eliminating @ from the finite transformations of the

group (§ 1),
2° or by solving the system of ordinary equations (§ 7)

L] T 7 %

# In the case of »z variables, every invariant of the group is a function of the z — x
independent ones %y, %y, ++¢, %n-1.
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From the latter we see that if # and , are two independent invari-
ants of the group, w; = const. and u, = const. are the equations of the
path-curves.

Each of the surfaces u; = const. and u, = const. is invariant, being
made up of an infinity of path-curves obtained in either case by keep-
ing one of the constants in the equations of the path-curves fixed and
allowing the other to run through its full range of values.*

The equation f(x, y, z) = o, or the surface represented by it is
invariant (§ 7) if
[12] Uf = o whenever /= o,t
provided / contains no repeated factors. (If Uf vanishes because
£=0, =0, { =0 whenever f=o0, every point of the surface is
invariant.)

The curve /4 (%, 3, 2) = o, /3 (%, ¥, 5) = o is invariant if

[1.21] Uf, = o and Uf, = o whenever /; = o0 and £, = o,

provided /£ and /; contain no repeated factors and are independent
functions, not containing a common factor. This last condition
assures us that not all of the two-rowed determinants-in the matrix

% % %
dx dy 0Jz
We U U
{|ox 9y 0z

vanish for all values of x, y, z.

# In the case of # variables, 1° holds without change ; in 2° the differential equations
of the path-curves are

, dyy  dxs dxn
[II ] _t—: i e 5
sl <2 En
and their finite equations are uy =const., 1ty = const., «++ | ua_1 = const., where wuqtlz, e
#p—1, are any » — I independent invariants. Each of the (z— 1) -way spreads in #
dimensions #q = const., wy = const., ---, #y—1 = const. is invariant, as well as the various

spreads of lower dimensions obtained by taking these invariant relations two, three,
==« , 7—1 together, the last case giving the path-curves,
1 This condition holds when the equation involves any number of variables.
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The argument employed in establishing this theorem for a curve in
three dimensions is different from that available in the case of a
surface (v, v, 2) = o (in the latter case the one employed for a
curve in two dimensions (§ 7) applies).

The necessity of the condition is seen as before; for, using
formula [ 7]

np P
./i(rlyjly -'1) .fi(x s Z) + C./it_}"U 1 +

f(xb Ty %) = /o, 3 Z)"‘Uf*i'}‘U.zf"

If A2y, 1, 21) and fo(a, n, ) are to vanish whenever £(x, 3, 2)
and f(x, r, z) do, for all values of #'it is necessary that /= o
and 0,7 =o whenever =0 and f=o.

The sufficiency of the condition follows at once from the fact that

since
U=l tnd+iL=o
oimed ¢ gfﬂaf

all along the curve f=o0, A=0, £ 7, {* are proportional to the
direction cosines of the tangent of this curve at each point (x, y, 2);
that is, this curve is the path-curve through the point (x, y, ).

Remark.—If Uf,=o whenever fi=o, and Uf= o whenever
/a2 = o, the surfaces /; = o and f;, = o are separately invariant; and
their intersection is also invariant. In the case under consideration
above, however, [12'] is the condition for invariance of the curve
without regard to the nature of these surfaces.

The change of variables

[14] x=F(x,y,2), y=&(x,y, %), z="V(x, y, 5)
#If £=0, 7 =0, {=o whenever /; = ¢, /3 =0, every point on this curve is invari-

ant, and hence, the curve itself is; so that the sufficiency is also established in this case.
But such a curve is not included among the path-curves of the group (Remark, § 7).
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causes the infinitesimal transformation to take the form (§ 9)

= a;/: .(2[ ' a;[_-
[15] W‘Ux6x+ Uyay—i- Uzaz

So that the new variables satisfy the differential equations (§ 1o)

d d d
UXE$5E+’)76_—.;+C£‘=g<x, Y, Z),

—e, Oy, 0y
Uy—éax'*"’]ay'*‘caz n(x,y,Z),

Uz = %+W%§+Z%§=g<x’ Y, Z)'

In particular, when § =o, =0, § = 1, the group is said to be in
the canonical form.* 1f the equations of the path-curves are known,
the canonical variables can be found by means of a single quadrature.

To illustrate all that has gone before consider the group of screw motions
Xy = xcos’— ysin/,
y1=xsinz+4 ycoss

7 = 2z 4 mt,
where 7 is any constant.

The student will have no difficulty in proving that these transformations have
the group property, and that in this case (§ 1)

o, Ti = T s
also f=—1¢and {,=o.

The infinitesimal transformation is readily seen to be

—_ G, o,
Uf:—ya—x—}—x@-i-maz.

*More gencrally, the group will be said to be in the caronical form when any one of
£, n, ¢ equals a constant, and the other two are zero.
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s

Conversely, starting with the infinitesimal transformation the finite transforma-

tions are found to be, using [8],

! 2 p [ . .

xl_x\l—z—!-}—;—!——---)—y(t——;+;—-~-):xcost—ysmt,
3 5 2

ylzx(t—t—'+£—‘—---)+_y<1~l—+£_...):xsinl+ycosz‘,
gk 51 21 " 4l

g1 =35+ mt =24 mt;

or, using the other method,
dxy iy sy dt

sl Xy n I

. — 5 8 9
Soup=xt 4 o2 = a? + 12

#y=tan—1 L _ %L — tan-12 - 2
X, m “w m
bt Z
p==°L ==+ 7
7 7

For practical purposes it will be simpler to replace z, in the second equation
by its value in the third one. Then
2P 2 =2t 95
tan-1 2L — tan-1Y 1 A

X X

g1 =z + mt.
The third equation is already in proper form.
The first two equations are free of z, and, as was found in § 4, reduce to

x1 =xcost— ysing,

¥ =xsin/+ ycosdi

-1Y _ 2. Hence the

2, m

Two independent invariants are 2z =22 + 2, #,=tan
path-curves are s

e

=y

2= tan L
X

or, introducing the parameter 6,

x=yrcosf, y=rsinb, z=m(0—c),

which is a family of helices, involving the arbitrary constants » and

If == o there are no invariant points.
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Two of the canonical variables, x and y, must satisfy the differential equation

T s 0x (9 9: = @
while the third, z, must satisfy
i ar i _

Knowing the invariants of the group, #; and us, we may put

x=Valt+ 42 y=tan1ZL L.
X m

By inspection, z may take®the simple form

z
Z = —"

7

Solving for the old variables, the formulae of transformation of variables are

seen to be x=uxcos (y+ 2), y=ysin (y + 2), 3= mz.

It is obvious that the change to cylindrical coordinates
x=pcosl, y=psinb, 2=z
reduces the group to the form
pr=p =0+12 21=24 ml

which is a group of translations, but not in the canonical form.

Discuss as was done in the text the following groups :
‘Ex. L =, m=y Z=as
Ex. 2. x,=ax, yy=ay, z,=2.
8. xy=ax, Hh=ay, H=az
Ex. 4. x=ax, n=ay, =2+ L(a*— 1) 2y
5

ay=e*(xcosa—ysina), yy=¢*(xsina+y cos a), 5= es.



CHAPTER II
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

12. Integrating Factor.—We have seen (§ 8) that if ¢(x; y)=
const. is a family of curves invariant under the group

_ 9
U= 5@ +’7@’
(13) Up=F(¢).

Moreover, it was also shown in § 8 that if the curves of the family
are not path-curves of the group, the equation of the family can be
chosen in such form that the right-hand member of (13) shall be-
come any desired function of ¢. I[n particular, there is no loss
in assuming the equation so chosen that’ this right-hand member is
1; for if a given choice ¢ =const. leads to F(¢$), the selection

®(¢p) = const., where ®(¢p) =fl%>*, will give U ®(¢) = 1.

Suppose now that
an Mdx+ Ndy=o

is a differential equation whose family of integral curves
(18) b(x, y) = const.

is invariant under the group {J; the integral curves not being path-
curves of the latter. TLet ¢ be so chosen that

d d
(19) Uq’)_:_fg-l-?]fzr.

37
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Since (18) is the solution of (17),

(Z¢Ea—¢dx+%aﬁ1=o
Ox dy

must be the same equation as (17) ; hence

09 o

6xv__iy_

or, M N
¢ 9¢

< M- =o0,

(20) Nax 3 o

From equations (19) and (20) the values of 9% and 9% are found
Ox dy
to be
o M e A
dx  EM+qN’ 8y  EM 49V

_ Mdx + Nay

oo dp = g
2 EM + 9N

Hence the
THEOREM.* — Jf the family of integral curves of the differential equa-

ton Mdx + Ndy = o is left unaltered by the group Uf=§E gl -+ q-gl,
. N )y

1
EM + 9V

Remark 1.—This theorem ceases to hold in case the curves (18)

s an integrating factor of the differential equation.

are path-curves of the group /. In this case (19) becomes

fgis +’72—d): o ; whence, taking account of (20), £ + nV=o.
x )y
As a matter of fact, it is obvious that in this case the curves (18),
being the integral curves of (17), are the path-curves for every group
of the type o a

U= pl,3) - Ny — p(, 9) - M{;,

* This theorem of Lie was first published by him in the Verhandlungen der Gesell-
schaft der Wissenschaften zu Christiania, November, 1874.
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where p(x, y) is any holomorphic function of x and y. Such groups
are said to be #vvial for purposes of assisting in solving the differen-
tial equation (17).

Remark 2.— At times it is obvious from the nature of the problem
that the family of integral curves is invariant under a certain group.
This will be found to be the case in the following examples :

Ex. 1. Find the curves whose tangent at each point makes an
isosceles triangle with the axis of x and the radius vector to the point
of contact.

This family of curves is clearly invariant under the similitudinous group

Ufsxg—f-{—ygf~ Its differential equation is
=2 s

SIS

e
—x_—___’_{}i, or )/(d,l)i_.‘_gxfiz_‘y:o'
I+1_¢_il dx dx dx

xdx

Reducing to the form (17), which is characterized by being of the first degree

in 4 d & :
b (x £ Va2 4+ yt)dx + ydy =o0.

The integrating factor

r . 1 _ 1
EM+ N 2132 L avVaZ t 2 £ VA + A (x VA + )

dx yay

=0.

=——t et e
LV F 3 Va2 (x £ Va4 yE)

gives

Integrating, log (x4 Va*4 y?) = const. or x & Vaityr=c.

This reduces at once to 32 = ¢ — 2 ¢x, a family of parabolas having the origin

as common focus and the axis of x as common axis.

Ex. 2. Find the curves such that the radius vector to each pomt
makes an isosceles triangle with the tangent at the point and the,

axis of x.
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Ex. 3. Find the curves such that the length of the radius vector
to each point equals the tangent of the angle between the radius
vector and the tangent to the curve at that point.

Ex. 4. Find the curves such that the radius vector to each point
makes a constant angle with the tangent to the curve at that point.

Ex. 5. Find the curves such that the perpendicular distance
from the origin to the tangent to a curve at any point is equal to

the abscissa of that point.

13. Differential Equation Invariant under Extended Group. —
While at times it is possible to tell from the nature of the problem
whether the integral curves of a differential equation form an invariant
family under a certain group, it is desirable in order to extend the
usefulness of the theorem of the previous section, to be able to tell
when this is the case from the form of the differential equation itself.

A point z‘ramfarmgz‘z'an

= (;b(x} J’); = ¢(x: y)*

carries with it the transformation
B dx + L ay
r _ dx dy
dxl a_qsdx + i¢dy’
dx dy
o o,

) 9% a_J’y —
N =W=X(x’y, ",
__+_y ?

dx  dy

or

* This is called a point transformation because it transforms the point (,y) into
(#1,71). Itthus transforms the various points of a curve #(x, y) = o into the corre-
sponding points of some other curve /7 (xy, 1) = o, and may therefore be said to trans-
form the curve F(x, y)= o into Fj(xy,y)=o.
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! ad * . .
where ' =% and B =an. Since x is a function of x, y, v' only, it
dx g S ’
follows that the point transformation implies the transformation
9 oy
ax gy
o= (%, 3), 1 = y(x, ), 1 = 5—:—}5 X% 35 3
+

affecting the three variables x, v, 3. The datter transformation is
known as an extended point transformation.*
Starting with the one-parameter group of point transformations

(x) X =¢(x, 3, @), n=y(x,, @)
it is easily seen that the corresponding extended transformations
_dn _ 1

(21) M= ¢<.7C Js G),_}’l ll/(qu; a) N —(E:X(x:,y: Js “)

1
also constitute a one-parameter group in the three variables v, y, '
For, since the equations of a point transformation are precisely the
first two of the corresponding extended transformation, and since the
third equation of the latter is determined uniquely by the first two,
the fact that the transformations (1) have the group property (§ 1)
predicates the existence of the group property in the case of (21).

Thus if  and 4 are any two selected values of the parameter, the result of per-

forming successively the two point transformations

a1 =¢(x, 3, 4), n=y¥(xya)
and KXo = ¢(x1: Jis é)r V2= ‘ﬁ(xl; J1s b)
1 Xg = ¢(x’ Vs c)l Y2 = \[’(x’ Vs 5)

# An extended point transformation is a special kind of a contact transformation
(§ 49) ; for it transforms (x,y, ') into (xq, ¥1, 71"), where, if («, ) is some point on some
curve F(x, y)=o,y' is the slope of the tangent to the curve at that point and y;’ is the
slope of curve Fj(x1,y1) = o (into which the other is transformed by the point trans-
formation) at the corresponding point (¥, »;). Since the value of y;" depends upon
x, ¥,y only, any curve tangent to 7 (x, y)=oat (x, y) will be transformed into a curve
tangent to 7 (1, y1)=o at the point (1, ;).
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where ¢ is a function of @ and 4. This follows from the group property of (1).
In the case of the corresponding extended transformations

- — " 1o db(x,y,0) /
=¢(x 1, a), =y a), n 2(x, 3, a) -—X(x’yr')’s @),

Y (x1, 31, 0)

X1, y1, Y150
oLy, g, B) Cw P Pl

and X3 = ¢(x1:y1, /))1 Yo = Sb(xhyla b): }’2’ =

the result of replacing xy and y, in the first two equations of the second trans-
formation by the values given in the first transformation is therefore

Xy = ¢(x,J/, [)’)’2 &= |//(x, I €)-

Hence in the last equation of the second transformation,

P G

dxy dop(x, 3, ¢) =x(®3 0.

J2 =
In exactly the same way, the fact that a value of the parameter
exists giving the identical transformation for the group (1), and also
the fact that the transformations of (1) can be separated into pairs
of mutually inverse transformations, assure these same properties for
the transformations of (21). The latter therefore constitute a Lie
one-parameter group. This group is known as the once-extended
group corresponding to (1).
With Lie, we shall write as the symbol of the infinitesimal trans-
formation of the once-extended group

0y 9 3
P S S 4

dx &y . & 8/
é = == — I —
where, as before, {= sz 1= 52 while »' = =5, 8a(1ix>

It was seen in § 4 that, with a proper selection of the parameter,

&= (%) , = <§J~‘> and, for any functlonf <8f>
da ay d a, oa ag

a da
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In a sense then § is a differential operator, so that § and « are
commutative operatois ; thus, for example,

3 D) — 9 , N\ _ [ 0x dx
() (02 mamo(2)

) 8y dx
—_— (dy\ 3a () B V5™ @ <3&> & d(w)
" =5\ax )T dx (dxyf ~ dx  dx dx
r_dﬂ ! @
(23) ==

Remark. — Attention should be called to the fact that, while y' is

equal to %, 7' is usually different from 5—7’ Expanding the right-
%

hand member of (23), we have

d d a¢ a¢
99 on Y o 2
(24) 7= ox T <6y 8x>y va

where it is to be noted that %' is a quadratic polynomial in ' when

85
*
Given a differential equation of the first order

(25) /(% 3, 3) =0,
the effect of any transformation (1) on the variables x and y is to
transform the differential equation (considered as an equation in the
three variables x, y, ') by the corresponding extended transformation
(21). The family of integral curves of (25) is invariant under the

group if each integral-curve is transformed into some curve of the
family by every transformation (1). Hence every transformation (21)
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must leave the differential equation unaltered. The condition for
this is ([12], § r1)

(z6) U= fg{c + 77%{}—{—17 e o whenever #(x,, y)=o.

Hence the

THEOREM. — The family of integral curves of the differential equa-
tion f(x, y, 2") = o, and, therefore, the differential equation ilseff, is
invariant under the group Uf if U'f= o whenever f=o.

In the case of II, §=—y, n=x. Ilence, from (23) 7'=1 4% The ex-
tended group of rotalions is then

U=~ }’a{C—F xal+<1 +y'2)

The differential equation of the family of lines ,‘V = ¢ (which is invariant under
II) is xp! — y = o. Here
Ulay' —yp)=—py' — x + (1 +3y)x =y (55" = »).

This vanishes whenever xy’ — y does.

14. Alternant. — Let ¢/ and Uj be any two homogeneous linear
partial differential operators *

=& (x, J) + (e, J>_

52("6; )/) + 772(“‘; _J’)—
Then
7

= Ul-_a+(/“f 9

-+ 5150 O ,+(§1’]. + 77152) axa + M2 5 3 (9) 29

Of e)
utif=vh L+ v

ce O v va
S 2 + &5 e + (& + 77251);@ + 7.

. af 9
(21) - OQUS— GUf=(Uk— U 2 +(Cipa— Uin) },g ;

* For the sake of simplicity we shall suppose that two variables are involved. But
this entire section holds without any modification for z variables.
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Writing UiU.f— GUf=(T U £*

the operator (U, U,), which is known as the alternantt of U, and U,
Is seen to be one of the same type as Uy and U,
The following properties of alternants are immediate :

(U; DD =0
(¢'(x7 _J’) Ul: Ué): ¢(x; J')(UIU})_ UZ¢‘ Ul
15. Another Criterion for Invariance of a Differential Equation
under a Group.— A second form for expressing the condition that a
group leave a differential equation unaltered plays a very important

role in the further development of the theory. It was seen (§ 12),
that if

(18) ¢ (x, ¥) = const.
is the solution of
(17) Mdix+ Ndy=o,
¢ is a solution of the partial differential equation (20)
dp ¢
8 Ap=N-"EL— M —F =o.
(a8) ¢ Ox dy

Moreover, if the family of curves (18) is invariant under the group f
(without being path-curves of the latter), ¢ may be so chosen that,

= 6_¢‘ ! Qé =
(19) U¢—§ax-r’76y I.
Consider now the alternant of Uand A4 (§ 14)

(27)  (UA)f= UAf— AUf=(UN— Aé)%—(UM-}- //n)%.

* Lie writes (U4 05) or (U f; Usf) instead of (U4 05) /.
+ Also sometimes called the commutator of Uy and U,
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Because of (28) and (19) (UA)p = U(o)— A(1)=o.
. 99 - do _
(29) o (U — Ag)a—x—(UM—l—An) ay_o.
Since ¢ is a function of at least one of the variables x and y,

%(é and g_qS are not both identically zero. Hence the coefficients of
ot g

(29) must be proportional to those of (28) ; ..

UN—A¢ UM+ Ay %
(30) N V% =\, y),

or UN — At =N, UM+ Ap=\M.

Putting these in (27)
(31) (UA)f= M, y) 4.
Hence (31) is a necessary condition that the integral curves of (17)
be invariant under .
Conversely, if (31) holds
(Ud)yp=UAp — AUp =\Ap = o,
because of (28). Hence AU¢ =o.

Since every solution of (28) is a function of ¢
Up = F($).

This is the condition [§ 8, (13)] that the family (18) be invariant
under the group /. Hence the

THEOREM. — Te necessary and sufficient condition that the differen-
tial equation M dx + N dy = o be invariant under the group Uf is

(31) (UA) = Nz, y) Af
. —_ ¥ 9
where /If:Na—x——ng.

* The common ratio A(x, y) is, at most, a function of the variables. It may be a
constant or zero.
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The condition (31) was found independently of what has gone before. It
may be obtained at once by means of (26). It is suggested as an exercise, that
the student do this. Here f(a, y, ') =47+ Ny'. The expanded form of 7/,
given by (24), must be employed.

This theorem leads to another one, of some interest, which is, as
a matter of fact, the converse of the theorem of § 12.
If £(x, ) and («, ») are any two functions such that .

0

T EM 4N
is an integrating factor of
(1) M dx + NV dy=o,
i(_N_ _0f M N\_
Ox\EM 4 7}[\7 IY\EM + IV ’
65 d oM GN 5 0&
i _—sz — N2 N MrE
or fﬂ[ EN Frel 5 + M + ¥
- MNQE =o0.
ay

Dividing by #//V and rearranging the terms,

QJ—VHGN ag+Mas £%+ + VO _ prn

Ox Ox dx dx dy
N - M
or
(30) UN—AS___UM—!—An;
N M

from which follows (3 1) as before. Hence, 7 p(x, ) is an integral-
ing fador of the differential equation M dx+ N dy= o, and &(x, 9)
and v(x, y) are any holomorphic functions of the variables satisfying

the relation
I —
(3 2) EM—*- 'qN_ s

# See Kl Dif. Eq. § 7.
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the differential equation is invariant under the group

gr=¢2 4 ¥.
Ox dy
Since £ and 5 are subject to the single condition (32), one of them may
be chosen at pleasure, and then the other is determined uniquely.
Hence, starting with an integrating jfactor of a differential equation
of the first order, an infinite number of groups can be found which
leave the differential equation unaltered.

It will be seen in § 17 that the general expression for such groups involves
two arbitrary functions. As a matter of fact, this can also be seen from the form
‘of (32). For if uis an integrating factor giving u(Mdx + Ndy) = du, then for
F () any function of #, u/ () is also an integrating factor. (See ZL Dif. Eg.
§ 5.) Using this as the right-hand member of (32), and selecting £(x, y) arbi-

1 Me(x, )
NuF(w) N
unaltered méy, therefore, be put in the form

g O (L M)\
U=t L (s =02 )L,

trarily, 7 = The general type of group leaving (17)

where £ and / are arbitrary functions.

16. Two Integrating Factors.— Since the knowledge of a group
which’ leaves a differential equation unaltered gives an integrating
factor, thus reducing the problem of solving the differential equation
to a mere quadrature, it should be expected that the knowledge of a
second group which leads to a distinct integrating factor still further
simplifies the problem of solving the equation. This is actually the
case. '

Suppose py and u, to be two integrating factors of (17). Then

W) (V) _ - 0ol ) _ (uslV) _
ay dx Y ow ’

or oM _ aN:i<N%—M%>:l<N%_M§L‘Z i
dy dx dx dy Mo dx dy
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Remembering that p_ 8(ogp) 1dp = Mﬂ. and
Ox dx T pay dy

log py — log py = log &1, the last equation becomes

Mo

] 9
NZ(log1\— 47 (log M) =0;
3x<0°/wz> 5}’<Ognz 2F

Z.e., log ¥ is an integral of
Mo

(28) =Y _ ¥,
dx dy

Hence & is also an integral of (28), and
)

B1— const.

M2
is a solution of (17). So that #e knowledge of two integrating factors
gives the solution of the differential equation without any analytic
work whatever.

Remark. — 1t is interesting to note that in the proof usually given
for the theorem that when one integrating factor p is known, an in-
finite number of others can be found [viz. if u(Mdx + Ndy)= du,
then pZ(z) is an integrating factor where #(«) is any function of «],*
all possible integrating factors are found.

17. General Expression for Group under which a Differential Equa-
tion is Invariant. — We have just seen that if {// and U/ are any
two groups which leave the equation (17) unaltered,

m_ &M + N
e EM AV

= const.

* See Kl Dif. Eg. § 5.
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is a solution of (17) ; hence,

‘fz_]‘[ + 7V _ Va
(33) I,
where ¢(x, y) = const. is any selected form of solution of (17). Re-
arranging the terms in (33),

(34) L—F(P)-&_ - ma—L(d) -

N Vs = p(x, ¥)

where p(x, ¥)'is the common value of the two fractions. Whence

&= F($e +plV; 12 = H)m— pM.
(35) o G f=H )OS+ pAf.

Conversely, if {4 f leaves the differential equation unaltered, T,/
given by (35) will also do so, no matter how #(¢) and p(x, y) may
be chosen (it being understood throughout that all functions involved
are to be generally analytic). For, by hypothesis, using (31)

(Ghd) 7= 2df;
then (LA =(F )T, A)f +(pd; Af
= F(oN A f— AF (D) Ui S+ p(AA) f— ApAf
= [HApA— Ap]df
=v(x, y)A4f.
Hence cvery group which leaves the differential equation unaltered
is given by (35), LS being one group of this sort.
If 7#(¢) is a constant, the resulting group gives the same integrat-

ing factor as U/ /.
If #(¢) is identically zero, the resulting group is trivial (§ 12).

18. Differential Equations Invariant under a Given Group.— In
order to make use of the theorem of § 12, a group leaving the differ-
ential equation unaltered must be known. While such groups always
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exist, and are sometimes suggested by the nature of the problem
giving rise to the differential equation, the number of equations for
which they are known is comparatively small. The converse prob-
lem of finding the general type of the differential equations invariant
under a given group is much more direct. And while its complete
solution requires the knowledge of the path-curves of the group and
usually one or several quadratures, it is practicable to supply these
in a large number of cases of interest.

It is clear that the differential equation obtained by equating an
invariant of the extended group (§ 13) to an arbitrary constant is
invariant. The general type of invariant of the extended group is
obtained by taking an’ arbitrary function of two independent solu-
tions of ([9], § 11)

_ e Y
(36) vf=¢L 4 n v =0

Passing to the corresponding system of ordinary differential
equations

P 2 &'
(37) E g -

g(“"; J’) ="l(x1 }’) B 77'<x’ Ys .y’)’

the first equation is recognized as (11), § 7. Its solution is

u(x,y)=c.

A second solution, independent of this one, must involve . Writ-
ing this in the form 2, ) = o,
the general solution of (36) will be of the form S(u, «"). Equating
this to an arbitrary constant gives the general type of invariant dif-
ferential equation. There is no Joss of generality in equating /(x, #')

# Since ' (#, , ') is an invariant of the extended group U’/ and involves y’, it is
known as a first differential invariant of the group /A
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to zero, the arbitrary constant being incorporated in the arbitrary
function /2 So that the general type of invariant equation is

(38) Juy u')y=o0, or u' = F(u).

Several methods for finding 2/ suggest themselves: -

(@) Solving u(x, y) = ¢ for y, and replacing it by its value in terms of x and
¢ wherever it occurs in the first and last members of (37), the Riccati equation
& 1011 (0n_3E), 10t
dx  £dx  E\gy O« £dy

results. In Note II of the Appendix it is shown that this equation can be solved

(39) p

by’quadratures.

(8) The introduction of canonical variables (which can be found by a quad-
rature when # is known, § 10) reduces the invariant differential equation to the
simple form

9y . 9y
__+_
@:MZ}:(,{)
dx 6_1_,_&‘7},1 ’
dx 9y

as will be shown, I, § 19. Since the one canonical variable x is the invariant »
or a function of it (§ 10), /7(x) is a function of #. Because of the general type

oy | dy
oF . oY
dx 9y
9x | 9x
ox  dy

(¢) Frequently some special method (see Z/ Dif. Eg.§ 65) may be found
which is more direct.

),I

of invariant differential equation (38), may be taken as z/.

19. TIllustrations and Applications.

3
I U= %}( §=o0,9=1. ..7n'=o0. Equations (37) are
dx _dv_dy
o 1 o

cou=x,u' =y. Hence the general type of differential equation
af .
invariant under Uf = éf o f(x,y)=0,0ry = ().
T . Transladcons in the diveelion of axis o‘fz
z‘= F(X)
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This equation is characterized by the absence of y. The variables
are separated when the equation is solved for y'.

4

I. {f= 3 1t is readily seen* that zie general tipe of differ-
ential equation invariant under this group (of translations in the
direction of the axis of x) is y' = £().

This equation is characterized by the absence of x. The variables

) I ?
are separable, thus ngy) =dx. T Tomnaldtisas moj‘ail::“yfo:
P 'Ro’hﬁio“‘. 8- F(Ih)
II. U= — ya£+xf f=—x, p=x. cg=1+4)%
& @' i Reolalions abedl 071'14'»«!

Equations (37) are

L. . i
S e,
wu=x+3. To find #/, multiply numerator and denommat

the first member by — y, and those of the second member by « ; then
by composition (£Z Dif. Eg. § 65, 3°),

xdy—ydx  dy
a2+ T 1y

—tan~'y'. It is simpler to take the tangent of this
=
x4yt
eral type of differential equation invariant under Uf =

xy' Y
m&f+%x+ﬂd qorfﬁy—ﬂx+ﬁ

- i =tan12
5

Hence the gen-

o I
“y6x+x_

function as the second invariant; z.e. %

# Tt is suggested as an exercise that the student actually carry out the work here
and in the cases below, where results alone are given.

Of course, the differential equation invariant under a group whose number is
primed may be obtained from that invariant under the corresponding unprimed one

by interchanging x and y andy’ and I—I But as an attempt is being made here to

make a collection of differential equations -invariant under known groups, the forms
by which these differential equations are most readily recognized are given.
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Note. — This form of the invariant differential equation is obvious
from geometrical considerations, since # is the square of the radius
vector to any point‘ on an integral curve, and #' is the tangent of the
angle between the radius vector and the tangent to the curve. Since
any function of # and #, containing ', can be used as a first differ-

!
ential invariant, \/ “ 5 Or *FIV is available. So also is
1+ VI I yfﬂ

Z/’\/ B . ot =% Theseare respectively the distance of the
4u” 14y

normal and that of the tangent from the origin, each of which is left
unaltered by the group of rotations about the origin. Hence #ie gen-
eral type of differential equation invariant under this group may also

be writlen

549 = VIFTEG ), 05— 39 = NTF TG + ),

v oy

111. Ufzya—y—. é=o,9p=y. .4 =y Equations (37) are

de _dy @
oy )

u=ux, u =Y. Hence e general type of differential equation
y 2
—— Y < y’) J
mnvariant under Uf =y = s f| %, = ), or — = F(x).
This equation is characterized by being homogeneous in y and y"
The variables are separated when the equation is solved for -

. o= x%—( It is readily seen that #e gengral type of differ-

ential equation invariant under this group (of affine transformations)

is xy' = F(y).
, . ay dx
The variables are separable, thus -~ =~
; )~ x
IV. Uf= rl +yaf Here ' = o, and # = 2 , #'=7'. Hence
e’
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the general tpe of differential cquation invariant under Similitudinons
/ 1rans formals
(f: V;f‘f‘) *‘Z ZSf(Z, 1") =o0, or = F(z) 4’1“"
a_y X 4 x
This equation is characterized by being homogeneous in x and y.

WNote.— An equation M dx + NV dy = o is of this type when 4/ and
Vare homogeneous functions of x and y, and of the same degree.

In this case the integrating factor of § 12 is M—Ij\} - (Compare
EL Dif. Eq.§ 17.) e
V. Z/f—.xa—ﬁ—-ygf Here '= — 27!, and z=ay, #' =a%"

Hence the general type of differential equation invariant under
d d
U=z f J’—f is f(xy, &%) =0, or xy'=yF (xy).

This equation is characterized by being homogeneous in x, y, 5/,
when these elements are given the weights 1, — 1, — 2 respectively.
(Compare VI below.)

Note.— An equation Mdx + Ndy=o isof this type when . M=
v (xy), N=xf(xy). In this case the integrating factor of § 12 is

Wi—}_f\f (Compare ElL Dif. Eq. § 17.)

V. U= x——{-nyaf* (=x,p=ny. .9 =@r-—1)y,and

v=L, u="2 5 8 Hence the general hpe of differential cquation

X" X
# 7 may be any number. In particular =1 gives IV, while 2= — 1 gives V, and
7= o gives-III". ar 5
If the group be written in the more symmetrical form (/f=ax 5——+by G_f' the
& 4

invariant differential equation takes the form xy’ =y /* (ﬁ—:) a=26givesIV,a=—16
gives V, 2 = o gives 111, = o gives [IT".
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V
invariant under Uf =x f+ 72}1 af is f< <= 1> 0,

or ¥ =" (%>, or xy' =J’F<ﬁ> .
. pors

This equation is characterized by being homogeneous in x, 3,y
when these elements are given the weights 1, 7, 7 — 1 respectively.

Thus the differential equation
a2yt — Py +x =0

comes under this head; for giving x, y, ' the weights 1, 7, 72 — I respectively,
the separate terms have the weights 1 +2# 4 272—20r 472—1, 32 +n—1
or 4 2 — I, T respectively. These are equal to 1 if #» =3}. Hence the differen-
tial equation is invariant under the group

U= 2xj+y~[
o)

VII. F=¢(x) g—j é=o0, p=¢(x). .9 =¢'(x), and u=x,
u'= ¢ (x)) — ¢'(x)y. Hence the general type of differential equation

invariant under

=8 L i 7l 4@ = $)=0, ory =S y=Fe)

This equation is characterized by being linear in y and y'.
Note. — Using the usual notation for the linear equation
Y+ Px)y = Qx),
the group which leaves it unaltered is {f= e‘f”d”g—f- The integrat-
ing factor of § 12 is /™. (Compare £/ Dif. Eq. § 13.)
VII. U=y (y) gi—: It is readily seen that #ke general hipe of
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differential equation mvariant under this group is

B T oVO) N o &)
f(".v' w») > dy () *= O

This equation is linear in & and == o,

&
VIIL. Uf=y(») éj « The general type of differential ecquation

imrarz'a;zt under this group (which includes III as a special case) /s

S~ F(a).
50(1’)
In this equation the variables are separated.
VIII'. Uf=¢(x) aif + The general type of differential equation
X
invariant under this group (which includes ITI' as a special case) zs

Y ()= F(y).

The variables are separable.

X G=9@u0) L E=on=4E@V0).

con' = $(DY() + $(@W()y.  Equations (37) are

x_ 4y ' .
o @Y @YD)+ )Y ()

. #=x. #' may be obtained by solving the linear equation

_V0) ),
f/y yO) T b=

‘ . . 1
in which x is treated as a constant. An integrating factor is .
¥
! !
o = $(@) (b

l//()') $J v0)




58 THEORY OF DIFFERENTIAL EQUATIONS § 19

Hence the gencral type of differential equation invariant under

£ x ) ifz'y —y' _q&_’(ﬁc) _(ZL: X).
T=4EWO G # 55 wd vy

The transformation z = ll/—dy—\ reduces this to the linear equation
Y)
v _ ¢ (%) v=F(x).
dx  ¢(x)

Note.— In particular, if ¢ (y) is 3, UF = ¢(x)y° —]—[ leaves unaltered
RGN P
the equation 3"+ —— y=1F(x). Hence the Bernoulli

=04 :

egzzczlzmz :/d —I—Py Qy* is invariant under the gi o//]ﬁ Uf—y’ef(” “”"’af

‘ .[(l—a)sz y
The integrating factor of § 12 for this equation is Com-

pare EL Dif. Eg. § 14.) ,
IX. U= d:(x)xp(y) EZ - The general type of differential equa-
e _Y'(y) (4>
tion invariant under t/zzs gronp is . —— =F(y).
¢ & y(O)Y (=)

Considering y as the independent variable in this equation, the

latter is reduced to the linear form by the transformation 7= ;%
5
X. U= ¢(x><x "f-—l'ﬁj’ (')j;> (=xd(x), n=nyd(x). .u:ln-

“' s easﬂy found by method (&) of § 18. The canonical variables
are

dx xy —ny
w'=—
-J xcb(x) dy P
Hence 2he general type of differential equation invariant under
9 i
o=@ (s Lrm ) ir(Z 7 2 ew),

i)

(Y # o e g T,
o W == <x> e —¢<x>FKx">
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Nofe. — Several particular cases are of special interest : —
1° If ¢(v)=.7, the general type of differential equation invari-

ant under
) )
(f=. '<x l +/11':}—(> is ay' — sy =an 'F( >
xﬂ
v\ .. ;
Hence v —uy=atf (;) s (nvariant under

(a+mg)

Uf=av

The Riccati equation

dy 5 .
xzx—a}—l—&y = cx",

comes under this head when n= 2 a ; for in this case

2
Xy —ay= x"’“[:f— &(%) :I

(Compare Boole, Dijferential Equations, p. 9z ; Forsyth, Differential
Eguations, § 109.)
2° If ¢(x)= a7, n =1, the invariant differential equation reduces

to xy'—y:xl"’ﬁ‘<£>- The right-hand member is simply a homo-
geneous function of x and y of degree 1 —». Hence a differential
equation of the form y—xy' =x*F <§;) , where the right-hand men-

ber is a homogencous function of x and y of degree k, is invariant

under the group
af d
=aFHal 1y L)
L= <x"0x yaﬁ

The integrating factor of § 12 is
]

(Compare £/ Dif. Eg.
§ 16.) x“F(;
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3° If ¢(x) = &7, = — 1, the invariant differential equation reduces
toxy +y=ua""TF(xy), orxy' +y =y F(xy). Hence a differential
equation of the form xy' +y=y"F(xy) is invariant under the group

Gf of
f = b1
s ( 0y>

The integrating factor of § 12 is — L awell-known fact.

xky I ()
T, = ¥, e
: =y(y) x6—92+ﬂy87; - The general type of differentia.

!
equation invariant undér this group is xy' — ny = %F (ﬁ)

1° If ¢ (y) =y*, this differential equation reduces to
S A
RO F<x>

2° If ¢ (y) =)°, n= 1, the differential equation takes the form

] :
xy —y= J;j: F(ﬁ), or xy'—y =y'x1—*1?(§c>v

Hence a differential equation of the form

y—xy' =y' [a homagencous function of x and y of degree k]

is invariant under the group Uf= yl"‘< A + gjj >

3° If m=—1, ¢(y)=y°, the differential equation reduces
ay' +y =y F(xy). Hence a differential equation of the form
xy' +y =ty F(xy)
is invariant under the group

)
(/'fEJ"”(x % -y %) .
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The student should show that the following groups leave the corre-
sponding differential equations unaltered :

a '

Ty
9
XIL gr=al 407, 5 = Pz — ay).
f é)f 1—y x—y s 9
XIII. - t_
= y3r+ L+ x—}—_yF(x )

using method (¢), § 18,

=@ =) F (=),

. I -|—y
using method (), § 18.
) )
XIV. UquS(x)<aj;:tJ—fa—§> xFyy'= e )F(x*iyz)
)
X1V’ WE¢(J’)(§£ia§) xFyy'= PG )F<x2 F ).
. u f f ar /— xl—f J,l—s
XV. U= —Ly ay,?‘.\“:#l, " _F<r_1qzs_1>.

XVL. U=d¢ (x)(%— [¢2(x)y+¢3(x)]% )*
$1(2) (' +py+v) = F(py +),

where p= e~r d""(z)dz, v Ef,ud;g (x)dx.

* This group is characterized by having £ a function of x only, and 7 a linear func-
tion of y. It is mentioned by Professor Dickson, Bulletin of the Am. Math. Soc.,

Vol. V, p. 453.
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XVIL G = pON w0+ 3= 0 )

$()p+(xp'+ o)y ] =y Flxp + ),
where p= ej%mdy, o= f () ay.

Remark.— When a differential equation is recognized as coming
under several of the above heads, and the corresponding integrating
factors are distinct, the solution of the differential equation is obtained
at once by equating the quotient of two distinct integrating factors
to an arbitrary constant (§ 16).

Thus the differential equation

wy —y=a
is linear. Hence, from VII, the group =« f leaves it unaltered,
and gives the obvious integrating factor »I;
2

But it is also readily seen that each term of the equation is of the
weight rwhenx, y, y' have the weights 1, 7, » — 1 respectively ; hence,

from VI, the group {f= f + el v leaves the equation unaltered,
9y

and gives the second integratmg factor — . The solu-
. e =y —a
tion of the equation is therefore

o el
(P Dy =& (1)L _ e const
A2 X

It may be noted that the equation also comes under X, 2° and is

therefore invariant under 0f= xg“rg—f-{—x‘"’ygl- This leads to the
A 4

previously found integrating factor l}
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As another illustration of a class of equations obviously invariant
under several distinct groups, the equation

Uw—f“=fomy—y=6y

may be mentioned. Under the head of VI it is readily seen to be

invariant under (= (» + I)x(g—jcr + r_vgz ; asa Bernoulli equation, IX,
2

0 w8 : L
it is invariant under (faﬂ—f From these its solution is found
¥y oy
at once to be
r+1 v
TR I et
xr-f-l

This equation also comes under X, 2°

20. Second General Method for Solving a Differential Equation.
Separation of Variables.* — The simple form of the differential equa-

tions invariant under the group of translations {f= ZJI (I, § 19) sug-
Y

gests as a practical method for solving a differential equation invari-
ant under a known group the introduction of canonical variables
(§ 10). The reduction of the group to the canonical form reduces
the differential equation to the form

2
yz£=ﬂm

in which the variables are separated. The solution is then obtained

y :fﬁ‘(x)a’x +e

Finally it is necessary to pass back from the canonical variables to

by the quadrature

the original ones.

# This method was discovered by Lie in 18609, thus antedating the method of § 12 by
five years. Historically it is of interest because it is the first known method of integra-
tion which makes use of the invariance of a differential equation under a group.
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— af
Since the differential equation invariant under {f'= 0—£*( T, § 19)

is of the form & _ dx, the reduction of the group, under whi‘ch a

differential equation is invariant, to this form also enables one to
separate the variables in the differential equation.

While either of the above transformations brings the differential
equation into a very simple form, the actual introduction of canonical
variables into the differential equation and the final passing back to
the original variables may not prove as simple as in the case of other
variables that could be used to equal advantage. Thus, for example,

if, in the group {f= é,fgi-{— ng—f which leaves the differential equation
% A

unaltered, ¢ is 4 function of x only, the introduction of the new vari-

ables (§ 9) re Y= 5)

reduces the group to the form

U=t L,

whence the differential equation must take the form (VIII', § 19)
(40) ¢(x0y' =F(y),

in which the variables are separable at once.

This set of variables works especially well in the case of two perfectly well-
known classes of differential equations, and leads to the usual methods for solv-
ing them:

*1° The homogeneous equation
Mdx + Nay = o,

# Owing to the complete symmetry of the two groups ({/’Eg[ and UfE%[' we
. o )y

shall say that the group in either case is in the canonical form, and the variables that
reduce a group to either form will be said to be the canonical variables of the group.”
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where 1/ and .\ are homogeneous and of the same degree, is left unaltered by
the group (IV, Note, § 19)

_or, o
U= w2 +yay

The new variables x = %, y = % reduce the group to the form

Uf=x Bf
whence the differential equation assumes the form (40), and the variables are
separable. (Compare £Z Dif. Eg. § 10.)
2° The equatio
WO yiayds + i)y = o

is left unaltered by the group (V, Note, § 19)
_ 09
Uf=x
TR

Hence, the new variables x = x, y = xy'reduce the equation to the form (40)
in which the variables are separable. (Compare £/ Dif. Eg. § 12.)

Tn an analogous manner, if 4 is a function of y only, the introduc-

ticn of the new variables
X = ”('x: J’), y=y

reduces the group to the form
- 4
=1(8) 5,
whence the differential equation must take the form (VIII, § 19)
_—_ ]?( X
TR
in which the variables are separated.
More generally, if ¢(x) and y(y), any functions of the respective
canonical variables, are taken as new variables, it is readily seen that
the resulting differential equation will bave its variables separated.

In certain cases such forms can be chosen for these functions as to
simplify the actual work required in introducing new variables.
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Remark. — It is interesting to note that the knowledge of a group,
under which a given differential equation of the first order is invari-
ant, enables one to find both an integrating factor (§ 12) and a set
of variables which are separable in the transformed equation. (Com-
pare EL Dif. Eg. § 17.)

The integrating factor can be written down at once when the dif-

ferential equation has been solved for jl, or what is the same thing,
X

when it has the form M/ dx + N dy=o.

To find the new variables that are to be separable, the solution of
another (frequently simple) differential equation of the first order
(giving the path-curves of the group) and usually one or several quad-
ratures are necessary.

In actual practice, neither method should be insisted upon to the
exclusion of the other. In Table I of the Appendix will be found a
list of the more commonly occurring and easily recognizable classes
of equations of the first order, and methods for solving them.

21. Singular Solution.* — Let

(25) S(&9,5) =0
be an invariant differential equation under the non-trivial group
_ Y
tr=s¢ axtm e

Its family of integral curves being left unaltered, as a whole, if this
family has an envelope, the latter must be an invariant curve of the
group ; moreover, it is a path-curve, since the group is supposed to be
non-trivial, thus interchanging the integral curves among themselves.
The equation of the envelope being a singular solution of the dif-
ferential equation (ZZ Dif. Eg. § 30) the value of its slope v/ at each

* This section is based on an article by J. M. Page, entitled * Note on Singular
Solutions ™ in the American Journal of Mathematics, Vol. XVIII, p. gs.
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point (v, ) must satisfy (25). Since the slope of a path-curve at the

point (., v) is 2.0 D the equation of the envelope must be con-
tained in €0 5)’
o A 2o

as found as the equation
of a path-curve which satisfies the differential equation. If a par-
ticular integral curve hﬁppens to be a path-curve of the group, its
equation is also included in (41). But all extraneous loci, such as
nodal, cuspidal, and tac-loci (£Z Dif. Eq., § 33) which may be path-
curves but are not solutions of (235) will not be included in (41).

Ex. 1. 11?1 4 x=o.

A /(L5 19)

This equation is invariant under Jf= z2xg
Its general solution is ¢ — ¢ +1=o0.
Replacing ', wherever it occurs in the differential equation, by
L gives x(4 x? — 4) =o0.
20
x =0 is a particular solution for ¢ = .

4 % — y* = o is the singular selution.

Ex. 2. (1429 =1.

)
This equation is invariant under {f = é {18 19.)
¥y = I _ . In this case, writing the differential equation in the form
o
% =1+
r-

I—,: o gives the singular solution 1 + x*=o.

Ex. 3. ay?—ar—y=o. (VI, § 19. n=-—12.)
Ex. 4. &2 —z2x) +y=o. (IV, § 19.)
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Ex. 5. y®—4 21’ +8y =o. (VI, § 19: n=3.)
Ex. 6. y=2zxy' + " (VI, § 19. n=1%)
Ex. 7. x4 xy' 4+ 1=o0. (VI, § 19. n=—1)

It is suggested as an interesting exercise that the student examine,
in the light of the Lie theory as presented in this chapter, the vari-
ous examples involving differential equations of the first order to be
found, for example, in Chapters II, IV, V of the author’s Elementary
Treatise on Differential Equations.



CHAPTER III

MISCELLANEOUS THEOREMS AND GEOMETRICAL APPLI-
CATIONS

22. New Form for Integrating Factor.— In § 12 it was seen that

1
EM + 9V Y R R
is an integrating factor for

Mdx+ Ndy=o

=

if the latter is invariant

e
Cf_§8x+n3y FIG. 1

under

Lie, by purely geometrical considerations, gave a new form * to this
factor, which is not only interesting but also useful in certain classes
of problems. In Fig. 1, let

$(x,9)=¢

be some one of the integral curves of the differential equation. The
infinitesimal transformation of the group transforms this into an
infinitely near curve of the family

d(x, y) =c+ 8
by transforming any point (x, ») of it into (x+ &8a, y + 9 8a).
PP, = the distance between these points is V& + 77 8a.

# First published in the Gesellschaft der Wissenschaften zu Christiania, 1874.
69
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M

The slope of the tangent at / is — If 7'is the point (x—J2,

y + M), the length of 7'is vV M*+V? and the area of the paral-
lelogram P7RP, is (éEM + 9V)éa, or da.
I

Let 87 = P/, the length of the normal to the first curve at 2,
intercepted by the second curve ; this is, to within infinitesimals of
higher order than the first, equal to 2(Q, the altitude of the above
parallelogram. Hence

8—“=\/M2+N2872,
/}.

or
(42) ®= e — 8—0
~MEE N O

This form of the integrating factor is serviceable in the case of an
interesting class of differential equations :
If the integral curves of a differential equation are known to be

a family of parallel curves* for which gﬁ is constant all along each
a

one of the curves, it follows at once from (42) that

I

I
(42") p el

VME+ N?

is an integrating factor. The #zvolutes of a curve, which are the
orthogonal trajectories of the tangents to the curve, are known to
form a family of parallel curves. THence an integrating factor of the
form (42') is known at once for their differential equation.

Ex. Tind the involutes of the circle #2 + 52 = 1.
The differential equation of the tangents to the curve is <writingp for %)
da

y:px—f—\/l-i-/)'z.

# Two curves are said to be parallel, if the distance between them measured along
the normal to one of them is constant all along the curve. (In this case, it is well known
that the normal to either curve is normal to the other.)
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Hence the differential equation of the family of involutes is
y=— ¥y VI
2 2
(ap + Va2 32— 1)dr + (32— 1)dy =0,

The integrating factor given by (42) is
I

x4 yValf i

To integrate the exact equation
(o vy 2492 — Dde +(2— ])dy
x +y\/x-+y-— 1

one may proceed in the usual way (see £ZL Dif. Zy. § 8) to integrate

I
ax,

_fz—xy'{"/ﬂ-l-yz—
x4 yVar4 2 -1

Multiplying numerator and denominator by

where v is considered a constant.
x — _y\/x'-’ + 3% — 1, this becomes

j‘y-}-xvxl—{—y =L
12+J/"

5‘:—»&[3’7_ — tan™! Z

=V{—1+sin™!

\/f

=Va? 42 —1 +sinl L .,
VaZ gyt

Hence, the equation of the family of involutes is
tan-1Z = const.

Va2 +J,‘2~_ 1 +sin‘1——1———
\/x2+yz &
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Remark.— From the nature of the problem, it is evident that the family of

—y% + xg—f;-* Hence,

the methods of §§ 12 and 20 are also applicable. It is readily seen that the inte-

involutes is invariant under the group of rotations U=

grating factor given by the method of § 12 is the same as that found in the text,
The method of § 20 should be carried out as an exercise.

23. Two Differential Equations with Common Integrating Factor.
If 41 is an integrating factor for two distinct differential equations,

M, dx+ Ny dy=o0 and M,dx+ N,dy=o,

QWal) _ 9N _ o oq Q) _ 3N _
dy Ox dy Ox

Mé‘]ogp__ﬂ[lalogp;__ajl[l_a_l\fl’
Ox dy dy dx

Malogp_malog#=%_61\fg'

Toox T dy dy Ox

Here MM,— N.M,+ o, since the differential equations are sup-

posed to be distinct. Hence (43) can be solved for %" and
x

al—gg—’f ; logw can then be determined by a quadrature, and g may
JI

be obtained at once from this. Hence the

THEOREM. — [f two differential equations of the first order are
known to have a common integrating factor, the latter can be found
by means of a quadrature.

24. Isothermal Curves. — A family of curves which, together with
the family of orthogonal trajectories, divides the plane into infini-
tesimal squares, is called a family of isezhermal curves. " In general,

#* This is also obvious from the form of the differential equation, when cleared of
fractions, viz.: x+4yp=V1iFp2 (Seell, Note, § 19.)
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a family of curves and their
orthogonal trajectories divide
the plane into infinitesimal
rectangles.  For, selecting
any pair of neighboring
curves, 7/ and /77 (Fig. 2), of
the one family it is always
possible to find a pair, 4
and B, of the second family
to form an infinitesimal
square * with them ; besides,
selecting any third curve 777
of the first family, a fourth
curve 7V can be found such

that 4, B, /777, IV form a square also; again, selecting any third
curve C of the second family, a fourth curve D can be found such

Fic. 3

that C, D, 7, 7/ form a
square. But with these se-
lections made, the curves
C, D, 177, 7V do not, in
general, form a square.

Concentric circles are read-
ily seen to be isothermal curves.
Their orthogonal trajectories
are the straight lines through
the common center (Fig. 3).
Any pair of circles of radii
» and #» 4 Ar respectively
(7»>o0) form an infinitesimal
square with any two of the

* This curvilinear quadrilateral is a square when infinitesimals of higher order than
the first are neglected, the length of arc of one of the sides being taken as an infinitesi-

mal of the first order.
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straight lines which intercept the length A7 on the inner circle. Moreover these
same two lines form squares with any other pair of circles of radii Z» and
A(r 4+ A#), respectively, £ being any constant different from zero.

From the definition of isothermal curves, 87 (of § 22) can be made
the same, at any point, for this family of curves and for that of their
orthogonal trajectories. Moreover, if the differential equation of the
one family is
(x7) Mddx + Ndy = o,

that of the other is
(7" Ndx — M dy = o.

Hence the two equations have a common integrating factor, as is
evident from the form (42). To determine this integrating factor,
the method of § 23 applies. The equations (43) take the form

Nalog,u_MalogpL oM N

ox dy Gy dx’
dlog u dlogp AN M
Ve + Vg =% T
whence oM N oM oN
otogp _ Yy ~ Moy Ve ~ Vg
dx M+ V2
d LN 190 ”
= —a—ytan VZ—LZMEG—A—CIOg M2+ 7,
(44) 3
ON _ pOM _ \ 9M 0N
dlogp 9 dx dy dy
I M+ NV*
0 VN 19
= —tan—'i= 2 o
w2 log AP+ V3.

Equations (44) are interesting, not only because they enable one
to find # by a quadrature, but also because they lead to the condition
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that the integral curves of the differential equation (x 7) be isothermal.
For, differentiating the first of (44) with respect to y and the second
with respect to v, and equating

9* | & N N
T 4% Man1 Y = o -1 4V
(45) (ax._,-i— 6y2> an 7 v ?tan V% o.
The general solution of this is *
N ; ;
(46) e tan [®(x 4 7y) + ¥(x — )],

where ® and ¥ are arbitrary functions.

The condition (45) is not only necessary that (17) be the differen-
tial equation of a family of isothermal curves, but it is also sufficient.
For, when A7 and /V satisfy (45), equations (44) are consistent, hence
a common integrating factor for (17) and (17') can be found. But
the sum of the squares of the coefficients of &r and @y is the same
for these two differential equations. Hence, remembering the form
(42), 872 must be the same (to within a constant factor, which may
be made unity by a proper choice of neighboring curves) in the two
cases at any point. Hence the integral curves of (17) are iso-
thermal curves.

Remark. — The condition for isothermal curves in terms of their
finite equation and that of their orthogonal trajectories is obtained
in Note III of the Appendix.

1° In the case of the family of concentric circles, #% 4+ 3% = const., the differen-
tial equation is xdr +ydy = 0. Hence (45) is satisfied, since y* tan-1Z = o.
x

‘While the solution of this differential equation, as well as that of the differen-
tial equation of the orthogonal trajectories, y dx — x dy = 0, is very simple, it is
interesting to note that (44) give very readily

__2xdvr+t2ydy_ _ 2 4 42 S
dlog/.t_—-—W._ dlog (#2432, . u e
This is the common integrating factor for the two equations.

* See £l Dif. Eq. § 90,
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2° The family of circles tangent to the axis of ¥ at the origin 42 4 32 —cx =0
has for differential equation (a2 — y2)dx + 2xydy =o. It is readily seen that

v tan'l% =0; hence these circles form an isothermal system. The dif-
* = .
ferential equation of the orthogonal trajectories is 2 xy dr— (a2 — y2)dy =o.
1
(%2 4 22
Moreover, since the differential equation is “ homogeneous,” it is invariant under

‘While this is easy to integrate, it is worth noting that (44) give u =

the group Uf= x%{; +_yg-§ (IV, § 19). Hence, a second integrating factor is

(§ 12) ,ugE—zI—q. The solution of the equation is therefore (§ 16)
- y(& 457
2
@Eﬁ-—ﬂ = const. or x> 4+ 32—y =,
] J

the equation of the family of circles tangent to the axis of x at the origin.

Show that the following curves are isothermal, and find their
orthogonal trajectories :

Ex. 1. The equilateral hyperbolas xy = consz
Ex. 2. The similar conics ax® 4+ £)* = const., when and only when
b=+ a.

Ex. 8. The coaxial circles through the points (1, 0) and (— 1, o),
x4y —1
¥

25. Further Application of the Theorem of § 23.— An obvious
corollary of the theorem of § 23 enables one to find an integrating
factor, by means of a quadrature, for an interesting set of differential
equations. This corollary is: Jf #he ratio of the integrating factors
of two differential equations is a known jfunction, the integrating
Jactors can be found by a single quadrature. For, suppose that

(47) Pz = b (x, ¥)
1

= const.

is a known function, where u; and p, are the integrating factors of

My dx 4+ Mdy=o0 and Mydx+ Ny dy=o
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respectively.  If the second equation be written in the form
dM;dx + N, dy = o,

its integrating factor is also ;. Hence it and the first equation have
a common integrating factor and, by the theorem of § 23, this can
be found by a quadrature.

Suppose, now, that it is known that the solutions of three differen-
tial equations of the first order

M dx + Mdy=o, Mydx+ Nydy=o0, Mydx+ NV;dy=o0

can be made to assume such forms, ¢, = const, ¢, = const.,
¢5 = const., that

(48) ¢ = 1 + b

If wy, wo, ps are their respective integrating factors,

Iy = (M d + Mo dy), dpy = pa(My e+ IV, ),
“ by = ol My A+ Vo ).
Because of the identity (48)

d¢3 = d‘#l + 0"#2,

or
whence fo= wMy + po My _ mNV + ,U«gj\fz’ and

M g

pa_ _ MN,— MV

ol
7 o MoNy— M,

By the corollary above, u; can be found by a quadrature; and p,
is then known from (47"). After finding ¢, and ¢, by a single quad-
rature each, ¢, is given immediately by (48). Hence the
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THEOREM. — If it is known that the solutions of three differential
equations of the first order can be put in such jforms = const,

¢y = const., by = const. that b=+ s,

these solutions can be found by means of three quadratures.

This theorem has some interesting applications in the theory of
surfaces * :

A. If the rectangular codrdinates of any point (x, y, z,) on a sur-
face are expressed in terms of the parameters # and 7, the expression
for the element of length of arc is, using the usual Gauss notation,

ds’ = FE du* + 2 Fdudv+ G dv?,
where

_(9x\* | (Ay\  (0zN\' . Oxdx  dydy 0z 0z
E:<E_u> +(5;4) +(a7,> Sl oY PR i vk

02N\ [Iy\e , (022
¢=(5) +(z)+)
The differential equation of the lines of zero length, usually called
minimal lines, is then .

(50) Edi?+ 2 Fdudy + G do* =o.

This differential equation, being of the second degree, is equivalent
to the two

Edu+(F+~NF'—EG)dv=o,
(51) {

Edu+(F—~NF'—EG)dv=o,

which are essentially distinct, since it is always presupposed that
EG — 7 is different from zero. Let a(#, v) = const. and B(«, v)
= const. be the solutions of (51). These are the equations of the
minimal lines. Choosing them for parametric curves, equation (50)

* These applications will be of interest to those only who have, at least, a slight

acquaintance with the elements of Differential Geometry. They have been taken from
Lie's Vorlesungen iiber Differentialgleichungen, Chap. 9.


file:///dtij

§23 MISCELLANEOUS THEOREMS 79

takes the form da d8=o, i.e. E(w, B) = G(a, 8) =0, and the expres-
sion for the element of length of arc is

@s* =2 F(a, B)de dB.

Introducing the new parameters #, and 7, defined by
b (@) =2, + imy, Y(B) =wu— i *

where ¢ and ¢ are any desired functions of their respective

AIGUITENLS, as* = X (g, vy) (duy® + dvy?),

since du df3 = (duy* 4+ dvy?). This form of the expres-

I
()¢ (B)
sion for the element of length is characteristic of isothermal para-
metric curves. (Compare Note III of the Appendix). Hence,

2= U=¢(a) + ¢ (B) = const.
and 2 inn= V= ¢p(a)— () = const.

are the equations of the isothermal curves and their orthogonal tra-
jectories, respectively. Since ¢(«)=consz. and (B)= const. are
equally well the equations of the minimal lines, it is evident that the
identity (48) is satisfied by the equation of any isothermal system
and those of the minimal lines. It follows then from the theorem
above that #ke differential equation of a jfamily of isothermal curves
on any knownt surface can be integrated by means of quadratures.
Besides, the knowledge of a family of isothermal lines on a lknown

*In the case of a real surface, ¢ and 8 may be selected as conjugate complex
functions of z and », when the original parametric curves are real. Real isothermal
curves are then obtained by choosing ¢ and y conjugate functions of & and @8
respectively. )

+ A surface is said to be known if the values of x, , z in terms of the parameters
u, v are known, or if the forms of Z, 7, G, and of D, D', D' (to be introduced below)
are given in terms of %, ». In this particular case £, #, G only need be known, mini-
mal and isothermal lines not depending upon D, 0, D"



80 THEORY OF DIFFERENTIAL EQUATIONS §25

surface enables one to integrate the differential equations of the mini.
mal lines (51) by means of two quadratures.

Remark 1.— For surfaces of the second order, surfaces of revolu-
tion, and minimal surfaces, the lines of curvature (see B below) are
known to be isothermal lines. Hence, in the case of these surfaces
the differential equation of the lines of curvature can be integrated
by means of quadratures.

Remark 2. —In the case of a minimal surface the asymptotic
lines are also isothermals. Hence, on such a surface the differen-
tial equation of these lines can also be integrated by means of
quadratures.

B. The tangent plane to a surface at a given point cuts the sur-
face in a curve which has a double point at that point. In general,
the directions of the tangents to the two branches of the curve at
that point are distinct. In this way two directions (in general) are
determined at every point on the surface. A curve on the surface
whose direction at every point coincides with one of these directions
is called an asymptotic line. So that, in general, through each point
on the surface there pass two asymptotic lines. The differential
equation of the asymptotic lines is

(52) D di?+ 2 D'du do+ D'"dv* = o,

where
x ox o Px o ax x ox e
0 Ou v ou v du dv d? du dv

pe® o | oyl @ a w | @
92 du v’ du dv Odu dv| 102 du v
7 o 0 & e o o o o
du? du dv 0w dv  du dv 9 du o

In case DD" — D" =o, the two curves coincide. This happens
at every point of a surface where the Gauss measure of curvature
is zero.
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Another system of curves playing an important rdle in the theory
of surfaces is that of Zines of curvature, which have the property, that
along them consecutive normals to the surface intersect. Their dif-

ferential equation is given most conveniently in the determinant

form
d? —dudv  dit

(53) E F Gl=o.
D D D"

This differential equation is again of the second degree, so that
through each point pass two lines of curvature. These are rutually
orthogonal, and besides their directions are harmonic conjugates
with respect to those of the asymptotic lines through the same point,
as may be seen readily from the forms of equations (50), (52), and
(53)-

Suppose that on a certain surface the asymptotic lines are known
to cut out rhombuses.* This can be expressed analytically in the
following way :

The selection of the asymptotic lines as parametric curves does
not affect the appearance of the expression for the element of length
of arc. But since # = const. and v = const. must then be the solutions
of (52), it follows that D= D" =o0. Hence the differential equa-
tion of the lines of curvature (53) reduces to

(53" Edi— Gdv*=o.

The elements of length along the parametric curves are V' E du and
/G dp. These will be equal at every point on the surface, and the
surface will therefore be divided into rhombuses, if vV Z = A(u, 2)$()
and VG = M, v)¢(z). (See corresponding argument in the
case of isothermal lines in Note III of the Appendix.) Letting

# This is known to be the case for surfaces of constant Gauss curvature, for
example.
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fd)(u) du=U, fx[/(zz) dv =V, the expression for the element of
length takes the form
@’ =AU, VY QU+ dVH + 2 F(U, V)dUdV.

The differential equation of the lines of curvature takes the form

dU*—dV*=o;

whence the equations of the lines of curvature are
U+ V= const. and U— V= const.
Since the identity (48) holds, it follows that 7f #he asympiotic lines

divide a surface into rhombuses, the asymptotic lines and lines of
curvature can be obtained by means of quadratures.



CHAPTER IV

DIFFERENTIAL EQUATIONS OF THE SECOND AND HIGHER
ORDERS

26. Twice-extended, n-times-extended Group. — A transformation
of the variables x and y carries with it a transformation of the various
derivatives of y with respect to x. Thus, just as the point trans-

formation x = qb(x; }’): = ‘l’(xl .y)
carries with it (§ 13)

a_lll._!_gl_k}}'
.@LE};’:ax—a‘y__: (x y')
2, 1 _aib_}__aiyl—x 2 Y 3
dx = dy
so it also implie d d d
mmplies ' 5X+él(yv+gxlyu'
@-EJ’{': 4 24 = w(x, 7, ', ).
(le a_¢+a—(é ; . 2
dx  Jy

The transformation
n=¢0x3), n=y9xy), n'=x(x55), n'=oys"

affecting the four variables «, 3, 5/, »'' which is implied by the point
transformation is known as a fwice-extended point transformation*
Starting with the one-parameter group of point transformations

(I) x1=¢(x’y: a)’ n=y (x’ s a):
# In precisely the same way we are led to the n-times-extended transformation
w=0(x, ), n=¥@E . W =xxxy) n" =y,

_dy(»D e
J,l(m:J%_— =0(x, 3,9, 9", = yM).
Xy

83



84 THEORY OF DIFFERENTIAL EQUATIONS § 26

by employing the method of reasoning in § 13, the corresponding
twice-extended transformations

(54) x1=¢(x7 Y Ll), = ‘l/(x’ 2 a)’ ,V1 = )1 ——X(x J’;)’, [l),

h==;_*MxIJJ a),
1

are seen to constitute a one-parameter group in the four variables
x, v, 9, 9" This group is known as the twice-extended group corre-
sponding to (1).

Writing as the symbol of the infinitesimal transformation of the
twice-extended group

PLUA W W
Ul r "
(55) Uf=tga gt g, +7" 5m

where as before

£

Il

|
A

& % _dy A
5 = Jleﬁml

» 8= T8z adx

1" .
7', which is %y«, may be found in exactly the same way as 5’ was;
@

thus
&' dx
—(ay' ay = (d- df =- dfo—
w_ ’l’}’ (}’)_ )’&l( x)_ <8a>_d}" <3£Z>_
T = 8a\ax dx dx* T dx dx  dx
RTINS
(56) R L

Reasoning as before we have the n-fimes-extended group

an
x1=¢(x,)’: ‘l): )’1=l//(x,)’, a’)’ _yl'—‘[%EX(x, Ny 3! (Z)

([J,l(n-l)

lixl = 9(x, J "'u‘V(n)’ a)l

'
yl”:;;‘;‘ Ew(x,y,y’, .y”: d), Tty }’1(")=
1
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the symbol of whose infinitesimal transformation may be written
s e A ¥ g
(’(_/z +776y+7] 0 i +7](k)a (“+ +"](n)6){n);
where

KS ...) 7](7‘) 81,(16) d.,l(k-—-l)

d¢
RO - —_
Sa a0 & (#=1,2,3 - n)
Remark.— While 5’ is a quadratic polynomial in y' ([24], § 13), it
is seen, on expanding (56),

u__@_' 817 21]__%_65

that 5" is linear in »". In the same way n® is seen to be linear in
y® for 2> 1, since

a (k—1) a (k—1) a (k—l? a (—1) _
® = 21 1 4o 2l BT/ M
(59) = ot Nt T T
+ M_%_iéy' y(k)_
Ay dx  dy
Inl, Uf__, {¢=o, 9=1. ..7'=0, 7'"=0, -+, (M=o,
Hence, U(")]"E%:-
of - o= 12 ol = ylylt
In II, Uf——ya +x—— ft=—yp, 9=x o' =E1495% =370
1,11153},/12_*_4),/),//1’ .,)IVES(ZJ,II),IH + 3'yIVY, e
Hence, o o
UlVf= _},6 —an—f+(1 + 9'2) af U,y/ld (357 4+ 49" P
4 525"+ 75) g
o L _ i = s (1) = ()
In III, U/:ya)—,, t=o, 9=y. S =y, 9=y e =Y
) d , o Of
Hence, Umf=y f+}' —f-i— ¢ 8}/”+ -+ 0 )BJ'("’.
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In IV, Uf= xaf+yg§, t=x, n=y. =0, n'=—y, == 23",
vy M= — (2 — 1)y,
» a9 af 0 L af
Hence, U¢ ?f X = +J/ay Y ay =12 6}/”’ ( I)J’( a (n)

Extend the following groups :

of /4 o o
o Ex. 2. xax Ex. 8. 2 —yay

Ex. 4. ax_f__;r_éy gf Ex. 5. (b(x)g_{c. Ex. 6. ¢(x)g-jyj

Ex. 1.

f s .
4 2
Ex. 7. + rxy=— Gy

27. Differential Equation of Second Order Invariant under a Given
Group. — The effect of any transformation (1) on the variables x and
7 is to transform the differential equation

(60) f('x: »J, _}’”)=0,

by the corresponding extended transformation (54). In order that
the equation (60) be invariant under the group (54), it is necessary.
and sufficient that ([12], § 11)

(61) U'f= o whenever f(x, 3, ¥, y")=o.

Using the same argument as was employed in § 18, it is seen that
all the differential equations of the second order invariant under the
group are obtained by equating to zero an arbitrary function of three
‘independent solutions of ([¢], § 11, footnote)

) a ad
©) TS SR R

1

ay },H
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Passing to the corresponding system of ordinary differential equa-
tions
(63)  _ & _ B "
Ex0) a3 1@ 9" Y

the first three members are seen to be the same as those of 37,
§ 18. Hence, two of the solutions, #(x, y)= const. and #'(x, y, b3
= const., may be found by the methods of that section.

To find a third solution, #"(x, y, 3, y")= consz.,, which must neces-

sarily involve ", use may be made of the two already found to
1" " 1" ,
eliminate y and y' from d% =--,o0r x and 3 from do’L =’7—”, or x
ax & Yy n
" I
and y from %: ’L, (whichever turns out to be the simplest). Each
"y n

of these differential equations is linear since »" is of the first degree
in " (§ 26, Remark). This linear equation can be solved by means
of two quadratures. (See £/ Dif. Eg. § 13).

Lie has given a most ingenious method for finding a form for
#'(x, y, 3, "), without any integration whatever when # and #' are
known :

Consider the differential equation

(64) u’(x7 Js _J/’)— o U (x’ .y)': :8’

where « and B are constants. Since # and #' are invariants of the
once-extended group U'f, (64) is invariant under the group f; that
is, its integral curves are interchanged among themselves by the
transformations of this group. XKeeping « fixed, an invariant family
of a single infinity of integral curves corresponds to each value of 8.
Still keeping « fixed and ailowing B to take successively all possible
values, an inﬁnity' of such families, constituting a double infinity of
integral curves, is determined by (64). This larger aggregate is in-
variant under the giroup Uf, since each of the constituent families
corresponding to the same value of 8 is. It is evidently the set of
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integral curves of the differential equation of the second order ob-
tained by differentiating (64), thereby eliminating 8 ; viz.

a_”’ ! 67/ n
(65) ' du_ or /l'i':c')x_}_ +
5 o YT dn Qz—g Q%r =
ox  Jy

Since its integral curves are interchanged a.mong themselves by
every transformation (1), it is invariant under the group . Hence,

by <6I) {l’ll'

!
(% a): o whenever “-=a
du du
: n( @u' [ @u
But « being a constant, I/ = ; Z.e. it is indepen-
du du
dent of «. U" </[l; > is therefore identically zero ; which is sufficient
7
!
to make f;i an invariant of (54), ([9], § 11).
7
!
Since #' contains y' (§ 18), ——_,:Eo, and {—;;1 must contain y''*
.

Hence, Z’l = const. may be used as the third solution of (63). The
.

general solution of (62) may then be written in the form

du' du!
(66) f(u, !, ﬁ) =0, or ;

= F(u, ”)

This is the general form of the differential equation of the second
order invariant under the group 7. We have therefore the follow-
ing most important

THEOREM. — If f(x, 3, ¥, ¥'")=o0 is a differential equation of the
second order invariant under the group Uf,t and if u (x, y) is any

* An invariant of the extended group "'/ which mvolv(.sy is known as a second
differential invariant of the group Uf.

1 Attention should be called to the fact that while every differential equation of the
first order is invariant under an indefinite number of groups (see §§ 15, 17) a differen-



§27 DIFFERENTIAL EQUATIONS OF THE SECOND ORDER 89

invariant and u'(x, v, V) is any first differential invariant of Uf, the
introduction of the new variables

(6 7) X=u (x; }'); y= -ur<x, Y )")
reduces the differential equation to the form
(66" ’;—y = F(x, y),
x
whick is of the first order.

In actual practice the introduction of the new variables is usually
most readily effected by noting that

9
ay_ax " av 5+ Y "
ax=
av +
is some function of #=x, #' =y, and u”. ‘When this function is
obvious upon inspection, #'' can be determined in terms of x, ¥, % .
In other cases it may be necessary to solve *
dy 8 6
X=u(x)_y)) '—‘u(x’y’ '>: ax
yl
Gx dy

for y, ¥, " in terms of x, y, (_{?i, x. Substituting these in the differ-
X

ential equation, x must disappear, and the resulting equation must
take the form (66').
After having solved (66'), its solution

(68) b (u, o', c)=o0
is a differential equation of the first order. But owing to the inva-

riance of # and #' (68) is invariant under Tf, so that it may be
solved by the method of § 12 or that of § zo.
tial equation of the second (or higher) order is in general not invariant under any

group. (See Note IV of the Appendix.) On the other hand, a large number of them,
including most of the known forms, are, and these will be considered in this chapter.
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28. Illustrations and Applications. —
I [/}‘E%. f=o,p=1. . =o0,9"=0(§26). Equations

(63) are de_dy_dy' _ ",
o) - i 6 o o}

cu=wx, u'=y, u' =y" Hence, the general type of differential
)
equation of the second order invariant under Uf = é is flx, 9, y"Y=o0
or y" = F(x,»"). This equation is characterized by the absence of y.
Note.— The transformation of variables x =wx, y=13' (§ 27) re-
duces the differential equation to
ay
66’ ~ =F(x,y).
(66") =& Y)
This is precisely the usual method for solving an equation of this
type. (See B/ Dif. Egq.§ 57). Solving the solution of (66") for g,

it takes the form 7
_a
y= Eczf(x’ <)

in which the variables are separated, as must be the case (I, § 19),
since this equation is invariant under the same group (§ 27).

I U= gfc It is readily seen that zke gemeral type of differen-

tial equation of the second order invariant under this group is
SO, y’,j”) =0, 0ry"=F(y,3"). This equation is characterized by
the absence of «.

WNote.— The transformation x =y, y=y' (§ 27) reduces the dif-
ferential equation to one of the first order (66'). Its solution

y=/(x20), or % =/(3,9

is a differential equation with x absent again, as must be the case
(I',§ 19 and § 27). This is also the usual method for solving an
equation of this type. (See EZ Dif. Ey., § 58.)
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Remark. — Owing to the simple form of an equation invariant
' d af . .
under either of the groups Ufzé or Ufza—f, it is frequently

desirable to introduce canonical variables in case a given differential
equation of the second order is known to be invariant under some
group. When the introduction of canonical variables is not prac-
“ticable, other changes of variables reducing the group and equation
to known forms may prove desirable. (Compare § 20.)

o
L =—ygityg =—na= g'=14)"q9"=35y",
(§ 26). Equations (63) are

dx @' "
(63’) —:1= ? B }" 7
—y X 147 350

u=a4+ 9 u' =7 . (§ 19). Using the last two members of

x—{—Uf

HZ
equations (63"), #'' = -—~—— T +y'°)3 Hence the general type of differential
equation of the second order invariant under Uf= — ¥ gf—i— ngf s
},11‘7 ( et —xy > X y
T

Note.— The form of this differential equation is obvious from
geometrical considerations, since # is the square of the radius vector
to any point on an integral curve, z' is the tangent of the angle be-
tween the radius vector and the tangent to the curve, while #" is the
square of the curvature, all of which are left unaltered by the group of
rotations about the origin. (Compare § 29.) In order to integrate
such an equation the method of I, Remark, requiring the introduc-
tion of canonical variables (polar codrdinates in this case) will usually
be found desirable.

‘Making use of the fact that

!

! —_—
*+ and 222
1+ " V14"
differential invariants of the group of rotations (II, Note, § 19) other

are also first
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possible forms of the invariant differential equation of the second

order are

" 2, 2 x+yy'> " (gp =% )
= F , ——=2=— | and o = x~+ M
(x+y%? <x‘+y VIi4y” R CER? G+ Vs Vit

af = P II pa—li

III. U=y i (=o,p=y. .79'=y, (§ 26). Equa-

tions (63) are dx_dy ziy dL”
? ¥ y! yu

U=x, U E%— 7 E'y— * Hence zie general type of differen-

Zial equation of the second order invariant under Uf = y(y is
44
! " !

/<‘x’ %‘7 }T)y_>=os 07’}’”:}/]"1(.96‘, }y}_)

This equation is characterized by being homogeneous in y, ', y'".
It is evident, at once, that an equation of this type is left unaltered

I . . .
by the affine group 0f = yé}’ , since the finite transformations of the
extended group are xy=x, yy =ay, ' = @', ' = ay"

Nofe. — An interesting equation of this type is the homogeneous
(or abridged) linear differential equation

(69) V'+P@)y+ Q) y=o.
!
The transformation x = x, y=% (§ 27) reduces the equation to
Wt Pyt Q=o,
ax
a Riccati equation. (Compare £/ Dif. Eq. § 73, 6°).

. a: ) o )
* The Lie method of § 27 gives ="’ =2 u:L—(y—) , and the dif-
5 i . du y y o\
ferential equation y7=(i—> +F(x, %), which is, of course, the same in form as

that found in the body of the text.
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VI. = xf-{—nyaf. E=x,p=ny. coq'= @ — 1),

”_

(n—2)y". Equat]ons (63) are
a’x Q [l_’y' . ﬂ)y”

x ny (—1) - (n— 2)y”°
: u'EL = b

1
;’ a1 ) xn—z

S U

m

Hence zhe general type of differential equation of the second order
invariant under Uf = xa—f——}— nyalz'sf<—y—, y_” L): o.
Ox dy & Gt g
This equation is characterized by being homogeneous in «, y, ', 3"
when these elements are given the weights 1, 7, » — 1, 7 — 2 respec-
tively.
Note.— Boole called an equation of this type ‘Zomogeneous, and

gave as a method for solving it the transformation x = log =, y:l”.
X

(See Boole, Zreatise on Differential Equations, p. 215 ; Forsyth,
Treatise on Differential Equations, § 55). The new variables in this
transformation are a set of canonical variables. (Compare I', Remark.)

1. U= xg—f is a special case of VI. Here # =o0, and #e

invariant differential equation is of the jform f(y, xy', x%'") = o.

This equation is homogeneous in «x, ', " when these elements
have the weights 1, —1, — 2 respectively ; the weight of y being zero,
the manner in which this variable enters plays no role.

III. D}'Eyg—/ may also be looked upon as a special case of VI,
24

corresponding to the value » = . Boole deduced a special method
for this case (see Boole, p. 220; Forsyth, § 55) which is exactly that
of § 27 for this case.

V. U=« f+y % 35 the special case of VI for n=1. Zke
invariant di ﬁrmlza! eguaz‘zmz is of the form f< ., xyu>= &
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V. U/:xgl —yg—fis the special case of VI for n=—1. Zhe
X y

invariant differential cquation is of the form jf(xy, £, x%'=o.

VIL. Uf= ‘1’(”)%,:' (=0, n=¢(x). .. n'=9(x), 9= " (x)

It is readily seen that
uv=x, W=y — ¢y, v"'=pE)" — " (x).
Hence the general type of differential equation of the second order
invariant under Uf = qb(x)% is f(x, ¢y — 'y, &' — "y =0, or
&' — Py =F(x, ¢y’ — $).
Note.— An interesting equation of this type is the complete linear

equation
(70) Y+ L)y + Qx)y = X(x),

which is obtained from the general form by letting # be linear in
u'=¢y'— ¢'y. Bearing this fact in mind, it is clear that y = ¢(x)
satisfies the abridged equation (69), obtained from (%0) by replacing
X(x) by o. Conversely it is readily seen (and will be left as an exercise
~to prove) that if y =y, is a solution of (69), (70) is invariant under the
A
by
reduces the equation to the linear equation of the first order

group Uf =y, The transformation x=x, y=3,9' — 0y (§ 27)

(77) Y Py = @A)

This property of the complete linear differential equation of the
second order of reducing to one of the first order by a transforma-
tion that is known when a particular integral of the corresponding
abridged linear equation is known is not new. (See Ll Dif. Eg.
§ 53, 1°) The transformation employed above yields an equation



§28 DIFFERENTIAL EQUATIONS OF THE SECOND ORDER 95

bearing a more striking resemblance to the original equation than
the transformation,

X=x, y= }_,:
Jo
usually employed. The new variables in this transformation are a set
of canonical variables (I, Remark).

Other groups whose invariant differential equations are readily
found are the following :

. N a ! I !

VII'. szgb()')%. f(y,_}%—%x,%—{—%&:o.
VIIL 0= W)%. /(x,%,%—y,;f'>=o.
' a 2,11 TiciF
VIII. Uf= ¢(x)£. S, s 69" + doly) =o.

X U= ¢(x)(.xg—£ + ny%).

(2 g il )=o.

xn’ x}' o ”y
o |
XIL Uf=ay_+ ba—y. f(bx—ay, y's y") =o.

In Table II of the Appendix will be found a list of the more com-
monly occurring and readily recognizable classes of equations of
higher order than the first invariant under known groups.

Ex. 1. ap' +xy?— 3y =o.
: s : aof  of
This equation is invariant under the group IV: f=x-—+y=-.
. . dx dy
Introducing the new variables

v

Xo=— =9
o Y=7
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the equation takes the simple form

Yy
=o.
a’x +
Integrating Xy =a, or y,_ =a.
Integrating again ax’ —y*=2é.

Note. — Inspection shows that this equation is also invariant under

II1: Ufsygjjj, and IIT': UfEx%[-

Bt 2 &+ +2(y =) (1 +y)=o0.

This equation is invariant under the group II:

x y

Introducing the canonical variables (in this case, polar codrdinates)

X= tan“li—;, y=vVaZ+ 7
. d%y
the equation takes the form d—2+ y=o.
X

Here the independent variable is absent, but, instead of using the
method indicated by the general method of § 27, it will be simpler
to solve this linear equation with constant coefficients by the usual
method for such an equation. (See £/ Dif. Eq. § 45.)

y=a cos x4+ b sin x.

To pass back to the original variables, multiply by y, whence

&+ ¥y = ax + by.
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Aofe. — This differential equation is also invariant under IV.
Ex. 3. a%" —(x'—y)*=o0. (Invariant under IIL, IV, . )
Ex. ¢ oY+ (@' —p)?=0. Ex.5 aY'=ux'—y.

Other equations invariant under known groups appear in §§ 39
and 4o.

29. Further Applications.— Besides being able to recognize a
group under which a given differential equation is invariant from the
characteristic properties given in § 28
and enumerated in Table II of the
Appendix, it is possible at times, to
find such a group from the nature of

the problem giving rise
to the differential equa-
tion. As examples, the
following may be noted :

1° The group of rota-

tions about the origin B4
Uf=—y Qj_’_’_ % 4 leaves unaltered
ox dy

R = the radius of curvature of a curve at any point,
p = the radius vector to any point on the curve,
7 = the radius vector to the centre of curvature,
the distance from the origin to any line (such as the tangent
or normal) connected with the curve, thus 047 and O,
PM = the polar subtangent, = O,
PN = the polar subnormal, = OW,
¢ = the angle between the radius vector and the tangent,
the remaining angles of the triangle O CP.

Hence a family of curves defined by a relation between any or all
of these is unaltered by this group ; the differential equation of the



08 THEORY OF DIFFERENTIAL EQUATIONS §29

family is therefore -invariant under it. Passing to polar codrdinates
(the canonical variables) will usually be found desirable in this case.

2° The similitudinous group Jf =x gf: +y g—f leaves unaltered
44

6 = the angle between the initial line and the radius vector,
7= the angle between the initial line and the tangent to the curve,

¢ = the angle between the initial line and the radius vector to the
centre of curvature,

¢ =the angle between the radius vector and the tangent to the
curve,
the ratio of certain lines connected with the curve, such as
radius vector, radius of curvature, radius vector to the centre of curva-
ture, intercepts of the tangent, normal, or of the curve itself, sub-
tangent, subnormal, length of tangent or normal from a point on the
curve to one of the axes, and the like.

Hence this group leaves unaltered the differential equation of a
family‘of curves defined by a relation between any of the above in-
variant configurations. Passing to canonical variables, or to polar
coordinates (thereby reducing the group to III') may simplify the
problem of solving the differential equation.

3° Certain configurations could be enumerated as invariant under

the groups of translations Uf E% and Uf E%- But as in either
case one of the variables is absent in the resulting differential equa-
tion, the latter will suggest the group without considering the defini-
tion of the integral curves.

Ex. Find the family of curves for which the radius vector to any
point of a curve is perpendicular to the radius vector drawn to the
centre of curvature of the curve at that point.

The differential equation of this family must be invariant under

the group of rotations II and also the similitudinous group IV.
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Noting in Fig. 4 that the triangle POC is right-angled at O,

%?:cosf’, or %:simp.
)12
Here p=vVa*+y*, R= (I_H )Z. tan y=2"". Hence the

x +J)’
differential equation is

e @+~ +1)— ) =0
9 ~-30. Differential Equation of Order Higher than the Second Invari-
ant under a Given Group.— The method of § 27 can be extended
without change to differential equations of higher order :

A differential equation of the 7th order

(72> f(‘x: s )’I’ }’”, ) y("))‘—_o
is invariant under the group U7 if and only if

(73) U™f=o0 whenever f=o.

All the differential equations of the #th order invariant under the
group are obtained by equating to zero an arbitrary function of 7 + 1
independent solutions of

. I L Yy
(74) U() = afx+1l 6‘; I+ !I+ + ()0)/(11) .

These independent solutions may be obtained from the corre-
sponding system of ordinary equations
dx _ady _dy _dy' ay™

& 7 4 7 ECE

It was seen in § 27 that if «(x,y) is an invariant of {J, and
!
#'(x, v, y') is a first differential invariant, then 9}1 is a second differ-

. "
ential invariant. Hence,

']
(76) %— an=f3
7
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is an invariant differential equation of the second order for all values
of the constants « and 8. Its integral curves constitute an invariant
family of w? curves. The co! differential equations of the second
order obtained by keeping « fixed and giviné to 3 all possible values
have for integral curves co' such invariant families of co? curves.
Grouping all these curves into one aggregate of «o® curves, this aggre-
gate is invariant under the group since each of the families is. The
differential equation of this family is, therefore, invariant. It is ob-
tained by differentiating (76), thus eliminating 3,

ad [du a1 - d%
) E(i)—uﬁ:o,vor 2% _a=o.

In order that (77) be invariant, we must have from (73)

%! %'
U" == — a)=o0, whenever &% — 4.
? a2

du?
But ol ﬁ—u —_ Urud?”' .
di® dut’
s aa s . : ; : 2!
z.e.it is independent of «. Hence, if (77) is to be invariant, U’”F
! u°
must vanish identically. So that % is a solution of (74). Since it
(7

, di!

""" (as may be seen readily), it is independent of «, #/, e
7

contains y

In the same way it can be shown, step by step, that a set of inde-
pendent solutions of (74) is
. M/ a !
u, G oga e Fom
Hence the general type of differential equation of order » invariant
under the group Uf is

(78) dll_llt,_ﬁ‘(l g, du (z’“"“’7l'>_

- Ly —— ’ E v
durt di du? di?
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We have then as an extension of the theorem of § 27 the following

THEOREM. — If f(x, v, ', 3", -, y™) =0 is invariant under the
group Uf, and if u(x, y) is any invariant, and u'(x, v, ¥') is any first
differential invariant of Uf, the introduction of the new variables

(79) x=u(xy), y=u'(x,3,))
reduces the differential equation to
’ d"¥1y 1l7y (Z"—gy
8 —F @y .
(73 = F(xs Y, £,

which is of order n — 1.
After having integrated (78"), its solution
f(”) Z{’, €1, Coy o0y "n—-l)z o

is a differential equation, also invariant under 0, since # and #' are.
Hence it may be solved by the method of § 12 or of § 2o0.

Many of the arguments of § 28 can be used here, almost without a
single change. Consequently, the results only will be given, it being
left as an exercise for the student to fill in the steps.

1. The general type of differential equation of the nth order
U

y
terized by the absence of y.

The transformation y =3, reducing the differential equation to one
of order # — 1 constitutes the usual method for solving an equation
of this type. (&L Dif. Eg. § 57.)

1. The general type of differential equation of the nth order

invariant under Uf =2 is f(x, ¥, ¥", -+, )=o0, which is charac-

af . o
invariant under Ufz(—af; s /(9,5 »", -+, y™)= o, which is charac-
terized by the absence of x.

The transformation x =y, y =y, reducing the differential equation

to one of order »— 1 constitutes the usual method for solving an
equation of this type. (ZZ Dif. Eq. § 58.) -
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The remark of I', § 28 with reference to the introduction of
canonical or other variables when a group is known under which
a given differential equation is invariant applies equally well here.

1. The general type of szﬁ)rmiz’al egmzlz'on of the nth order
: ()
invariant under Ufzygj—[ is f< b y see, l’_>=o, which is
9y yy Ty ,
characterized by being homogeneous in y, ¥, 3", «--, ™.

VI. The general type of differential equation of the nth order

]

i 1" (n)
invariant under Uf=x f—{— @af f( y X _y_) =o,

A,T xr—l’ xr—-2’ 'xr—n

‘which is characterized by being homogeneous inx, y, 9, y", ey,
when these elements are given the weights 1, 7, »—1, 7—2, -,
7 — n respectively.

As special cases of this group may be mentioned

1v: r=1, f( ,J’ xy ) '_IJ’(")>=0,
V:r=—1, flxy, 2%, &, ..., &Mty =0,

II': r=o0, f(y, 2, 2¥", -, 2"y)=o0,

III: »=o0. The invariant equation in this case is more readily
recognized by the other characterization given under III above.

VILI. The general type of differential equation of the nih order
tnvariant under

U=¢() % is f(x, §y' — By, ' — by, ooy P — ¢My) =0,

or qb.y(n) - ‘P(")){: F(x7 4’}" - ‘;b'y: ¢J'” - ‘i)”.y: R ¢.y(n_1) - ¢(n—1)),)_

Note.— An interesting equation of this type is the complete linear
equation

(80) y + By 4 Byt woo + Py 4 Py + Py =X,
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If y =1, is a particular solution of the abridged equation obtained
A
e

The transformation (79) y =)' — 'y (or y =y,y, resulting from
the introduction of canonical variables) reduces (80) to a linear equa-
tion of order n — t (&7 Dif. Eq. § 59), but the resemblance of the
resulting equation to the original one is not as striking as in the case
of the linear equation of the second order (VII, Note, § 28).

by replacing X by zero, (80) is invariant under Uf =y,

XIL. 7Zhe general tvpe of differential equation of the nth order

invariant under Uf = ag—j:—l— 11%];—) is f(bx—ay, ¥, ", -, y™) =o0.



CHAPTER V

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER

31. Complete System.*

TuEOREM 1.— If ¢ (x, 9, 2) is a solution of the two independentt

linear homogeneous equations
d ) af
Alfzivl<x3 Y Z> 5§ + Ql(x: Js Z) %"'Rl(x: Y Z) gé: 0,

af 5} J
4/ =53, A O (%, ) 6—’;+ Ry, 3,5) L=o,

it is also a solution of
‘ af F
(Ad)f = (Al — A:5) 7+ (A4 Qo — 4, Q) %

)
+ (A1R2_ Ay Ry) £= o,

where (A A4s) is the alternant of the operators A, and A, (§ 14).
For (4,45 = A,(Asp) — As(A1¢p) = 0, since 4, =0 and A,p=o0.

# Only so much of the theory of complete systems and only such methods for their
solution as seem necessary for our immediate purpose are given here. For an excel-
lent detailed treatment of this subject the student is referred to Goursat-Bourlet, /nfé-
gration des équations aux derivées partielles du premier ordre.

+ » equations of this type in 2 variables are said to be ndependent if it is impossible
to find » functions ¢y, g9, *++, o, of the variables such that

o1 A1 ft oods St e A opdr f=0.
In the case of » = 2, this amounts to saying that the equations are independent if
one of them is not a multiple of the other,
104
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If three linear equations in three variables 4, f=o, 4,/ =o,
A; f=o0 have a common solution ¢(x, y, z) other than a constant,

ap ¢ o . . .
Fril il satisfy*the three homogeneous linear relations
A= Px + Ql +R1 8¢ =0,

d
4p=5321 0% +1e2"’

d
As‘#EPs + Qs Ry 8(:
Since ¢(x, y, z) is not a constant, g—i , ?9_¢’ %—‘: cannot all be
identically zero. Hence <
-Pl Ql 'Rl
A=\P Q. Ri=o.
B O Ry

It follows that three functions o(x, ¥, 2), os(x, ¥, 2), os(x, ¥, 2) can
be found * such that
(81) oA f+ oA f+ oy ds f =0

7.e. the three equations are not independent. Hence follows

THaEOREM 11. 7f the three equations in three variables A, f = o,
Asf=o0, Asf= o0 have a common solution, other than a constant,

they are not independent; or stated otherwise, Zhree independent

linear homogeneous partial differential equations in three variables
cannor have a common solition, other than a constant.

From Theorems I and II, it follows at once that if 4, f= o and
Ay f = o have a common solution,

(82) (AAd)f = pu(x, 9, D) A + palx, 3, 5)Asf.

* Thus, for example, one may take for ¢}, o5, o3 any three functions proportional
to the cofactors of the corresponding elements of any column in A.
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Clebsch gave the name of complete system to a pair of independent
equations 4,/ = o and 4,/ = o, which are connected by the rela-
tion (82). The last statement may therefore be‘ put into the form

Tueorem II1. If A,f=o0 and A f= o have a common solution,
they jform a complete system.

Conversely, we shall prove the very important

TueEOREM IV. [f A, f=o0 and A,f=o0 form a complete system,
they have a common solution.

In order to do this it is necessary to prove two lemmas.

Lemma L. ff A f=o0 and A,f = o form a complete system, any,
pair of equations formed of independent linear combinations of these,
also form a complete system.

The equations
(8 ) {Ale A'l(‘x} ¥, DA S+ #l(x! ¥, Z>A2f= o

A= N, , ) A [+ polsv, 3, 2)Asf = 0
are independent if Ay, — Aguy 20, Then 4, fand 4,/ can be found
as linear functions of 4,/ and 4,/ from (83).

Since 4,/ = o and A4, f = o are supposed to form a complete system,
(A 45) /= (\apa — Ao} (A1 Ao) [+ (Aihs — A\y) A+ (Avps — Aspun) Ao f
is seen to be a linear function of 4,/ and 4,7, and theretore of
A, f and A, f, which proves the lemma.

Moreover, any common solution of 4, /= o and 4,/ = o must be
such for 4, /=0 and 4,/=o, and vice versa. Hence the two systems
_are said to be equivalent, or each is said to be equivalent to the other

A system equivalent to the original system is obtained if the equa-
tions of the latter are solved for two of the three partial derivatives
af aof of
e ril
minants in the matrix

This can always be doite, Since all three of the deter-

£ QR
Ly Oy Ry
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do not vanish identically, 4,/= o and 4,/ = o being independent
equations. If, in particular 2 Q,— FAQ =D #o, the equations
ﬁf A

may be solved for Z— and -~ o , thus giving

s ar=ZLinZ- AJ—-+ 7.,

where 31=%——D&&, ”2=M' Here \, = Q'

B
Ql —P7 Pl o .
=—3, = =21 and Ap,— gy == 0, since all
[ D .D, P2 D 14 M1 D
functions involved are supposed td be generally analytic. Hence

equations (83") are independent. This fact is also obvious upon

d :
inspection, since the first equation is free of ér, while the second

)
does not contain a—é Moreover

(84) (AA)f = o.
For, since 4; /=0 and 4,/= o form a complete system
(82) (AAs)) = pAi S+ poAof.
In the case of equations (83")

A= AR~ ARy Y

d
which is free of both % and 5§ Hence p; and p, in (82) must both

be zero, and the form (84) follows.
A complete system for which p, = p, = o is called a_Jacobian* com-
plete system. We have thus established

# Originally this term was applied only to a complete system in the special form
(83”). Lie and other mathematicians, however, used it, as above, to apply to the more
general class of complete systems; (see Lie, Diyferentialgleichungen, p. 202; Goursat-
Bourlet, loc. cit., p. 347+ also Encyklopidie der Mathematischen Wzmemc/zaﬁm ‘Band
11y, p- 3135).
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Lemva 11— A Jacobian complete system can always be jfound
equivalent fo a given complete system.

Remark.— It should be noted that this equivalent Jacobian sys-
tem is not unique, since starting with such a one, the system obtained
by taking any pair of independent linear.combinations of these equa-
tions with constant multipliers is another system of the same sort.

It is easy to show that a Jacobian complete system has a solution.
Suppose that 4,/ = o and 4,/ = o form such a system. Then

(84) Ay f= A Ao f)— A(A H=o.

If #(x, y, 2) and v(«, », %) are two independent solutions of one of
the equations, say 4, = o, any function of # and » will equally well
satisfy this equation. It remains to find such a function of them,
F(u, v), that it shall also be a solution of the other equation 4,/ =o0;
that is,

(83) A (ue, U)E%—ijtqgu —}—%Aw:o.

Replacing f in (84) by # and v successively,
A(Asu)— A(Au)=o and A (A.0)— A(Av)=o.

Since 4,# =0 and 4,7 = o, it follows that
A, (A)=o0 and A(Aw)=o.

Hence Au and Ay are functions of # and v, say ¢(#, v) and (%, )
respectively, and the equation (85) to determine #(#, 2) is

(85" ¢ (u, Z/)g—f—}- W(u, ﬂ)%:o_

The solution of this equation (which is known to exist by the gen-
eral existence theorem) is a solution of the Jacobian system 4,/=o,
A.f= o, and consequently of the equivalent complete system 4, /=0
and 4,/=o. Theorem IV is thus proved.
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All that has gone before can be extended at once to homogeneous linear equa-
tions in 72 variables.
Without changing a word in- the proof of Theorem T we have: /f

P (a1, Xa, v0y Xn) IS @ solution of the two equations

A f=Pu(xy, -, xn)éa;f;+ Pra(xy, X2y +ooy Xn) 58:{; + -

d .
Az f= Poy(x1, X2, -+, 2n) a—f; + Faa vy, Xy ey n) a‘% + e

+ Pon(x1, X2y <0y n) aan; =
it is also a solution of (A14s)f = o.

As before, if n equations have a common solution, other than a constant, the

0,

equations cannot be independent. For the determinant of the coefficients

Py Pz e P

must vanish. Hence a relation of the form

crdif+ o2daf+ o + on Af=0

must exist.
Starting with » independent equations

Af=0, Asf=0, -, drf=0(2Zr<n)

with a common solution, all the equations
(AiAK)f:" O, (Z! K=1,2,3, 7)1

will also have this solution. Some or all of these equations may be independent
of the original equations. Adjoining these to the latter, the process may be
repeated as long as independent equations can be found. This process must
come to an end before the total number of equations reaches ». For it has just
been seen that there cannot be » independent linear equations in 7 variables
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having a common solution, other than a constant. We have thus obtained a

system of s equations

Aif=o0, Asf=0, +, Asf=0 (r<s<n)
such that (44 ) f=p1d1f+ pgA;f-l— o+ psAsf,
(ir K=1,2, 3 5)'

Such a system constitutes a complete systenr. We have thus shown that i/ »
equations have a common solution, every member of the complete systemr determined
by them has that solution.

It will be left as an exercise for the student to show that starting with any
complete system an equivalent Jacobian system # can be found. The method is
identical with that given above for three variables.

That a Jacobian complete system” (and, therefore, any complete system) of «
equations in 7 variables has 2 —s independent solutions may be proved in a
manner entirely analogous to that used above for s = 2, = 3. To illustrate, the
case for s = 3, # = 5 will be given without detail:

The equation

Ayf=Pn 9 + Pm—ai + PIS‘QZ + Puﬁi + Py O - 0,
LT Oz Oxg Oxy Jxs

has four independent solutions z, %s, w3, #y (EL Dif. Eq. § 79). The problem
is now to show that some function /“(#y, 29, wus, 24) of these will satisfy both
Azf=o0and 43/ =o.

Since #, for Z =1, 2, 3, 4 satisfies 41/ = o, it follows on replacing f by #; in

the identity (Ardn)f= Ay (A f) — Ax(dif) =0

that 4z, is also a solution of A4/ =o0. Hence As2; must be some function of
w1, o, U,y 2y, Say Ps(2e1, 09, 15, 2y), for £ = 1,42, 3, 4. If Fis any solution of the
equation involving the four variables ey, 2., 23, 24,

OL 4 9297 1 4,9 4 4,97 =,

dur Quz Juis Quty
it will be a solution of 4; =0 and Az f=o.

A F=¢y

* A Jacobian complete system of § equations is one for which

(AAdNf=0 (¢} k=123, ).
See previous footnote.
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This equation has three independent solutions vy, vs, 73. Any function of these
will be a solution of .f; /=0 and A,/=0; and conversely, every solution com-
mon to ;=0 and s/ =0 must be a function of 7, os, #;. It remains to
show that some function, ®(2y, 72, #3), of them will satisfy Asf=o.

As before, it follows on replacing f by z; in the identities

(‘41:1;;)/15 :11(‘43f.)— Ag(.-llf) =0 and (A-;A;‘)fEAg(/[;;f)— Ag(/[gj-) =0,

that'452; is a solution of both 43/ =0 and -,/ =o0. Hence 437; must be some
function of @y, @, 73, say ¥i(v, vy @), for £ =1, 2, 3. The function ¢ may then
be any solution of the equation

—, 0P kg a¢
Ayd = T e =,
w=h dv1 ye 2 ¥o 0vs °

This is known to have two independent solutions. Each of these is thevefore a
solution of the complete system, and there can be no others,

32. Method of Solution of Complete System.— To actually find
the solution common to the members of a complete system A4, f= o
and 4,/= o it is not necessary to pass to an equivalent Jacobian
system. If # and 2 are two independent solutions of one of the
equations, 4, /= o, it is known that some function #(#, v) is a solu-
tion of the other; Z.e.

oF 0F
(85) Agﬁ(u, 'Z/)EAgZJ% +A27]%= O.
or
O0F | AwdF
86 = 20 T =~
(86) 0w Ay dv ©

Knowing that some form of Z(x, ») must satisfy this equation,
whence o and oF are also functions of # and 7, 4w
du dv Aqrt
function of # and 2.* Hence (86) may be written as an equation in
these two variables only, and the usual method of solution for such

an equation may then be followed.

must be a

# [t should be noted that in this case, unlike in the case of a Jacobian complete sys-
tem, Aqu and A;v need not be functions of % and v, although they may be.
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Ex. 1. A A A

Alfzﬁ;zo’ Azf—zjx$—|—y@-|—z o

=
Since (4,4,) /= A/, these form a complete system.
Here #=y, v=z are solutions of 4,f=o0. Then Adu=y=uz,

A =3z=1v, and equation (85) may be used to determine #'; thus

aF . aF_
“ou Tl =

The general solution of this is any function of ?. Hence the com-

u
mon solution of the complete system is any function of z
B

Or starting with » Ej_f, = g, the solutions of 4, /=0, and noting

that 4,u = i, A= g , whence A 3 g, equation (86) is
w oz u
0F v 0F_

o ' udw =o

Its solution is =7, giving the common solution of the system o1
; u 3
equations.

_ Y Y
Ex. 2. A]_f: xyx—k_y—a-—y +Z§};’
el O N o
Af=(>" 45 +}z)a—x+ P+ P— xz)@ + (%2 —i—yz)gz_ o.
These form a complete system, since (4,4,)f = 4, /.

Here qu—C, =7 are solutions of A f=o. Aﬂ:mz_—xy,
z z z

Azz;=w. B — %, and equation (86)is
v

z Y Ay y
OF _udF_
du v dv

Its solution is 22+ 2% Hence the common solution of the com-

2 2
plete system is any function of g :;y ;
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Ex.3. 4, f=y %—xa'—f , Aof = f

T dy s
o o _
Ex. 4. 4, f=ux 87»_*—26 A._,f:J@_;_za_z_O_

Ex.5 Af=a l f+ BZ_O’ A_f_xl+ f+ af

) ) )
Ex. 6. A,fs(x—y—}-z)%c—2)*5§+(x—y+z)a{=o,

A= (r=9 L+ 6= DYt (x-D G =0

Ex. 7. 4 /= (xo—}')f—l-(yz—a)a (I—Zz)af

2 Y 4 20 _
Ao f = +5) 5 + 209 @—y(l — B

33. Second Method of Solution. — If ¢(x, y, 2) is a solution of the
complete system 4, f= o and A4,f= o, the equations

A1 = P1 +Q16¢+Rla¢—°:

Asp 51)26_¢+ ngis’*'[eza—d’:
dx dy dz

. d d d
gve 2.0 3b_op QR RP— R : PO~ PO,
dx dy Oz

Since the total differential equation which has ¢(x, y, 2) = const.
for solution is

b ad d
dx i+ dy v+ 0z =D
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or differs from it by a factor involving x, y, z only, this equation
may take the form

(87) (Q1R2 — QuRy)dx + (R.P— Rzﬂ)(i}’ +(AQo— PQr)dz=0.*

The problem of solving a complete system is thus reduced to that
of solving a total differential equation (87). At times the actual
work involved in solving (87) turns out to be simpler than that re-
quired by the method of the previous section.

Besides the usual methods for integrating total differential equations (see
L1 Dif. Zg. Chapter VI) the following method due to Dubois-Reymond may be
mentioned.

Instead of letting one of the variables, say z, be a constant temporarily, as is
usually done, let it be a linear function of the other two, thus

z=x + ay

where « is an arbitrary constant. This relation carries with it

dz = dx + ady.

Eliminating z and @z from these two and the total differential equation, there re-
sults an ordinary differential equatibn

M(x,y, a)dx + N(x,y, a)dy =0t

whose solution Y(x, 3, a) = const.

* Equation (87) may be put in the convenient determinant form
dx dy ds
P Q) Ryj=o
Py Q2 Ry

which expresses the condition that the above three homogeneous linear equations in
do, 0o 0%
Ox dy Oz

1 If it happens that this differential equation does not contain a, some other linear
relation among the three variables containing an arbitrary constant should be tried
leading to a differential equation in two of the variables only and containing the arbi-
trary constant,

are consistent.
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gives, on replacing « by its value in terms of x, 7, =,
¥ (r. A = x) = const.,
y

which is the solution of the total differential equation.
This method requires the solution of only one ordinary differential equation
instead of two, as in the usual method, when an integrating factor is not known.

But in actual practice, this theoretically simpler method may not prove as de-
sirable as the other.

Ex. The examples of § 32 should be solved by the methods of
this section.

Thus for Ex. 1 the total differential equation to be solved is

dx dy dz
I o0 o|=zdy- ydz=o.
x ¥ B

Its solution is £ = consz.

For Ex. 2 dx dy ds
x ¥ z =0
224324y 22492 —az (v + )

becomes, on multiplying the second row by x + y and subtracting from the third
row,

dy dy dz
B+z—x)x y z|=o0
y —x 0
or xzdx + yzdy — (X2 4 y¥)dz = o.
2 1 42
An obvious integrating factor is — L | and the solution is f—’tl = const,
z(x% 4+ %) z®

34. Linear Partial Differential Equation Invariant under a Group.—
The homogeneous linear partial differential equation of the first order,

(88) ar=PY 0¥ L Y _,,
dx dy dz
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has two independent solutions ¢,(x, ¥, 2) and ¢,(x, », 2). Every
other solution is some function of these.
The result of transforming (88) by the transformation

(89) ¢(‘x’ _y; Z), .yl S[’(x; _yy Z)’ &y = X(x; J/, Z)
is ([15], § 11) the new equation

Vg ¥
(99) gL+ ay T+ ax L =o,

where A, Ay, Ax are to be expressed in terms of xy, y, 7. If (go)
is the same equation in the new variables as (88) is in the old ones,
or differs from it by a factor, the transformation (89) is said to leave
the differential equation (88) unaltered. In this case it must trans-
form both ¢, and ¢, into solutions again ; that is, they are either left
unaltered by (89) or they are transformed into some functions of

themselves by it.
Let us find under what condition (88) is left unaltered by every
transformation of the group

Uf§§%+ngl+fg'

We have seen ([7], § 11),
2
¢i(x1: Y Zl): ¢i(x) I Z)—I— Ud’fi‘ + UQ(#I 5 -t day
(f=1,2).

In order that this be a function of ¢, (x, ¥, 2) and ¢,(x, 7, 2) for all
transformations of the group, 7.c. for all values of Z it is necessary that

(91) U, = Fi (1, $o), (F=1, 2).

It is readily seen that this is also a sufficient condition. For

Ud, = UUS; = UF;(¢y, bo) = ¢' U, + 4) U‘;bo 6¢ 1+ Frs F
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which is again a function of ¢, and ¢,. In the same way it can be
shown that if U%¢, is a function of ¢, and ¢, U**'¢; is. Hence,
(91) is the necessary and sufficient condition that the equation *
whose solutions are ¢, and ¢, shall be invariant under the group.

It is desirable to have a condition expressed in terms of the differ-
ential equation itself. The linear equation

62) (VA= (P~ 49T + (U~ anT +(UR—a0Y <o

has ¢, and ¢, for solutions when 4f=o is invariant under /. For
(Ud)p;= UAp;,— AUp; = U(0) — AF (¢, ¢s) =0
F=1,z2).
Since (88) and (9z) have the same solutions, they must be the
same equation, to within a possible factor, by the previous footnote.

* A unique linear differential equation of the form (88) (to within a possible factor
involving the variables only) is determined by two independent solutions. For if
¢1 and ¢ are the solutions of

—p 4 O
Ar= +Qa +Raz o,
then A¢1_P%+Q%+Raa;’sl_o,

pOP2 ;092 02

a ——Q a— +R a— o,

_ 081062 d¢19¢2, do1 dp2 I 6¢2 J¢1 02 o1 A2
T 0z 9z Jy 0z Oxr OIx dz  Ox Iy Iy O«

Apy=P

So that the differential equation having ¢; and ¢, for solutions may be written in the
convenient form

9x & 0=
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Hence when Af= o is invariant under Uf
[31] (UA) S = N, 3, 2) 4.

Conversely, when [31] holds, (88) and (92)* have the same solu-
tons; then (r7py4 = Udg,— AUp,=o, (i=1, 2).
Since A¢; = o, it follows that 4(Up,) = o ; hence U, is a solution of
(88), and must be a function of ¢; and ¢,.

‘Therefore [31] is both the necessary and sufficient condition that
Uf leave Af = o unal[ered.'[‘

Thus, the group Uf=x +y gf+ z gf leaves Af”‘ o + gj 3f_ 0 unal-

tered, since (U4) /= (Gf + 8f+ af) — Af.
0Oz

Similarly the same group leaves 4=y -~ s _ af Qf = 0 unaltered, since
(=0 oy

It also follows from this that the group Uf=y %f;-— xgif-}— z 3 leaves the

x 4

equation A/ =x +y g—;—} z f_ o unaltered.

Remark.— From the form of the condition [31] it is obvious that
if an equation 4f = o is invariant under each of a number of groups
O/, Usf, +++, U.f, it is invariant under f = a,0, f + a,U,f + -+
+ a. U, f, where a,, a,, -+, @, are any constants.

*1If \(x,y, z) is identically zero, in other words if (UA) f=o for all functions f
[31] is still a sufficient condition that Uf leave 4f=o unaltered. In this case one
cannot speak’ of the equation (92); but writing the identity (/) f/=o in the form
Udf= AUf, it follows that AUsp; = o since Ud¢p; = U(c) =o0. Hence Ugp; is a
function ¢ and ¢ as above.

+ Using the method of the previous footnote, it can be shown that a homogeneous
linear equation in # variables is determined, to within a factor by its # — 1 independent
solutions. The argument of this section therefore applies without change to such an
equation. .Hence [31] és the condition that Af= o, involving n wvariables, shall be

invariant under the group Uf=§; 6(97’ +& aaf - +E, af In § 15 essentially the
Xy Oxn

same method for the case of two variables was carried out.
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Ex. Determine which of the equations below are left unaltered
by each of the following groups :

1. U= xal+yal(+—af~
Ox dy 9z

) )
2. @‘E}ié—xé-

_ 2 of .
3. Uf:x"’a—x—}-(xy—{-xz——yz)@—l—(zxy—yz)a—z

O .
8x+y8y+zaz

4. Uf==x
a. Af = xal('-}—yg: 0.
Jx dy

b. Af = ng-l—fa;f—xya—j(:o.
dx dy 0z

=Y YT
& Af_8x+6y+6z—o.

=Y LY o _
A Af_xyax x"ay—{—(x—i—y)az—o.

35. Method of Solution of Linear Partial Differential Equation In-
variant under a Group.— If the equation 4/=o is invariant under
Uf*

[31] (UA)f =2,

ie. Uf = o and Af=o form a complete system. Hence the methods
of §§ 32 and 33 are available for finding one of the solutions of 4/ = o.
* While Uf=p(x, y, z) Af lcaves A/ = o unaltered for all forms of p(x, y, z), such

a group is said to be #rivial because it is of no service in solving Af=o0. We shall
presuppose that the group Jf under consideration here is not trivial. :
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Having thus found ¢(x, y, 2), a common solution of {/=o0 and
Aj}: o, a second solution of 4/=0 may be found in the following way :

Since ¢(x, y, ) is not a constant, it must involve at least one of
the variables, say z. Replacing z by the new variable

z=¢(x, y, 2),

the equation and the group take the forms ([15], § 11),

A =P 5, 9T+ 0 5 9T =,

) d
U=k 5 %A@ 1 9,
since Ap =0 and Up =o.
* Here P, Q, £, 1 are what 2, Q, , 4 respectively become when in
them z is replaced by its value in terms of x, y, z obtained from
z=¢(x, y, 5). Here z plays the role of a constant since the coeffi-

cients of gl[ in Afand Uf are both zero. To solve Af=o0 we pro-
z

ceed to the corresponding ordinary differential equation
Qdx— Pdy=o.

This is invariant under Uf. Hence the methods of §§ 12 and 20
may be employed.

Remark.— When the usual Lagrange method (see £/ Dif. Ey.
§ 79) is practicable, it will, as a rule, prove simpler than the method
of this section. As an exercise it may be desirable to solve the
examples below by both methods. But the Lie method is of inter-
est theoretically and may prove valuable when the other method can-
not be carried out.

A e A
Ex. 1. 4f= *L 2y — ZL=o.
X [=2xy 22 yay+(y xz)zaz o

The coefficients are homogeneous and of the same degree. Hence

this equation is left unaltered by the group {f = xgl + gic-i—z%(;
as a matter of fact, (UA)f = 2 4f. ¥ J i
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By the method of § 32 or that of § 33, x_z is readily found to be
z

the common solution of 4/ = o and Jf=o.

The transformation z = ‘x—)_: reduces Af=o0 and {f to-
Af = zxyﬁ‘gj—(-— 2x?yaf—oand Uf= e +yaf
dox dy
respectively. The corresponding ordinary differential equation is
2x%ydx+2xy°dy=o.

Lie’s integrating factor (or the obvious integrating

"
2@

factor L) leads at once to the solution &%+ y*=consz. Hence two
Xy

independent solutions of 4/ = o are 2 = ) and &+ i
7
Ex 2. 4/=@+8 4+ L 1@ +y—2)L 1@ 19L =o.
Ox dy 0z
Ex.3. df=(x +J’)% +(= —I—y)%j;—(x +y+2 z)(%: o.

[Invariant under Uf =(» +y)3—£ +(x —l—y)%—}— 22 %J—;, as well as

under U_fEx%-}-ya—f—Fzg :
Oox ay 0z

Ex. 4. Af =(xz —y)gl +(yz——.ac)'z +(z —zz)g—izo.

|:Invariant under {f = x & -l-}’ gﬁj}

36. Jacobi’s Identity.— For further development of the theory it
will be necessary to have available a certain identity first noted by
Jacobi and known by his name :

If Avf, Asf, Ao f are three homogeneous linear partial differential
expressions in any number of variables,

(93) (Ar2) 45) [+ ((Asds) A1) f +((Asehr) 42) /= o
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This may be verified directly in the case of three special forms,
and also in the general case for two variables. This is suggested as
an exercise to the student.

Probably the simplest way to prove the theorem is the following,
due to Engel :

Since (A, 4s)f = A\ Ay [ — A A4 S,

(4,4 A45) f = A\ Ay Ay [~ As A Ay [ — ArdrAs [+ AyAdrAy f

((Asd)A)) f = AyAdz Ay [~ ArvAvAyf — Az [+ AiAAs ],

(Asd)As)f = Az Ao f — Aoy [ — Az Ay [+ Ay A Ay ).
The sum of these is obviously identically zero. Hence the identity
(93) is established.

37. Linear Partial Differential Equation Invariant under Two
Groups.— If the equation 4f=o is invariant under two distinct *

groups U, f and Uf,
(3] QA f =Mdf, (GeA)f =NAf.
Jacobi’s identity (93) for U/, Uhf, Af is
(O f +((GeA) NS + (AT Ui f =o.
Using [31'] and obvious properties of alternants (§ 14), this
becomes (GO f = pdf,

where p = U\, — TpA;,. Hence the

THEOREM. — Jf Af = o 15 invariant under U f and U,f, it is also
invariant under (U, Us) /.1

*Two groups U fand U,/ are said to be dustinct with respect to the equation
Af = o, provided no relation of the form

(94) ay U f+ayUa f+p(x, 9, 2) Af =0

exists, where a; and a, are constants and p is any function of the variables. For it is
obvious that it U) / leaves 4/ = o unaltered, (%, f=c Uy f+ pAf will also do so for all
choices of the constant ¢ and: of the function p(x, y, z).

+ This theorem holds, and is proved in exactly the same way, for z variables,
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If (L 85) f is not of the form
(95) alUlf +a, U:’f+ P(x: ) Z)Af,

where a, and @, are any constants and p is any function of the vari-
ables, it is said to be dis#inct from U, f and U, f with respect to the
equation 47 =o. In this case the theorem gives a new group under
which the equation is invariant. The theorem may then be applied
to this new group and one of the original ones. And so on.
Remark.— It is important to note that there always exists a linear
relation between four homogeneous linear partial differential expres-

sions of the first order in three variables.* For eliminating glf, gj—(,
oY
glr from the four identities
. i, o, .9
Urf= fxl‘f' ml‘f‘ Zl—'[q
Jx dy 0z
—e LY
U — G . -
z_f f_ax"*‘?]zay’l‘g-az:

=V Y
a;sf—-‘fsax"f‘ﬂzay‘l'c.?az;

U= &%‘f‘%%‘l‘ Z4g—jz(

the linear relation OFf & m &
O.f & 72 & -
U3f fs L/ Zs =°
[/;f 54 M1 Z4

is obtained. In general the coefficients are functions of the variables.

#* Similarly, there is always a linear relaticn between # +- 1 such expressions in 7
variables,
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As a consequence we always have
06) () f=w(x, 3, 2) Of+ aa(% 3, ) of + p(x, 3, 5) Af.

If it turns out that e, and «, are constants, this is of the form (95), in
which case ({1 0) f is not distinct from U fand T 1.

Thus the equation Af‘" af —a-[ e —f— ois left unaltered by
)y Oz
if=0— z)(jZ and UngxQQ[ +x2'3£+(2 xy — 32) Qf’
oy dx oy 0z
since (hA)f=o0, (hd)f=— 2x Af.

Moreover (U Us)f= —(x——y)‘zg—;-i- 2(y —2)(x "'}’)g{

also leaves 4/ = o unaltered, since ((U10:)A4)f=o0. Itis readily seen that

(U ) f=— (xr — )? Ulf_z(y—-ﬂ Usf+ 2-3‘2(J/—Z)Af:
y—z x—y x—y
Again

(T UR) = [4(y — 2 (x — ) + (x — 9)7] g§+ 2y —2)(x— 25+ z>§{

—[4(x y)+(x y)]Uf—)-z[z_y—l—( )Jsz

e

also leaves 4/ = o unaltered, as is readily verified. And so on.

38. Methods of Solution of Linear Partial Differential Equation
Invariant under Two Distinct Groups. — Two important cases are to
be distinguished :

A. If a relation of the form

(97) U f = a(x, 3, D) O f + p(x, 3, 2)ASf
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exists,* where « is not a constant, I, / is still considered distinct from
1/- In this case a(x, v, 2) is a solution of 4/=o0. For, since
Af= ois invariant under 05/, (Uod)f must be a multiple of 4/. But

(@O +pd, A)f= (Ui A)f— Aa Ui f— Ap Af
= (a\, — Ap)df—Ae U, /.

Since 0/, f is supposed to be not trivial, z.¢. not a multiple of 4/
(§ 35), the only way in which (l,4)can be a multiple of A/ is by
having 4« =o0. Hence « is one of the two independent solutions
of 4¥=o to be found. {

To find a second solution of Af= o, several possibilities may arise
which will be mentioned in the order of desirability :

1° Since 4f=o is invariant under U, f, U« is also a solution of
Af =0 [(91), § 34]. If Che turns out to be distinct from e, it may
be taken as the second solution necessary to give the general solu-
tion of Af = o.

2° If Thet is a function of « or a constant other than zero, two
methods are possible :

* A linear relation between Af, U/, U, f will show itself by the vanishing of the
determinant of their coefficients, thus

P 0 R
A= m & |=e.
L m

o= Q% — Ry _ RE — P§'2= Py — 052_
Qh—FRn  RE—FPG Pr—QF

+ Conversely, if ¢ is a solution of 4/=0 and U] fis a group that leaves the equation
unaltered, '

[35] Gyf=aUf+pdf

Here

will also leave it unaltered no matter what be the form of p(#, y, z). For
(ThA) f= (@O, + pA, A)f= (eh — Ap) A,
since A=o. [Compare (35) § 17.]
ISince ha=aUyo+pAde =oU; , it is sufficient to consider U, only.
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(@) The solution common to Af=o0 and U,f=o0 (or Uyf=0)
may be found by either the method of § 32 or that of § 33. Since
Ui == o, this common solution will be independent of a.

(#) Since ¢ must contain at least one of the variables, say z, the
introduction of the new variable z = « (x, y, %) in place of z reduces
Af = o to one in two variables,

; 5)
P(‘x; Y, Z)%é'l_ Q(x: Vs Z)é: o,

z appearing as a constant since the coefficient of gz is zero. (Com-
z

pare § 35.) But since ja== o, the above equation must be inte-
grated, without any further assistance from the groups 0/, f and U,/.

3% If Ue = o, the method of § 35 is available; thus the intro-
duction of the new variable z gives the same differential equation as
above, but now the transformed group

af of
gl(x7 Js Z)Ex + 1’]1<ﬂC, Js z)@

under which it is invariant also-leaves z unaltered. Hence the
methods of §§ 12 and 20 are available for solving the corresponding
ordinary differential equation

Qdx—Pdy=o.

B. If no relation of the type (97) exists between 4f, U/, U/,
the relation

96) (GAUNS=e(@, 3, YOS + eal, 3, 5) Uf +p (3, 3, D4,

which always exists (Remark § 37), will prove of service if ¢ and «
are not both constants ; for @ and «, are solutions of 4/ = o, as may
be seen from the following consideration : *

* By exactly the same kind of reasoning as that employed here, the following gen-

cral theorem can be established. (It is suggested that the student carry out the proof.)
If the equation in n variables
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By the Theorem of § 37, (0} 05)/ leaves Af= o unaltered. Hence

(WU A4)f= pdf.
But

(e O+ Uy + pA, A)f= ey UlA)f+ “2([]2A)f‘— Aw U f
— Aoy Uy f— ApAf
= (i + why — dp) Af — Ay Uy f— Aa, U, f.

Since no linear relation is supposed to exist between Af, U/, U.f,
the only way in which ((40;)4)f can be a multiple of Af is by
having A«,=o0 and Aa;,=o0. Hence @, and «, are solutions of
Af=o0.*

1° If @) and a, are two independent functions of the variables, the
general solution of 4/=o is known without any further work.

2° If one of them, say «, is a function of the variables, while the
other, ,, is either a function of «, or a constant, use may be made of .
the fact that {je;; and Ui, are also solutions of 4f=o [(91), § 34].
‘If either of these turns out to be a function distinct from e,, it may
be used as the second solution.

=, L p, oy p Wy
Y Oz ¥
is invariant under » + 1 distinct groups Uy f, Uy [+, Urs) f; and if no linear relation
of the lype LU+ a2 Ubft oo + ar Urfb pdf=o
exists between Af and » of the Uf's, but
Ut/ Z 0 U+ e Us ft - o U f+pAf,
then iy, Oy, *++, tbr are soluticns of Af= o.

# The student should have no difficulty in showing that, conversely, if «; and «,
are solutions of Af= o, and U fand U, fare two groups that ledve the equation unal-
tered, the group '

[357] Upf= @ Ui f+ agUs f+ pAf

will also leave it unaltered no matter what be the form of p(x,y,2). (Compare [35]
above.)
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3° If both They and Uhe* are either functions of e; or con-
stants, either of the methods (a) and () of A, 2° may be employed.

Or,

(@) if one of Uhey and U is zero, the method of A, 3° is
available,

(4) if neither is zero, the group Ff= ley U1 f— UheyUsf leaves
Af=o unaltered, and Ve, = o; hence case (a) exists.

4° If both «, and a, are constants, say @, and a,, the solution com-
mon to Af=o and Ujf=o0, and that common to Af=o and
U, f=o0 may be found by either of the methods of §§ 32 and 33.
Moreover, these solutions will be independent since there is no
linear relation connecting Af, U, f, Usf. (Theorem II, § 31.) We
shall show, by a method due to Lie, that an integrating factor for at
least one, and sometimes for both, of the total differential equations
arising in the method of § 33 can be found in this case. (But it is
possible, at times, to find by inspection, an integrating factor that is
simpler than the one given by the following method) :

In (WU)f=a U, f+ a;Us f + pAf either e, and a, are both zero
or they are not. .

(2) f ay=a,=0, (O, U)f=pA4f.

Since Af= o is invariant under 0/,
(GaA) = N
If ¢(x, , 5) is the common solution of 4= o0 and .U/ f=o,
UhUsp = o, since (U1 Uy)p= UhUnp — Uhlhp =pAdd=o0;
AUsp = o, since (Uhd)p = Updp — AUsp = \oAd = o.

These identities can hold only provided 4¢ is a solution of both
Uif=oand 4f=o0; ie. Uy must be a function of ¢, say #(¢h).

#In this case (U;Up) 0 will also be a function of @, or a constant, inchwding zero,
because of (96).
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Moreover #(¢) = o, for, as noted above, 4f=o, U f=o0, U,f=0
cannot have a common solution, since they are independent. As
was done in an analogous case in § 12, ¢, the common solution of
Af=o0and (/= o0, may be chosen in such a form that U = 1.” It
must then satisfy the three equations

Ap=p2¢ 1 % 202
dy 9z

U= éla"b+ma¢+zla¢’—

do _i
Up= ‘fzc.) +7 8y B

These equations determine 6)_4) %q& %d) ; whence ¢ is obtained from
dx” dy

g =P g 1 I8y B0,
ox dy Jz

by the quadrature

iR rex
b= 5P Q , where A=\& ¢ 4

‘51 n Zl

T 52 N2 z?.

In exactly the same way, i, that form of the common solution of
Af= o and U,f=o for which Uy =— 1, may be obtained by the

quadrature di g &
P Q R\

Y=
& 2 M2 &

The determinant A is thus seen to be an integrating factor for each
of the total differential equations arising in the method of § 33 for
finding the two independent solutions of 4f=o,
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(%) If only one of @, and as is zero, let a3 =o. Then
(LU f=a U f+ pAfS-

In precisely the same way as before, it is seen that, if ¢ is the
common solution of 4f =o and 4 f =0, Uyp =1 (p)#£ 0. Hence
that form of ¢ for which ¢ =1 is given by the quadrature

To find a second solution of 4/ = o, independent of ¢, either the
method of A, 3° may be employed, or the common solution of
Af =o0 and U,/ =o0 may be found by one of the methods of §§ 32
and 33.

(¢) If both @, and g, are different from zero, consider the two

groups Vi=a, U f+ aU,fand U,f.

These are obviously distinct and leave 4/ = o unaltered. More-
over (VU f=a,Vf + aspdf.

We are thus under case (4) and the method for that case may be
employed,

Note.— For practical purposes it may be worth noting, that the
choice of the groups 0, f and Vf=a,U,f + a,Usf also leads to
case (4).

Remark 1.— A hasty survey of the processes involved in the
methods to be employed in the various cases considered in this sec-
tion, brings out the fact that when two distinct groups are known
under which the equation A/ =o is invariant, the solution of the
latter can be obtained by means of quadratures only, except in the case
of A, 2°, where one ordinary differential equation of the first order
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must be solved. In certain cases, such as A, 1° and B, 1° and 2°, no
integration whatever is required. In the above scheme, certain alter-
native methods involving the solution of differential equations have
also been suggested, for in certain cases these processes may prove
simpler of execution than those involved in carrying out quadratures.

Remark 2.— 1t is easy to prove the existence of a pair of groups
1/ and 04/ under which A/ =o is invariant, and for which no
linear relation of the form (97) holds. For 4/ = o has two indepen-
dent solutions ¢; and ¢, These are independent with respect to
at least two of the variables, say x and y. Introducing the new
variables xm i, 9 ), U=l 3, 2), Z=3,
Af =o takes the form

Afznlxg-'é-i-dy af+Az af—

Y _
or 9z = 0.

By inspection U, f = s and U, f = gl are seen to leave the differ-
dx Yy

ential equation unaltered. Moreover there is obviously no linear

relation between git gf gf Passing back to the original varia-
y 0z

bles, Af=o will be invariant under the groups &, / and U, f into which
U,f and U.f are transformed, and no linear relation can exist now.

Ex. 1. Afz(x+y)%+(x+y)%_(x+},+zz)g_gzo

This equation is invariant under

Ulfz(x—!-y)aif+(x+y)gz+22§and
Gif = s+ Lot s(a+0) gy + 2 ) a9+ 425,

as may be verified easily.
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Here A=o, and U, f=(yz+ 25+ x)) U, f — xyAf, (A).
yz+2x+ xy is a solution of Af =o.
Moreover Ui(yz+2x +xy) = 4(pz + zx +xy) + (x —3)° is also a
solution (A, 1°).
Taking account of the first solution, the second one may be
replaced by x—y. Hence the general solution of 4/=o0is

®(yz+ox+xy, x—y)=o0.
Ex. 2. Af=(xs —.}’)%4—(}’5—@%4-(1 ——zz)(;i:—_—o.
This equation is invariant under

U]_fzxg _}_y?[ and
Oox dy

2 2 (9 : 6 6
Uf= (x'—f—y')ai(—l- & 5y 1_}-(1 —261‘
% dy 0z
A=o,and U,f = (x+y5) O f —yAf.
% -+ yz is a solution of 4f=o.

Moreover Oi(x+y2)=x+yz% 0 (A, 2°).
To find the solution common to A7/ =o0 and U,/ = o the method
of § 33 requires the solution of the total differential equation

(@ —DNdx—x(1—P)dy +()° — x*)dz=o.

An obvious integrating factor is leading to the

- r
==

solution
log (Etyrdey_ const.
\ox—y1—3
or xryritytas const,

% +38— (3 + 3

The left-hand member of this is, therefore, a second solution
of Af:O.
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Taking account of the first solution, the second one may be
replaced by y-+sv. Hence the general solution of 4f=o is

@(xr+ys, v+ 2)=o.

Bx 8. 4/=@AnLt @Y —etrta9) =o
U1f5<x+}'>%+(x+)')%+zzg—£-
O =@ =)@ +r+a9 L

Bx & /=G H0E+E+NE—(4r+29F =0
ULf—:—‘<x+_y)g{;+(x'+y)%+zz%€.
r=eLir L s

Ex. 5. Af_af gﬁ+af; o.
Gr=(-93
szzx"’%Jrf%Hzxy—f)%-

Ex. 6. AfE(ﬂcz—y)g{—CHyz—x)%Hl—'zQ)g—];=o
Uf= }/af-i—xf

Ung (x2+y2)gé€+ zxy%é—_y(l —ﬁ)%-
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CHAPTER VI

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER

39. Differential Equation of the Second Order Invariant under a
Group. — The differential equation of the second order

(98) W= F(x 3,07
is equivalent to the system of equations of the first order *

dx __dy ay'
(99) E_G D
T ) F(x0,0)

If the solutions of the latter are
(100) u(x,y,y)=a, v(x,),2) =24,

the solution of (98) may be obtained by eliminating y' from the two
equations (100).T

Instead of solving (99), one may find # and v as two independent
solutions of the corresponding linear partial differential equation {

af af af
101 Af =249y L+ F(x, v, 3L =o.
( ) f ax+.y a)’+ ( )-)})ayl
The problem of solving (98) is thus reduced to that of finding two
independent solutions of (1o1).

If (98) is invariant under a group UJf, the equivalent system (g9),
involving the three variables x, y, »', is invariant under the extended

* Bl Dif. Eq. { 68.

4 The equations (100) are two independent first integrals of (g8). (See § 52,
Theorem 1V.) Y Ll Dif £qg. § 79.

134
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group U/, The effect of '/ on # and #z is, therefore, to trans-
form them into some functions of themselves ; Z.e. U' = ¢(u, v),
"r=y(u, v). Hence the linear partial differential equation (1o1)
having # and z for solutions is also invariant under U'/(§ 34).
Consequently the method of § 35 may be employed to find # and 2.

Remark. — Since the invariance of (98) under F implies the
invariance of (1o1) under the extended group, and conversely, it
follows from the remark of § 34 that if (98) is invariant under each
of a number of groups '/, Usf, -+, U,/ it is invariant under the
group (F=a, 0 f+ a;Usf+ -+ + a, U, J, where ay, a,, -+, a, are
any constants.

This remark applies without modification to a differential equation
of any order, because the form of the condition [31], § 34 is inde-
pendent of the number of variables appearing in the linear ‘partial
differential equation Af=o.

Ex. 1. apy''+x?— ' =o0.
- G L ; _of af
This equation is invariant under {f= x2- + W, for any value
43

dx
of 2 (VI, § 28). In particular it is left unaltered by /=« gl +y%-
Py
Here Af=Y S Y=
O0x dy xy ay'

Y Y sy =
U’fszn_r—i_},—ﬂ}. (U'4)f=~— Af.

For the method of § 32* use may be made of the fact that
u=2, v = are solutions of U'f = o.
% L.

# The method of § 33 requires the solution of

dx dy dy’
;Y= | n(_ydx  ydy .
= o= -] Y+ dy') =o.
oy B o, or (r—2)(-V 41T+ ) =0
lx oy o

The evident integrating factor — 1

y(y—

leads to the solution - = const.
ay’) %
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AuzL{,:y: A?/:-———H(J’_xy' ; dv_ w7,

& xy Au ¥ u

, . AF 9 dF i
Equat 86 S = -2 - =o0. . F=Euw=-=
quation (86), § 32 is T o p

Introducing the new variable

xy

gl
v =22, whencey=2%,
X

4 Eé;/f_}_xy af_o Uf = xaf—f-yaf
dx y dy dy

2% — 3% or xyy' — ¥ is readily found to be the solution.
’ ’ ' 5 .
Eliminating ' from == =a and ayy' —y* =26 gives
2

ax’—y'=2b
as the solution of the original equation.
Compare this method with that of § 27 or of § 28, I', Remark.

Ex. 2. "' +y%=1.
Since « is absent, this equation is invariant under Uf= gl
(1, § 28). Here *

Af-af—}—)/ 6f+ Gf =o, U’fEQ—f, (U'd)f=o.
dy ,y dx
By either of the methods of §§ 32 and 33, the solution common to
Af =0 and U'f= o is easily found to be 31 — "™
Introducing the new variable

S

7 y\/I—v,whencey—iy;y—,
b

af \1—J”6f o 9f

ASgt T T Vg
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The corresponding ordinary differential equation
dr= 2D
\/yz . ym
has for solution & — V/3*— y”? = const. Passing back to the original
variables this becomes x — yp' = consz.  Eliminating y' from

yWi—yp?=a and x—yp' =4,

gives as the solution of the original equation
Y —(x—0bP=d.
~Ex. 8. y'=)" 4 i, Ex. 4. 2"+ (2 — ) =o0.
Solve examples of § 28 by the method of this section.

40. Differential Equation of the Second Order Invariant under
Two Groups. — Since, if the two groups ¢/ fand U,/ leave

(98) y'=F(x7))

unaltered,* the corresponding partial differential equation
)

(ro1) Afzé f+F(x y,y)———o

is invariant under the extended groups 4/ and 05l the methods of
§ 38 may be employed to solve (98).

Ex. 1. x4+ xy” —py' =0 (Ex. 1, § 39).
v _ ¥ df
This equation is invariant under U/, f = x o + ya— and U, f = Y5

Here Af= af Bf xyx}’ ) % o.
= l+yaf vir=rL+r,

#Then (g8) is also invariant under Uf=a; U f+ a,Usf (Remark, § 39). It is
possible that Uf may assume simpler forms than /) / or U/ for certain choices of
the constants a; and a,.
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§ 40
! r
1y V(-
Xy
A=|x ¥ o =2)'(y—xy)#Eo.
oy 4
() f=o.
Hence the method of B, 4, (@), § 38 applies. The solution com-
mon to 4f=o and U})f=o0is
dx dy '
b ¢ _y' y'(-y - x.y') " ’
*y 4 w
= == =1 s
¢ ® ¥ o + i ¥
v A

The solution common to Af=o and U,)f=o0is

dx dy ay'
gy YO—)
2y
Y= o ¥ 5!
1A
2

-z x '(y == xy') y(y— w’)

J)I
=log— 2 ¥
Sx(y—a)

The general solution of the original differential equation of the
’)'
second order is found by eliminating »' from }? = ¢ and
_— r
x(y—’xy)=& to be ax®* — y* =, where ¢ = ab.
2

* The method of § 32 is also availabie for finding these common solutions.
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Ex. 2. y'=Px)y' + Q(x)y + X(x).
If y =y and y =y, are particular solutions of the abridged linear
equation y"'= /7' 4 ), the general linear equation is invariant

under Ulfzyl%c and U, f=y, gl((§ 28, VII, Note). Here

Af= a£+y g§+(1’y + Qy+X)a =
U= ylgf + » gfn
Uf = }’2%];4‘ . )’2'%:
where y,' and 3, stand for % and % respectively.

A=y — .01 # o, since the two particular solutions are sup-
posed to be independent.

(A Ug’)fzo.‘ Hence method of B, 4° (@), § 38 applies.

Since y =y and y =y, are solutions of the abridged linear equa-

tion, 1”=P1'1'+ le and y217=Py2l+ Qz;

P=J’1J’2 — " _A e ="
whence % 3! 0= %

Introducing these values in the expression for the solution com-
mon to 4f=o0 and U} f=

dx ay @)
6= 1 Y B+ O+ X
o' n ' :
A

we have
¢ = f [y'A — 3 y'A' = (0" — 13,V dx — p'Ady + Ady'

(s = ')
—f—————’y X . dx.
1Ye — Ve
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Noting that —y, y(3:n" —n'%'") = —n'yA + ./ yA’, the first quad-
rature is readily effected, thus giving

o AP I f_zX_ .
Nyl — ey e =y

Similarly, the solution common to 4f=o0 and U/f=o0is
— 2 —yg’y,_f‘ 92Xy
e — Yz Yo — N2

The general solution of the original equation is found by eliminat-
ing y' from ¢ = ¢y and ¢ = ¢ to be

.9 n X
y=an+ —ylf'?‘—, dx 2 fh,)l*—‘,dx
Ve — Yo h < NV — Vel

Note.—1t is an interesting fact that this form of the solution is
exactly that obtained by the method of variation of parameters
(EL Dif. Eg. § 49) from the complementary function y = ;3 4 ¢35,
as may be easily verified.

Ex. 3. "' =7+ Qy.

This equation being homogeneous in y, ', ", it is invariant under

Uf—y (III § 28). Moreover, if y =y(x) is a particular solution,
the equat10n is also invariant under 0/f= Fogs ¥ (§ 28, VIII, Note).

Here Afz‘?—f+y""l+<@'+ey>—,=o,
1= 0x " 5y 3

wr=rL+y,

Gl =n f+y1 f-
'
A=y —yn#Eo, (L) f=— Ulf

Hence the method of B, 4°, (&), § 38 applies.
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The solution common to Af=o and 0U,/f=o0 is given by that
method in the form

¢ =f(_""."1' = L' = Qv)de — 5y 'dy + nay’ .
' —=rn

Replacing @ by its value 3" — 2y, this quadrature is readily
effected, giving

¢ =—log(y'n —}yl')—}—fPa’x.

A more convenient form for the solution is
== =)

To find a second solution of 4f = o, introduce the new variable

- ) JPdz
y' =T (3 — 3, whence y =2V g .
N
and 4/ = o takes the form
ar=Yitve vy
dx N dy

The corresponding ordinary differential equation

. gjm_
ax N

o

L
N

ej'mz
L y'j' — dx = const.
.

is linear with the obvious integrating factor Its solution is

o

* Here Y’ appears as a constant, (§ 35).
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The general solution of the original differential equation is found
by eliminating ' from

Pdx
®=qand L — f—dx:b

st »

ﬁIPd:
to be y= aylf — dx 4+ by,
I

Note.— This is the same form of the solution as is given by the
usual method (ZZ Dif. Eg. § 53, 1°).

Ex. 4. "' +3"=1 (Ex. 2, § 39).
This equation is also invariant under Uf =a 2> Of +y 8§
Ex. 5. y'=y"+1.

Since x and y are both absent, two available groups are
O f= af O f _l

Ex. 6. &’" — (ay' — »)*=o (Invariant under VI for all values
of #,; hence under III, I1T', IV, etc.).

Ex. 7. (#*+34)0"+2(y— ") (1 +3"7) =0 (Ex. 2, § 28).
Ex. 8. 2% +a%*—22xy'+2=o0.

This equation is invariant under I and IIT":

41. Other Methods of Solution.— By making use of the properties
of what Lie calls r-parameter groups of infinitesimal transformations
(3 43) the method of solving a differential equation of the second
order invariant under two groups can be modified so as to be con-
siderably simpler both as to the number of cases to be distinguished
and as to the actual processes involved in obtaining the solution.
A brief study of these groups will be made in this chapter, leading
to the methods of solution in §§ 46 and 47.
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42. Number of Linearly Independent Infinitesimal Transforma-
tions, that Leave a Differential Equation of the Second Order Unaltered,
Limited. — Since a differential equation of the first order always has
an integrating factor, in general, (ZZ Dif. Eq.§ 5) it is left unaltered
by an indefinite number of infinitesimal transformations, the general
expression for whose symbols involves two arbitrary functions (§ 15).
On the other hand, a differential equation of the second (or higher)
order is, in general, not left unaltered by any infinitesimal transforma-
tion (see Note IV of the Appendix), although some of them are.
We shall prove the

THEOREM. — A4 differential equation of the second order cannot be
left unaltercd by more than eight lincarly independent® infinitesimal

transformations.

Suppose that the equation
(98) Y=, 9,

is invariant under the nine linearly independent infinitesimal trans-
formations O, f, Uyf, -+-, U,f; it is also invariant under
(102) U=aUf+a;Uf+ - +49(/9f55%+17%§
for all possible choices of the constants @, @, -+, @y (Remark, § 39).
It is a well-known theorem in the Theory of Functions that, in
general, a unique integral curve of a differential equation of the sec-
ond order and first degree (98) passes through two points, lying
within a definite region determined. by (¢98). Suppose that 7, /7,
P, P, in Fig. 5 are four points such that each of the six pairs that
can be formed of them determines a distinct integral curve of (98).
The nine constants &, @, +++, @, can be so chosen that (102) leaves

* A set of infinitesimal transformations U] f; Uy f; +++, Urfis said to be Zinearly in-
dependent if there is mo linear relation, with constant coefficients, connecting their
symbols; Z.e. if it is impossible to find a set of constants ¢y, ¢s, +++, ¢ such that

U f+coUpf~+ oo + cr Uy=o.
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each of these four points unaltered. For, if their coordinates are
respectively (xy, 71), (%, o), (%6, ¥3), (%4, Js), the requirement for this

is the simultaneous satisfaction of the eight equations
£y p)= by, )+ @by yi)+ o+ aoixy y)=0,
2 ¥)= am(@y, 3;)+ ami(xy, y)+ o0 A am(x), y)=0,
U=1234)

These equations determine finite values of the ratios of eight of the
@’s to the ninth one (excepting possibly for peculiar choices of the
four points, which can be avoided)
because of the linear independence of

b5

the nine transformations.

With the &’s thus chosen, the trans-
formation (102) leaves the four points
P, P, Ps, P, unaltered and, therefore,
also the integral curves determined by
any two of the points, since integral

curves are transformed into integral
FIG. 5 P, P 3

curves by a transformation which leaves
a differential equation unaltered, and the four points were so chosen
that through any two of them passes a unique integral curve. Thus
through each one of the points, e.g. through 2, pass three of these
invariant integral curves. The point 2 on these being left unaltered
by (102), their slopes at this point, which may be designated by y,,_

', o, respectively, are also left unaltered by it. Hence if ' is the
e ar . ; :
coefficient of a—f, in the extended transformation corresponding to
o4

(102), it follows that
o_On  [dnp 08¢ 0
(103) 7 = +<6y 6x>y By“] =40

for x=um, y=u, ¥ =, 1, y'. Letting a, 4, ¢ be the values
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dp Oy 0§ ¢ . .
of e a—a, —@ respectively when =, y =3, (103) gives

th 1
the three relations @+ by 4 op = o,
a - 5_}"13' + ‘:y]?.,2 =0,

a+ oy + on*=o.

Since the determinant of the coefficients

I g e
' 12f.— ] LT ' ' '
1oy = —}14)(714 — 1) (e —J’mr)
/g 2
I Ju Ju

is different from zero,a=4¢=c=o0. Hence %' =o for every integral
curve through 7, whence every integral curve through 2, is invariant*
under (102).

In exactly the same way it can be shown that every integral curve
through each of the other points 7, 2, 7, is left unaltered by
(102). '

If P is any fifth point in the region containing 7, /%, £, Py, it
will lie upon at least two{ integral curves each of which passes
through one of those points. These integral curves being invariant,
the point 2 is left unaltered by (roz). In this way every point
of the plane (with, perhaps, exception of certain points determined
by the differential equation) is found to be left unaltered by (1o2).
The latter must therefore be identically zero ; -z.e.

a U f+a,Usf+ - +a,U,f=o.

# This follows from the fact that a unique integral curve of a differential equation
of the second order is, in general, determined by the conditions that it pass through
a given point (#, y) and have a given slope y’ at that point.

+ If P does not lie upon any of the six integral curves determined by the four points
(which is the general case), this number is fowr ; it is #4rec if P is on one of these
curves, and #wo if it is at the intersection of two of them.



146 THEORY OF DIFFERENTIAL EQUATIONS §§ 42, 43

Hence any nine infinitesimal transformations which leave a differen-
tial equation of the second order unaltered camnot be linearly inde-
pendent. This proves the theorem.

The differential equation 3" = o is a simple example of an equation
that is left unaltered by the maximum number of infinitesimal trans-
formations. For, since its integral curves are the straight lines of
the plane, y =ax + 4, it is left unaltered by every projective trans-
e =Bty + By ey B + a5y +ag,

zsz—]-a&y—l—ag x4+ agy - ay
In Note VI of the Appendix it will be seen that there are eight
linearly independent infinitesimal projective transformations.

Remark. — In the case of a differential equation of higher order
than the second, the following theorem holds : A differential equation
of the nth order (n > 2) cannot be invariant under more than n+ 4
lUnearly independent infinitesimal transformations. A proof of this
theorem may be found in Lie, Condinuzerliche Gruppen, pp. 296-298.

As in the case where 7 = 2, a differential equation of order n > 2
is in general not left unaltered by any infinitesimal transformation.
On the other hand the differential equation ™ =o, 7 > 2 is
invariant under each of the # 4 4 transformations (Examples, § 26)

/AN LA ) A 5f+(,z

ax’ ay’ 6 ’y@ @ ay’ oy’

1)xy &
dy
43. r-parameter Group of Infinitesimal Transformations.— Start-
ing with a set of infinitesimal transformations 7 f, Uhf, -+-, U./f, the-
infinitesimal transformations, whose symbols are obtained from these
by applying the alternating process to them in pairs, may or may not

be linearly independent of them.

Thus, if Ulf—al, O f= x—y, Usf =" aj;,

the transformations (U3 Uo)f——y , (Lh Ua)f—— Bl af, (O f= — 6;

are all independent of them.
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On the other hand, if
b=+ L, = fo, Unf= (x+y)af

the transformation

(L) f=x G_f —(x + ) gl: is independent,
while (W) f=Usf, (hWUs)f= Uif— Usf.

. : - af of a9 _ 9
Finally, if U ' i 4 .
inally, 1 1= x )Sy /Ary,Uf 79,

none of the new transformations are independent of them; for

(UIUg)fEZUgj: (UlUs)f —-2Udf (U2U3> U[f

The case where none of the new transformations are linearly inde-
pendent of the old ones is of special interest. If 7 linearly inde-
pendent infinitesimal transformations U4 f, U, f, --+, U,f haye the
property

(104) (GU)f = ainOf+ anlsf+ - +a, U f, /=1, 2y )

where the @’s are constants, the aggregate of these and all thb trans-
formations Uf = a, U1 f +a,U.f+ -+- + @, U, f where thewe a's are
any constants constitute an 7-parameter group of mﬁ/m‘ec Snal trans-
Jormations.®

Remark 1.— An 7-parameter group of infinitesimal traiysformations
is determined by any 7 of its transformations which are litaearly inde-
pendent, since the symbols of all its transformations can be expressed
linearly with constant coefficients in terms of any » independent ondeg,
Moreover it is readily seen that any set of » linearly independeni:
transformations of the group have the property (104).

# In Note VI of the Appendix an »-parameter continuous group containing both
finite and infinitesimal transformations is defined. The intimate relation between these
two classes of groups is brought out in Lie's Principal Theorem at the end of the Note.
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Turning our attention now to the transformations which leave a
differential equation of the second order unaltered, we shall first prove

THEOREM 1. — If a differential equation of the second order is in-
variant under U, f and U,f, it is invariant under (U, 05) /.

For, if Uy f and U, f leave
(98) Y'=F(x 3,5

unaltered, the extended transformations {j'f and 05/ leave
d d 97
(ro1) Af53'£+y'£+ﬁ(x,)),y')@-fl=o

unaltered. By the theorem of § 37, (U4'UY)f or its equal (T O
(see Note V of the Appendix) leaves A/ =o0 unaltered. Hence
Theorem I follows.*

.Ir; § 42 it was established that the number of linearly independent
inﬁ;ﬁ‘tégimal transformations that leave any differential equation of
the second order unaltered is limited. If in the case of a given
differential equation this number is 7, all the infinitesimal transforma-
tions leaving the differential equation unaltered are linear functions,
with .onstant coefficients, of any set of s linearly independent ones
Uf (/2}’\, U.f. By Theorem I (U U,)f, for 4, j=1, 2, «+, 7,
must also 1dave the differential equation unaltered. Hence they, too,
are linear fu‘j!CtiOl]S with constant coefficients of the set 0, f, UL/, -+,
U.f. The I#tter therefore have the property (104), and we have thus

"

establishesd

TeAEOREM 11.— Zhe agoregate of all the infinitesimal transforma-
Hions leaving a given differential equation of the second order unaltered
" constitute an r-parameter group. Here o <r < 8.F

# This theorem is true for a differential equation of any order, and is proved in the

same way. X
" § The same theorem is true for a differential equation of the z-th order, where z > 2.

In this case 0 Z 7 < 7+ 4.
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It is possible that a smaller number than 7, say s, of linearly inde-
pendent infinitesimal transformations in an 7-parameter group deter-
mine a group ; the latter is known as an s-parameter sudgroup of the
larger group.

The four transformations

_ O . _
BifSeg o D=y g TSy, Difsey

determine a four-parameter group; for they are linearly independent, and besides
(DWUs)f=—Usfy (WU =Usf, (UWUs)f=0,
(L) f=Usf— Uiy (RUNf=—Usf, (UsUs)f=Usf.

Of the subgroups of the four-parameter group the following are immediately
obvious :

The two-parameter subgroups U1 /; Usf; Ulf, Usf; Uify Usf; Usfy Usf;
Usf, Usf.

The three-parameter subgroups U1/, Uzf, Usf; Uifs Usfs Usf

Uf=x g__f —y glz Urf— Usf;.also a transformation of the four-parameter
x Ly

group, determines with {2/ and Usf a three-parameter subgroup, since
(UU)f=—2Uaf, (Us)f=2Usf, (UhUs)f=— Uf

Remark 2.— Starting with two or more linearly independent infini-
tesimal transformations which leave a given differential equation of
the second (or Bigher) order unaltered, a group of infinitesimal trans-
formations is determined which is either the s-parameter group of
Theorem II or a subgroup of it.

For, let O3 f, Usf, -+, U.f, (2<% <7) be a set of linearly inde-
pendent transformations which leave the differential equation of the
second order unaltered. By Theorem I, (T U)f, (4, j=1, 2, -+, &)

. also leave the differential equation unaltered. Some or all of these
may be linearly independent of the original ones. Let £’ of them
be such. We know that 2+ 2' = 8. Adding these to the original set,
combine the larger set in pairs by the alternating process as before.
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The resulting transformations also leave the differential equation un-
altered. If any of these are independent of the members of the
larger set, add them to the latter, thus forming a still larger set of
linearly independent transformations leaving the differential equation
unaltered. Proceed with this set as before. Obviously this process
must be a finite one, since the maximum number of members of a
set is eight. So that, the above process stops when no new trans-
formations independent of the previous ones arise as a result of the
alternating process. If the number of independent transformations
finally appearing is 7, the 7~parameter group determined by them is
precisely that of Theorem II ; if the number is s < 7, the s-parameter
group determined by them is a subgroup of the other.
We shall prove

TrroreM IIL.— Every r-parameter group (v > 2) contains two-
parameler subgroups.®

As a matter of fact we shall show that, fixing upon any one of the
transformations, say U/, a set of » — 1 constants ¢,, ¢, +++, &, can be
found such that

Ufand Uf=aUof+aUf+ - +¢,0fF

constitute a two-parameter subgroup ; it being understood that the
r-parameter group is determined by U7, U.f, --- U.f, which are,
therefore, subject to the conditions

”

(104) (GO =2 auUf, (7=1, 2 7).

k=1
In order that this be the case
(105) (O, U f + aUsf+ -+ + 6.Uf)=al, f+ b(c,Usf + ¢, Upf
+ o+ G Uf)

* This theorem and its proof hold, without modification, for groups involving 7
variables.
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Since (UD 2:10} )fE ch(UlD;)fEerzd,-ijkf, and since
j=2 =2 =2 k=1

01/ Uof, -++, U,f are linearly independent, (105) can hold only in

case .

o
(106) 2%“141: a, Efjaljk =bcy, (=2, 3t 7’)-
=3 =2
Conversely, if &, ¢, «++, ¢, can be found to satisfy » equations of the
type (106), where @ and & are any constants, and not all of the ¢’s
zero, the group {f= ij(/j J will determine with .U,/ a two-param-
=2

eter subgroup ; for in this case
(WO f=alf+ 0TS

That such a set of £'s can always be found may be seen as follows :
The last » — 1 equations of (106) are the linear homogeneous equa-

tions
(alzz = 5)52 + @upcs + +o0 + @06, =0,

@il + (@i — O)e+ - + aye, =0,

(107)

@ o+ @ty + oo +(ay, — b)c, = o.

These can be solved provided /4 satisfies the equation

Qs —b @y st @y,
a Qs — b - a
(IOS) 123 133 ] 1rds —=o.

A1op Az et By — b

This equation necessarily contains 4, since the coefficient of 4! is
(—1)! Using any value of & satisfying it, the ¢’s are determined
to within a common factor (which is not essential), by solving (107).
The value of @ is then determined by the first equation of (106).
Thus Theorem III is not only proved, hut a method for finding the
two-parameter subgroup is also given.
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The transformations

=9 =9 =, 9 L9
UiSge =gy BIS05,4%%

determine a three-parameter group, since

(hs)f=o, (hUs)f= Usfs (UeUs)f= Urf.
Inspection shows that U fand Usf determine « two-parameter subgroup. To
find another two-parameter subgroup of which U /is one of the determining ele-

ments, the method of this section may be employed. The constants ¢; and ¢

must be so determined that
(Usy caUr+ csUs) f= aUs f+6(ct UL f+ 2 Us f),
i.e. —alsf—cUf=alUsf+ b U f+ beas Usf.
wa=0, bcy+ =0, beg+ c1 =o0.
In order that the last two equations be consistent, 4 must satisfy the equation
2—1=0,

whence 6=+ 1 and L =F 1. Hence
5}

U=y 4 2 =0 L O and U=y L 4 2 pr=9L_
¢ y8x+x(9y 4 aﬁaya"‘ v yax+x<9y 4 dx ay

are two two-parameter subgroups of the original group.

44. Classification of Two-parameter Groups.— If a two-parameter
group is determined by {4 fand 0, f,

(Ule)fE a O f+ a. Uy f.

Either both @, and @, are zero or they are not. In the latter case it
is always possible to find 4 pair of transformations to determine the
two-parameter group for which one of these constants is unity and
the other zero. For, if ¢, # o

hi= Uxf+ggsz
24

Vof = ai Uf
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are linearly independent and
(KW = >

Moreover, if for any pair of linearly independent: transformations
O, f and T, f of a two-parameter group

(GO)f=o,f
this is true for every pair, since
(@O + el U+ 600 f = (abs— b)) (U =0

for all choices of constants ¢, ¢, &y, . Hence every two-parameter
group can be represented by a pair of transformations U f and Usf

such that either (GO =0 or (UL S=Uif.

These two possibilities are mutually exclusive ; any group can come
under one head only.

A second mode of classification is suggested by the following :

If a two-parameter group is determined by ¢} f and U f which are
connected by a relation of the form

(109) Oof = p(x, ) O S

where p(x, ¥) is not a constant,i every pair of distinct transforma-
tions of the group are connected by a relation of the form (ro9) ;

* If @) = 0, a; 5= 0, so that (U] Us)f= ay U, f; the groups
V=Uyfand Vof=—= Uif
]
satisfy the condition (M Wa)f= /s

+ It is interesting to note that (U Us)/= o is the necessary and sufficient condition
that each transformation of the group generated by U/; / be commutative with every
transformation of the group generated by U, /. For an elementary proof of this fact,
see Lie, Differentialgleichungen, p. 305.

i While in this case U} f and U,/ are distinct transformations, the one-parameter
continuous groups generated by them have the same path-curves.
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for if
NWf=aOf+ aUf, Vof = b0 )+ 0.0:f, (@162 — axby # o)

Vil = b1+5zP V.f
ay+ @yp

Hence all two-parameter groups may be divided into two classes
according as their distinct transformations are connected by a relation
of the form (109) or not.

These two modes of classification are independent of each other.
Hence four classes of two-parameter groyps may be distinguished ac-
cording as they are representable by a pair of transformations U jf and
Oy f such that

o. (UIUZ>fE 0, Uof % p(x, 3) US,
B (L) f=o, Uf=p(x 1)U/
y- (G =S, Uof % p(% ) U,
5. (U= Of Uf= p(s, ) Uf.

Classify the following two-parameter groups :

3
Ex. 1. (x+y)£+(y—x)%, x%+y%

Ex.

N

(x+y)glx, x%

Ex.

®

x(x +J’)%+}’(x +2) %’ x(x—7) %4.};(95 —9) %

Ex. 4. yg%: f \/x_—< Fp x%)

xé’:+yl #Y (4
Ex. 5 dx dy dx dy

x4y ’ x+y
LA/ S Y/ SO \ Y
EX. 6. ”ax”ay' @ ax+(y + 2 xp) o'
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45. Canonical Forms of Two-parameter Groups. — By a proper
choice of variables the various classes of two-parameter groups can
be reduced to certain simple forms which Lie called their canonical
Jorms. These will now be determined in turn.

a. (hU)f=0o, Upf#p(x ) Uf

By the method of § 9 a set of variables can be determined so that
U, f takes the form

Uf= f
If the resulting form of 04 f is
YL
Uf= ¢ A
=Lzt %’

%EO and g"‘o since (U‘U)f—gi g{c—i—gl gﬁj—o Hence

£ and 1 are, at most, functions of y; ‘..
9 of
ur=¢ L+,
0x dy

where 5(y) = o, since U,/ = p(x, ¥) U, /.

The transformation U /= gj—, remains unaltered by a change of
variables of the type ¥

x=x—¢(y), y=v¥(),

where ¢(») and y(y) are at our disposal. This change of variables
causes U5/ to take the form [(15) § 9]

HOEOTIOMW SRTOTAO -

fg(y) 4y and y(y)= U,f assumes the form g—g .

()
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Hence, by a proper choice of variables, a pair of transformations
satisfying conditions o can be made to assume the canonical forms

=Y BF
v/= dx’ = ay'

Having established the existence of the canonical forms in this
case, the actual finding of the canonical variables (which reduce the
transformations to these forms) can be accomplished by two quadra-
tures. For, starting with a pair of groups

Uif = slf+m"’f and Upf = 526f+772af

satisfying conditions «, the new variables x and y will reduce these
to the forms

9 _Y
U TS S d U = T
v o an 74 3y

respectively, provided x satisfies

dx dx
fla‘i‘may i, fz +"728y o,
and y satisfies & oy + my % 0, fz % + N2 o _
ox &

Since such new variables must exist, the equations of each pair
must be consistent. Because (,f % p0}f, they can be solved for
a_x’ ) and 6y ﬂ_y respectively, whence x and y are determined
dx” dy dx dy

by the two quadratures
d0x ox Oy Jdy
o g TR e f O e 1 08
* f&x s ay e ¥ Bxdx+8y 4

The transformations

Uf=—y af+x6f and Uf_x— g;
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form a pair satisfying conditions &. From

ax dx dx | 9x
+xr===1and x 2=+
Tox" " gy o7 ay
a—x = ,_ o4 5 and dX &
ox x4y Jy a2+ g
whence x= j Xdy—ydx _ 1Y,
% 4 2 x
Similarly, from — 9y +x== % _ =oand ¥ 2= 9y v oy _ 1
P oy B 7 a7
.a_-le = * and _a;ll =— J -,
dx a? +}12 oy a? + 92
whence v :5‘_% = log VA2 + 42,
22

These canonical variables are obvious from geometrical considerations.
B. (GO =0, Uef=p(x,3) Gif:
As before, U/ f can be reduced to the form

Uf= af

by the choice of canonical variables (§ 10). Then 0}/ assumes the
form

andmﬂ%

where o(x, y) is what p becomes when the old variables are replaced
by the new. Since

do 9
@Gof =5 T =o,
¢ is a function of x only. Taking this as the new x, which change
of variables leaves U/, f unaltered, U f assumes the form x —Z Hence,

by a proper choice of variables a pair of tmmfarmm‘wm satisfying
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conditions B can be made to assume the canonical forms

)
(/}fzgl; Gf= xéf:'
)y ly

The actual finding of the canonical variables in this case requires
a single quadrature. For, starting with a pair of transformations

Uf= saf+n"’f and Uf_p(saf+ "’f)

where ()= Uplf=o,ie.Up=o, *
the new variables x and y will reduce these to the forms
U]j'zﬂ and U,f = xal
dy dy
respectively, if x=p(x,¥)

and y satisfies the equation (§ 10),

9 4 9y
PR

= 1.

Moreover, since Ujp= o, p is a solution of

aer ¥ _.
T3y

Hence, y = #(x, ) is some solution of

e _dy_dy
& 9 1

distinct from p = consi., which is also a solution of this system of
equations. Among the various ways that will suggest themselves
when ¢ and 5 are given in any specific case, a possible method is to

solve p(x, 3) = ¢ for one of the variables, say x = ¢ (1, ¢), whence
H_’l' B
(P, ¥)



§45 ORDINARY, OF THE SECOND ORDER 159

The transformations
U f=ay (9_]‘ + 22 (lf and Us f=a® ‘l’r + 242 ,B_f
ax " " g " Yy
form a pair satisfying conditions 8.
2 2
V=2 U1f cx=".
o o
; 20Y _
y must satisfy GY 4 242
6 a

To solve the corresponding system of ordinary equations

dx _dy _dy
xy 23t 1

) 2
use may be made of the solution = =cor y =%. Then
¥ ¢

g dx__i [
=] 2% 2y

As before, U/, f can be put in the form

Uf_l
3

by introducing canonical variables. Taking 7/ in the form
d /)
o=t LN

9¢

we must have 5
7y

=o and 677—- 1, since
dy

B maf o
(OLh)f= ayax‘l‘@ Tt T

Hence, U,/ must have the form

=t L v x@ +0 %,
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where ¢(x) % o, because 0,7 % pU, /. The introduction of the new
variables 2= (&), ¥ = (&) +7
leaves U, f= jj unchanged in form, but changes {jf into

U= )¢ () L+ (@9 @) + X +51 L

dJ
This takes the form Uf=x f +1/ 8§

when £(x) ¢ (x) = ¢ (x), or ¢(x) = g’[f(x) ) )
and &(x)y’ (x) + X (x) =¢(x), or Y(x) = — e-[m ?AE‘;) dx.

Hence, by a proper choice of variables a pair of transformations
satisfying conditions y can be made to assume the canonical forms

vr=d vr=sLrd

The actual finding of the canonical variables in this case requires
two quadratures. For, starting with a pair of groups

_: Y ¥ L Of O
Ulfzflaergy- and UJZQE_{_WQ_}

satisfying the conditions y, the new variables x and y will reduce
these to the forms

f——l; and U,f=x f+yf

respectively, provided x satisfies

dx ox
51 + 771 fga + "72@ =
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and y satisfies

9 9y_ dy
Elax+ma_y~_ I, fga +"7-—-—y

Since such new variabies must exist, the equations of each pair must

be consistent. Because /% p0jf they can be solved for g_x , Zx

and a—y @ giving 4
ox’ dy’

(i10) —= —m ox &

" X, — ==X
ax fﬂ]v — 59771 ’ 3} 51772 - 52771 ’

—m /) s B_y — & y— & .
51’70 - 59771 fmz - 527]1 a}’ §i772 - 52"]1 51772 - -fzm

(pr1) Bx

dlog x gl dlog x

Ox dy
obtained by a quadrature and the form for x follows.

Dividing (110) by x, are given, whence log x is

Equations (111) may be solved in various ways. The most gen-
eral form for y satisfying them is not needed. As a matter of fact,
the simpler the form obtainable, the better. One way of proceeding *
is to assume that  and y are no longer independent, but that y =cx
where ¢ is a constant. Then

ay_

6y+ ay =+ ewy+v+er
adx

(112)
where A, p, v, m are what the corresponding coefficients in (r11)
become when y is replaced by cx. Since (112) is a linear ordinary
differential equation of the first order, it may be solved by the usual
method, involving two quadratures (ZZ Dif. Eg. § 13). A process,

however, by which a single quadrature alone is involved in solving
(112) is given by the following :

* Special methods will frequently be found simpler, however.
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Inspection of equations (110) and (111) shows that y= x(x, cx),
which is obtained from x(x, y) by replacing y by cx, satisfies the
equation

4y

—=Z=(A A

el Gl D

Hence the transformation y = vx(x, cx) reduces (112) to

N

dx x(x, cx)’
whence v is obtained by a quadrature. Then y follows at once, after

replacing ¢ by 2.
%

The transformations

Ulfzng and Ungxz-af-i- (,‘V'i'-’f}’)(j[
ay ox ay

form a pair satisfying the conditions y. From

OF _ o and 20 ox_
xy 0 an xax}-(y-i-xy)ay x
6logx:L 8Iogx:0
x '
1
& logxz—l, and x=¢ =
#
From xQ—g:I and xz»ag+(y+xy)@=y,
1314 dx ar

W _y_y+xr Oy_
ox a2 237 gy
Y_y_«

Putting y = cx =< —=.
de  x% a2

* These equations can be solved directly. Irom the second one y=¥+ @ (x),
where ¢ (x) is to be determined. Putting this value of ¥ in the first equation gives

1

dp _ ¢ R o, @
e whence ¢ = ke

%= o gives the form for ¥ obtained in the text.
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: !
Using the method given above, put y = ve = The linear equation then reduces

qv r = 2
to d;:—;zﬂ; whence 2 = ce®.
Sy = ;:é-
8. (G f=Uf Upf=p 00/,

As before, by the introduction of caronical variables &7 f can be
made to assume the form

Ulfz—f,i;-

These variables will cause 0,/ to assume the form

_ Y
sz=77(x:y>a—y'
Since (O Uh)f = U f, g—;z_z 1 and 9= X(x) +y. So that
5}
Or=[X@)+0%

The change of variables y = X(x)+ y leaves ] f unaltered and
changes 0, f to the form U, f = ¥y E)f' Hence, by a proper choice of

variables a pair of tr ansfarmaz‘zom satisfying conditions & can be

made to assume the canonical jforms
A =7,
OUf= 3’ Gf= I5

The actual finding of the canonical variables in this case requires
the solving of the differential equation of the first order determining
the path-curves of the group generated by either of the transforma-
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tions. For, starting with the pair of transformations,

d 5}
Uf= Saf+ngfand UQfEP(éa{—H?a—Q

where (U, 0h) f = U, /, the new variables x and y will reduce these to

the forms
)

’ Mf—land Uof U f
respectively, if y= p(x, *
and x satisfies the equation

B =
gx Mgy = °

The solution of this equation is usually obtained by first solving

i .9
R
the differential equation of the path-curves of T, /.

The transformations

/4 2 0f x% 9f af
=2 2
U f=x ¥ Ay and Uy f 7 & y

form a pair satisfying conditions &.

Urf== Ulf y=L
H
The solution of dx +ﬂ/ =iy + 2 = const.
22 2 P
x=%1Y
xy

Ex. Determine the canonical variables for the groups at the end
of § 44.

* The other requirement of Y, viz. Uy=1, follows from the given condifions on Ui f
and Uy, since (U, pUL)/=Uip Uy f.
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46. Differential Equation of the Second Order Invariant under Two
Groups. — Starting with two non-trivial infinitesimal transformations *
which leave a differential equation of the second order

(98) V'=F(x 3,9

unaltered, an s-parameter group of infinitesimal transformations,
leaving (98) unaltered, can be found (Rerﬁark 2, § 43), which con-
tains a two-parameter subgroup (Theorem III, § 43) determined by a
pair of transformations {} fand U5/ which satisfy one and only one
of the conditions (§ 44),

(hUf =0 and (KU f= Ui f

Moreover, these two transformations can be found by direct and
practicable processes from the original two transformations, and they
also leave the differential equation (98) unaltered.

We shall now suppose that we have found such a pair of infini-
tesimal transformations ¢,/ and 0,/. Passing, as was done in § 39,
to the corresponding linear partial differential equation

——af Iaf I Q/’
Af= /A X Vs “Z-=o,
(z01) =517 ay+1‘( y y)éy, o

the latter is invariant under the extended transformations f'f and
Us'f, which are subject to one of the conditions

(R f=o and (L' T))f= UL,

since (OF Uy) f= (i Uh)f (see Note V of the Appendix). Two im-
portant cases are to be distinguished :
A. A relation of the form

(97 Ulf=eUf +pdf

# As use is to be made of the properties of groups of infinitesimal transformations,
the one-parameter groups under which (98) is invariant will be replaced by their repre-
sentative infinitesimal transformations in what follows. (Compare Remark, § 6.)
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exists, In this case 0,/ and U,f determine distinct path-curves,
that is, no relation of the form

(109) Uf=o(x,3) 0f
can connect them. For, if such a relation did exist, and if

wr=a 3f+m {

U,)f would have the form

Uf-ﬂ'fl f+0?71 f+<0’771+7718 + 160 /—Sla(r}/ éla(r m)gf,

A relation of the form (97') implies the vanishing of the determinant

1 Y F(xy,Y)
51 T 111'

A 3
’ a a 6‘
051 an oM +7]1’a—$+<771£“§1£> —51 )/2

Il

This reduces at once to

iy %(6_0_&1_,%2.
m f]}’)l:max—i"\may flax>}’ flay}/:]

Since neither 5 — & ' nor both & and 7, can be zero identically,

A can vanish identically only in case HUE o and ?E o simultane-
y

ously, that is, o must be a constant. This would make &} f and Uif
one and the same transformation. Hence the relation (109) cannot
hold when (97") does. Assuming that (97') holds, two cases must still
be considered :

1° (DU =o.
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By means of two quadratures (§ 43, «) canonical variables can be
found so as to reduce the two transformations to the forms

= -
U= sz—ay

respectively. Since the differential equation expressed in terms of
these variables must be left unaltered by these two transformations, it
must be free of both x and y (I and I', § 28). Hence it has the form

Y'=F{),

and the corresponding partial differential equation has the form
_9 af af
Af ==+ L, F NL = i
=2+ ay+ (y)ay, o
) d
Moreover, Uif= Eé Ulf= 5§ s

The relation (97') implies that

1y F(y)
1 o o =F{) =o.
[¢) I 0o

Hence when conditions (97'") and 1° hold, the introduction of canoni-
cal variables jfor the two-parameter group reduces the differential
equation to the form

y'=o,
and the solution is y=ax -+ b.
2° (GO = Gf.

By means of two quadratures (§ 45, y) canonical variables can be
found in this case, reducing the transformations to the forms

vr=%, vr=+% +s7.
dy dx  dy
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The introduction of these variables reduces the differential equa-
tion to the form (I and IV, § 28)

F(y'
S, xy")=oor y'= —(x—) .

The corresponding linear partial differential equation has the form

Y FY) Y
Af—=—a+y'@,+ P aTJ,:O.
ad ) )
Moreover, Ulf= a—j;, = x£ 4 yé .
The relation (9%") implies that
.y PO
x
o 1 o =—F{) =o.
x y o

Hence, also, in the case where conditions (97') and 2° hold, the
introduction of canonical variables jfor the two-parameler group
reduces the differential equation to the form

y'=o0
and the solution is y=ax -+ ob.
B. No relation of the type (9%’) exists. That is,
Uif # o« Ulf+ pAf.
Here the two subcases in A are also to be considered.
® (Gth) f=o.

Since this carries with it

(W)= o,
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the conditions of § 38, B, 4° () exist, and the two solutions of the
corresponding linear partial differential equation are given by the
two quadratures

dx dy 4y dx ay '
1 Y F(xy,)) 1y F(x,,))
4 n ' =a and & M 7s =5,
A A )
1 Y Fx,,))
where A= 4 » w
fz 2 "72’

Eliminating y' from these gives the solution of the original differen-
tial equation.
2° (QU)f= Gf.
Since this carries with it
('T)f= Ul

the conditions of § 38, B, 4°, (&) exist. Two solutions of the cor-
responding linear partial differential equation are obtained by two
quadratures, by the method given there. Eliminating y' from these,
the solution of the original differential equation follows.

Remark.— 1t may be noted that in every instance where an
ordinary differential equation of the second order is known to be
invariant under two distinct groups, of which neither is trivial, its
integration can be effected by means of two quadratures.

47. Second Method of Solution for B. — The method in cases A,
1° and 2" of the previous section leaves nothing to be desired. For
the remaining cases, however, while, theoretically, the reduction of
the problem to two quadratures seems sufficiently simple, a method
analogous to that employed for A, even if involving a larger number
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of quadratures, or possibly the solution of a differential equation of
the first order, may prove simpler in actual practice. Still under the
supposition B, viz.

Ulf# eUlf+ p Af,

the four possible forms (§ 44) of the two-parameter groups of infini-
tesimal transformations leaving the differential equation unaltered
will be considered :

G (UIUZ)/—:— o, U,j%#p(x,) U

By a process involving two quadratures (§ 45, &) canonical varia-
bles x and y can be found, reducing the infinitesimal transformations
to the forms

s I =Y
Uf= 5 and U,/ = 3

The differential equation invariant under these has the form
(Iand T, § 28)
Y =F@').

An additional quadrature gives

ay'
—_— =X a.
Ry T
or, when solved for y', ¥ =¢(x+a),

and a final quadrature gives the solution
y= f¢>(x+ a)dx + b.
In this case four quadratures are required.

8. (GO =0, Uf=p(x, ) Uif.
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By a process involving one quadrature (§ 45, 8) canonical varia-
bles x and y can be found, reducing the infinitesimal transformations
to the forms

U/f= & and U,/ = xﬁl—(
dy dy

The differential equation invariant under these has the form

(I and VII, § 28) §' = F(x).

Two additional quadratures give the solution

y=ffF(x)a’x2+ax+b.

In this case three quadratures are required.
Y- (G)f= Sy Uof#p(%, 3) US.

By a process involving two quadratures (§ 45, y) canonical varia-
bles x and y can be found, reducing the infinitesimal transformations

to the forms
U,f——_—(?lr and U, /= x%+ yal[.
dy dx dy

The differential equation invariant under these has the form (I and

1V, § 28) 3o LA
X

As in the case «, two additional quadratures give the solution.
In this case four quadratures are required.

5. (GO =UTf, Uf=p(x2) U

By a process (§ 45, 8) involving the finding of the path-curves de-
termined by either infinitesimal transformation, Ze. the solution of
the differential equation B

@
fl M )
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canonical variables x and y can be found, reducing the transforma-

tions to the forms
A y
=< and U, /=y ~.
b=y e =Y o
The differential equation invariant under these has the form (I and
111, § 28) i
¥y — F(x).

yl

Two quadratures give the solution

y= fej‘F(x) dxa’x + o.

Remark, — The above classification holds equally well for A, for
which it s exceedingly simple, cases B8 and & never arising (§ 46).
Hence the method of introducing canonical variables applies to all
cases where a differential equation of the second order is invariant
under two groups. The interest in § 46 lies in the fact that it is there
shown that it is always possible, if desirable, to solve the differential
equation by two quadratures only.

While the classification of § 40 is more complicated, it must be
borne in mind that the two groups employed there need not deter-
mine a two-parameter group. Some of the methods of § 40 are ex-
ceedingly simplé€ ; so that they are not to be ignored. On the other
hand, it is suggested that the method of this section be applied to the
examples of § go.

Ex. 1. ap” +x*—p' =o0. (Ex 1, 8§ 40).
This equation is invariant under 0 f= xal[ +y 4 and O, f=y &
Ox dy Ty
These determine a two-parameter group of the type . The canoni-

cal variables are readily found to be x =log x, y = log 2. Introduc-
ing these, the differential equation takes the form

’ 2 — ay' _
¥ +2(y*+y)=o0o0r m+ 2 dx =o.
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Integrating this, one obtains

bg?%ir+ZX=forf= E o

¥ —1 g—e™X

Integrating again,

2y+c=log (e, —e™) or ¥ =¢,— e,

Passing back to the original variables,
axt — 6yt =1.
Ex. 2. yV'=P'+ Qy+X. (Ex. 2, § 40).
This equation is invariant under U, f= Gf and O f = Yoy i % if

=2y~ Qy and 3" =Py + Q. The transformatlons Of
and 0, f determine a two-parameter group of type 8. The canonical

variables are x = }—'2, y=2-. To introduce these use should be made

N st
of the fact that By _ Z‘Z 5; i A A =y9/ — .y, and that
3y — .9 = PA. Then '
Y=Y,
¥= yy+ylA
' = py +1/PA y"A2
1 »

Substituting these values in the differential equation gives

L//AZ_X _,/_J’lX
»’ A

)

where the right-hand member must be expressed as a function of x.
Integrating twice,

3
y:fa’x ylA—f(/ix—i—ax+ﬁ.
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Passing back to the original variables,

- Je a2 L
=5 d< )f (J’I}’ﬁ —J’aJ’l <}’1>+ i

Note.— 1t is an interesting fact that this form of the solution
includes as a special case the form obtained by a well-known method
in case the coefficients in the linear equation are constants. (See
EL Dif Eq. § 47.)

Ex. 8. y' =7+ Qy. (Ex. 3,§ 40.)

This equation is invariant under 0} /= yl—a—y if ¥ is a particular

solution of the equation, and also under U}, /= ygi[. The trans-
2

formations O f and U, f determine a two-parameter group of type 8.

The canonical variables'are x=x, y=2-  This change of variables

1
is the one usually employed. (See ZZL Dif. Eg. § 53, 1°.)
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CHAPTER VII
CONTACT TRANSFORMATIONS

48. Union of Elements.— The configuration consisting of a
point and a line * through it is known as a Zneal element. It is
obviously self-dualistic. ~Since a lineal element in the plane is deter-
mined by three codrdinates,} there are o ? such elements.

Any curve in the plane determines co! lineal elements, each one
consisting of a point of the curve and the tangent line at that point.
[In particular a straight line determines e lineal elements, all hav-
ing the same p-codrdinate ; while a single point (looked upon as a
line curve of the first class) determines co? elements all having the
same x- and y-codrdinates]. Such a single infinity of lineal elements
is said to form a union of elements,i and successive elements in this
case are said to be #mifed. In general co! lineal elements do not
form a union ; it is easy, however, to find the condition that they do :

Two relations among the three cotrdinates

(113) 56('”} Y5 ?) =0 and ¢(x7 Y5 .?) =

* At times it is convenient to replace the line by its direction in the above definition.

1+ We shall use the nonself-dualistic set (%, y,2) where x and y are the rectangular
codrdinates of the point and p is the slope of the line. )

Itis almost needless to add that the theory here developed is no more restricted to
this choice of coérdinates than the general theory of Analytic Geomeltry is confined to
the use of Cartesjan codrdinates.

1 In this case the locus of the points of the elements coincides with the envelope
of the lines of the elements; and besides, the point of tangency of each line with the
envelope is the point of the element to which the line belongs. This locus will be re-
ferred to as the curve of the union.

175
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determine o * elements.* The locus of the points of the latter

(r14) o(x, y)=o0

is obtained by eliminating p between the two relations (113). A
union exists provided the value of p, in terms of x and y, obtained
from either of the two relations is the same as that of the slope of
the tangent to the curve (114), Ze.

Wy

Y __
p—{lx

,

2
Y

where partial differentiation is indicated by a suffix. Z%e condition
that the lineal elemenis determined by (113) form a union is therefore
that

(115) dy—pdx=o.}
Ex. 1. Starting with the relations
FAgp=0 (14 =1,

[
the point locus is the circle x2 + 32 = 1. Here

ay _ _x_
e~y 23
F1G. 6 Hence the elements form a union. (See Fig. 6.)

= A single relation ¢(x, y)=o free of  defines o} unions, each consisting of
the ! elements having a point of the curve ¢ (x,y) = o in common, # being un-
determined.

"Hence, if neither of the relations ¢ (x, y) =0 and Y (¥, y) = o involves p, they to-
gether determine a finite number of unions, each consisting of the o1 elements hav-
ing in common a point of intersection of the curves ¢(x,y) =oand y(x,y) =o. (See
Ex. 4, below.)

+ The same condition obviously holds when the lineal elements are determined
parametically
(116) x=X(), y=Y(),p=P>).
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Ex. 2. In the case of
y+xp=0, x+yp=0
the point locus is the pair of lines x2— 32 =o.
Here ¥ = Z . while p=—=%. Hence there is no
dx y ¥
union. (See Fig. 7.)
FI1G. 7
Ex. 3. In the case of
y=xp 41, p=a=const

FIG. 8 .
the point locus is the line y =ax + 1. Here

=a=p. Hence the elements form a union. (See Fig. 8.)

SN

Ex. 4. In the case of
x—3y+3=0, 35—y +1=0 %Ké
the point locus is the point x = o, y = 1, while 2 is undetermined. The
elements form a union. (See Fig. 9.) FIG. 9
Ex. 5. The elements determined by

% x=cos? y=sing p=tan?

do not form a union, since the point locus is the
circle #243%2=1, where

d—y:—fz—cost#:p.
dx ¥

(See Fig. 10.)
Fi1G. 10

Ex. 6. In the case of

y=ap+1, y=1

the point locus is the line y = 1. Along this p =o.

Hence the elements form a union. (See Fig. 11.)

Fi1G. 11
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AN AAAA Ex. 7. In the case of
y=axp+1, y=3
the point locus is the line y = 3. Along this p=o,
But the elements along this line determined by the
first relation have p = =% # 0. Hence there is
FIG. 12 no union. (See Fig. Iz.)x

49. Contact Transformation.— Of the possible transformations
on the coordinates of a lineal element

(117) x1=X(x,y,p), Ji= Y(‘%J’:ﬁ); ﬁlzf(x, Vs 235

those which transform every union of elements into a union play an
important rble and are known as confact transformations. The
condition that (117) be a contact transformation is readily seen
to be
(118) ay, — py dxy=p(x, y, p) (dy — p dx), where p £ o.

]
For, from the condition (r15) it follows that if a union is to be

transformed into a union @y, — g, 4%, must vanish whenever 2y — pdx
does ; that is, the former must contain the latter as a factor.

Indicating partial differentiation by a subscript, (118) may be
written

(V= PX)dx +(Y,— PX)dy + (¥, — PX,)ip = p(dy— p ).
This is equivalent to

(119) Yo—PXy=—pp, ¥V,—PX,=p, ¥,—PX,=0;

whence -
s 2P
(120) P X,
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and
(z21) X (Yed2Y)— V(X 42 X,)=o0x

The two relations (120) and (121) may be put in the compact
form
(122) P=XE=—Y’+/) Y.
X, X.+2X,
These relations, which are necessary conditions that (r17) be a
contact transformation, are also sufficient, as may be seen as follows :
They lead at once to

Yo4+2 ¥, — (X, +p X,)=o0,

E—-FPX _X—FPX _
_P 1
Equations (119) follow at once, and, therefore, condition (118)
is fulfilled.
Conditions (1z0) and (121), or their equivalents (122), may thus
be used instead of (118), when desired.t

or

p-T

* Introducing the Poissonian symbol
Xp Xpdp X,

XY= )
[X¥] » Y=t+p Yy

the relation (121) takes the simple form
(121) [XY]=o.

‘When two functions X and Y satisfy the condition (121), they are said to be in
inwolution.

+ This value of the common ratio p cannot be identically zero, for using (122) it
may be written

_ MWW WKy Ve XV oV

p H
Xp Xet+p Xy ?2Xp

all three of the numerators cannot vanish simultaneously since X and ¥ are supposed
to be independent functions.

I An element transformation, which is not a contact transformation, transforms pre-
cisely o2 unions into unions. (See Kasner, American Fournal of Mathematics,
Vol. XXXII, p. 393). Thus, X=x, Y=p, A=y, which is obviously not a contact
transformation, transforms the union defined by y-+p = c1¢%, y —p = cge~= for any
pair of values of ¢; and ¢, into a union.
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Remark 1. — Of the three functions X, ¥, 2 in the contact trans-
formation (117), either one of X and ¥ may be selected at pleasure;
the other one is then determined as a solution of the linear partial
differential equation (121). With X and ¥ selected, 2 is determined
uniquely by (122).

The extended point transformation (§ 13) is evidently a special
case of a contact transformation. For if X and ¥ are any functions
free of p, (121)holds; while the form for the accompanying trans-
formation of ' or , given by (21), is exactly (122).

In what follows we shall exclude extended point transformations
from consideration, unless specific mention is made to the contrary.

As an exa\mple of a contact transformation may be mentioned the transforma-

tion by reciprocal polars with respect to a conic. The transformation, in case the
conic is the circle 22 4 32 = 1, takes the form

- =2 __ 1 s T e

(A) xl—}/——-.z']’7 yl—y—xp’ = ¥
-1 _

Here dyy — p1dxy :y(,‘v g (dy — pdx).

The transformation by reciprocal polars with respect to the parabola 42 =12y

is given by
(€:)) X=p 1=xp—y, pr=x
Here dyy — py dxy = — (dy — p dx).

In the above illustrations a union whose curve is a point is trans-
formed into one whose curve is a straight line. That iz #e case of
every contact transformation (not an extended point transformation)
a union whose curve is a pointt must be transformed into one whose

¥ These equations may be obtained as follows : The point (x,y) of an element

(x, 5, p) is transformed into the polar line xx¢ - yy; = 1 whose slope is 2, =—%. The
line of the element, y

Y—y=pX—=x) or —ﬁX+ ¥ ]
y—xp y—xp
is transformed into the pole
— _Z —
xX1= y 1= .
V=

1 Excepting possible special points; e.g. the origin in Ex, 3, p. 185.
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curve is an actual curve may be seen by eliminating p and g, from
equations (117). There results from this elimination a single relation,*

(123) F(x7 Js X, _y]) =0,
which determines a locus for the points (x, 3,) corresponding to a
fixed point (%, »).T

Moreover, a contact transformation is determined by a relation of
the type (123), provided the three equations

(124) F=o, F,+ply=0, F, +pF, =0

can be solved for x, y, g, and also for &y, y,, . For, solving for
x5, %1, /1, there results the transformation of the three variables

oy

(117) x1=X(x,}’:]’); y1=Y(x,y,ﬁ), f1=—£

£y,
That this is a contact transformation may be seen readily. For
from
y21 =—1;‘——:51 and p:—ﬂ
v FII
1

fi}’l—ﬁd’ﬁ:ﬁr ’fo;'ﬁ;/ ll’}’!’ d}’*]’dx=ﬁ——"—'zzdx+ﬁ i

A v

* 1f there were two independent relations,
(%, #1,01)=0, Fax,y, x1,51) =0,

they could be solved for x1 and y; in terms of x and y, which would imply that (117)
was an extended point transformation.

+ We may say (fixing our attention on the curve of a union) that the effect of the
contact transformation is to transform any point (e, &) into the curve #(a, 4, x1, y1) = 0;
while a point transformation transforms a point into a point.

Moreover, it is not difficult to show that a contact transformation, in general, trans-
forms a union determined by a curve C into one whose curve (' is the envelope of the
curves into which it transforms the various points of C, or, using the same form of ex-
pression as above, we shall say that it transforms the curve Cinto C'. (Thus see Lie,
Berithrungstransformationen, p. 49). If it should happen that the curve C is one of the
curves 7 (x, y, &, B) = o, where ¢ and 8 are any constants, its transform C' is the

point (&, B).



182 THEORY OF DIFFERENTIAL EQUATIONS §49

Differentiating (123) gives
F, doy+ F, dn=—(F.dx+ F,dy).

Hence ay — pr dxy = — 51 (dy — pdx),
-7,
which proves that (117) is a contact transformation.

The condition that (124) be solvable for x, y, p and for &y, », A
can be expressed very simply analytically :

In order to be able to solve for p it is necessary and sufficient that
£, 0 when F=o. Similarly, Fu)l = o when & = o is the condition
that one be able to solve for #.

The condition that the first two equations of (1z4) can be solved
for &, and y; is the non-vanishing of the functional determinant

Ly, B Py,
Fu, F"'/1 +pFw1

F, F,F, —F.F,

zzy Yy

F, F,F, —FF,

vy

In the latter the factor }% is omitted since it is not zero whenever

F=o, because #' is suppoysed to be generally analytic, and besides
it is not infinite since /#,==o when #'=o, by hypothesis. This de-
terminant can be put in the more symmetrical form

o F, F,
A = le Fa:xl FIIII *
Fy, ﬁ‘zz/l Fyyl

Since A contains /' as a factor whenever éither 7, or 7, does, the
non-vanishing of A when /= o assures the non-vanishing of %, and
F,. Hence the only condition that (124) be solvable for x,, y, py is

(125) A 5= o when F=o.

Because of the symmetry of A as to x, y and a, 3y, (125) is also
the condition that (124) be solvable for x, y, p.
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Remark 2. —1t is interesting to note that A s o is the condition
that #(x, y, 2, 3) involve x and y as two essential parameters, and
also that it involve a4y and  in the same way.; when such is the
case F(a, &, x, 31) = o defines o* curves for all choices of & and 4,
and F(x, y, @, 3) = o defines «? curves for all choices of & and .
For if x and y are not essential parameters in #(x, y, xy, 3,), two

functions of x and y, say x,(«, ¥) and x.(x, y), can be found such
that (see Note VII of the Appendix)

) ) XL + xo £, =o.
This carries with it

:r..--,1 + XEFyzi = and XI iy + XZ 1/1/1
o X1F + x4, 7z,
I

¥z, =; le zzl + X.. Yy Fy11 = 0.
F zyy uyy U y, XU 1121 + X2 vy, ﬁ;/

Ill

'}10
'id:"q,?u
NG

Conversely, if A=o
£ P P Dot P b
v ‘Fz/::1 ﬁ‘yu1 ‘le =+ F d_yl
dx, o= 9, , and {V_x:p(x’y),

where p is a constant as far as x; and y, are concerned, but may be a
function of x and y.
Hence A = o carries with it a relation of the type

FZ—P('x7y>Fy=o7
which is the condition that x and y are not essential parameters in
F(xi .y’ X1 ,yl)
In exactly the same way it can be shown that if A =o0 x; and », are
not essential parameters in #.
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The equations of transformation (4) and (B) in the cases of transformation
by reciprocal polars given above are readily obtained by the method here given
when xx; + yy1 =1 and xx; —y — y; = O, respectively, are selected as the

relation (123).
For the transformation by reciprocal polars with respect to the general conic

ax® +2hxy+ b4 2gx 4+ 2y +c=o0

the relation (123) is the equation of the straight line

axxy + k(s +yx) + by + gz + x)+ (¥ +y1)+ =0,

or
(123") (ax +hy +g)x +(hx + by + )1 +gx + fy +c=o.
Here o axi+hyn+g hxi+én+f
A=|ax+ iy + ¢ w %
hx+ oy +f V] b

Subtracting x;-times the second row + y;-times the third row from the first,
and taking account of (123")

gx+pte g f| e g f| |2 b ¢
A=|ax+hy+g ¢ k=g a 2|=|2 & [,
hx+by+f kb frhb g fe

i.e. A equals the discriminant of the conic, and is different from zero in case the
conic is an actual one and not a pair of straight lines. In this case the method
given above applies. Solving

(ax+hy F xr+(hx+ by + iy +gx+fr+c=o0

(124") (a + hp)xy + %+ &p)y1 + g+p=o0
ax +hy +g+(hx+ by +)p1 =0,

for x1, 31, g1, the formulee of transformation are

_Cap=N+H—Ap _ FHap—-y)+B-Ip  axthytg

©

where 4, B, C, F, G, Hare the respective cofactorsin the discriminant of the conic.
The transformations (4) and (B) are obviously special cases of ).
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Another interesting contact transformation is obtaned by selecting for (123)
the equation of the circle,

(x23") (#— )2 +(r =)= 2o
In this case A =— 82, and the equations of transformation are readily found
to be
(D) xl.:&i:——r[———, J’I—J/:F Plzf
1+ 2 \/ 1+ p-

The effect of (D) i§to transform any curve into a pair of parallel curves, one
on each side of the original one, and at a distance » from it, as is apparent from
the nature of (123'"). A transformation of this type is referred to as a dilatation.

Find the contact transformations determined by the following
relations :

v

Ex 1. (x—x)’—za(y—y)=o0- gy 4 By

Ex. 2. (x—f‘)z—i— O —gy‘)gzl.
o 4 Ex. 5. 24 2X=1,
Ex. 8. x4y’ — (xx,+yn)=o0.

50. Group of Contact Transformations. Infinitesimal Contact
Transformation. — If in the one-parameter group

(126) X = X(x’J’ f’ d) .yl Y(x .y:]j: CZ) PL P(x: }}:P’ d)

the condition
(118) dY — PdX=p(x,y, p) (dy—pdx),

or its equivalent (122), holds, (126) defines a one-parameter group of
contact transformations.

Like any one-parameter group in three variables (§ 11) the group
(126) contains an infinitesimal transformation

(127) xl:x"‘é(x’y’f) da, y =y+y (Jc,_y,[)) 34;]’1=]5+7T(x:%ﬁ)34;
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whose symbol may be written

- ar af of
Bf=£¢-L e e
(128) 74 fax'f—nay-i—ﬂ'ap
Thus the dilatations
D =x+ A“(lﬁ 5 =y — 4 - =
€2 a=rd o o n=y-— e =5

form a group, with the infinitesimal transformation

Bf=—2 of __ 1o

VILA0E Vit pd
Similarly the transformations (Ex. 1, § 49)
x1=x—ap,y1=y~%’:,z’1=f
form a group, with the infinitesimal transformation

szz;)%é +p‘l%§-

Since (127) is also a contact transformation,
(118) dn— pudiy=dy— p d (dy— p d —m dx)Sa* =p(dy—p ).
where sp=1+0(x, 2, 2)0a,
(120) (%, 3, 2) (dy—pds) = dy—p dé—m dx=d(y—p&) +& dp—m v,
Writing with Lie
(130) n—pE=— W( 3 ),

where W is known as the characteristic function of the infinitesimal
contact transformation, the identity (129) may be replaced by

W, +n=0cp, — W,=0, — II/,+£=0;
whence, making use of (130) and eliminating o,
(r31) E= W, n=pW,— I, ==— 1, —pIl,

* Here, as always in the case of infinitesimal transformations, higher powers of da
are neglected.
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Moreover, for all choices of the function W & n, w are so de-
termined by (131) that the corresponding infinjtesimal transforma-
tion <
Y =x+&da, p=y+nda, p=p+mwda
satisfies the condition (118") and is therefore a contact transforma-
tion ; hence the

THEOREM. — Connected with every infinitesimal contact transforma-
tion there s a characteristic function V= —y+ p&, in terms of
which the transformation is groen by means of (131). Conversely,
starting with any function 1, the relations (131) define an infinitesi-
mal contact transformation.

In terms of the characteristic function the infinitesimal transforma-
tion takes the form

(132) Bf=W, af—i—(pIV W) (I/I/ﬁ_qu)%,

or using the Poissonian symbol (§ 49)

)
(132) =1~ w
Choosing for ¥ the form
W=ViTF

gives the infinitesimal transformation

Bt U1 Y
Vitp Ot Niipw

which belongs to the group of dilatations (D).
The selection W= ‘/"ZZ’—Z"F_ﬁ

_gives the infinitesimal transformation
e @P O B
- ’
VR + 0208 Vg 0y
which belongs to the group

L. - P =1 (Bx2,$49)
-\/azﬁz + &2 Vaip + 5
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When W is linear in p, the corresponding transformation is an
extended point transformation. For, if

W=¢(W;J’)Z}—“‘P(x:y);
§=¢(x7y)’ "7=l//('x:,y)7 7=¢z+/5(l//y—¢’z)—}’2¢y-
[(24), §.13]

Another fact worthy of mention in connection with the character-
istic function is the effect upon it of a change of variables when the
latter is effected by means of a contact transformation. As was
noted in § 11, the introduction of the new variables

[14'] x=F(x,30), y=(x,3,7), p="¥(x,72)

causes the infinitesimal transformation (128) to take the form

Y
ap’

ie. £=Bx, "=2By, w=Bp.

Bf = Bxl+3 af—i—Bp

By the definition of the charactertisic function (130) its form
after transformation is
{ W=pE—m=pBx— By

(130"
= £(px, — y.) + (bx, — y,) + 7 (bx,— U,)-

If [14'] is a contact transformation,
dy— p dx = p(dy — p dx),
or Y, —bx,= _Pﬁ! yu_pxu:f” yp—pxpzo;

whence
(133) W(X, Y, p>:P(P§'_’7):P(x:y’p> I/V(x’.yiﬁ)

Of course, in the right-hand member, x, 1, # must be replaced by
their values in terms of the new variables given by [14'].
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The characteristic function for the group of dilatations in the case of rectangu-
lar codrdinates was seen to be

W =vV1 + A
Introducing the new variables,
(B3 X=p y=ap—y p=4
for which dy — p dx=—(dy — p dx),

it is easy to verify that .
W= — \’W = — \/m.

On the other hand the new variables

() x=——L  y=—1_, p=-F%
y—xp y—xp y

for which dy— pdx= T (dy — p dx)

cause the characteristic function to assume the form

Vi+p .
= (- Y VX + Y
"y — ) =t
51. Ordinary Differential Equations. — A.differential equation of
the first order

(134) S(%,9,7) =0

may be looked upon as a relation among the three codrdinates of the
lineal elements of the plane, with the understanding, however, that

_
(135) f=—

So that the differential equation defines «o® lineal elements which
[because of (135), which is identical with (115), § 48] are arranged
in ! unions. The solutions of the differential equation are the
equations of the curves of the unions.

Since all the lines through a point constitute a union, in which
case the common point is the curve of the union, such unions must
be taken into account when looking for the solutions of a differential
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equation. Thus if the relation (134) is free of p, say

(134") /(% 9) =0,

this may still be looked upon as a differential equation in which p is

arbitrary. Such a differential equation defines, besides the union
whose curve is f(x, y) = o, those unions
determined by each of the various points

i of the curve. See Fig. r3. Each of
these points will be considered as an

FIC. 13 integral curve of the differential equa-

tion.

Since every lineal element of the envelope of a family of « ! curves
is an element of some curve of the family (compare £/ Djf. Ey.
§§ 29, 30), the equation of the envelope must also be a solution
(Z.e. the singular solution) of the differential equation of the family of
curves. In ghe special case of a differential equation of the type
(134") the curve f(x, y)=o may be looked upon as the envelope,
and its equation is therefore the singular solution.

The Clairaut equation (Z/ Dif. Eq. § 27)

when transformed by y—ap—flg) =0,
8) F=p = ap =y P =
takes the form »n+f(x)=o,
which is of the type (134’). It has for integral curves the various points of the
curve 71 + /(1) = o, while the equation of this curve itsell is a singular solution.
Passing back to the original variables, this curve is transformed into some curve
¢(x, ) =0, and its points are transformed into. the tangents of ¢(x, y)=o.
Their respective equations are the singular and particular (in the aggregate,
general) solutions of the original differential equation.

The special Clairaut equation

Y —ap— 7'\/;_;? =0,
when transformed by the dilatation
D) D
Vit p? Vi4p?

takes the form Y1 — X1p1=0.

’ ]’ =j'1’
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This simple differential equation has the obvious general solution y; = axy,
which is the equation of the family of straight lines through the origin. The
envelope of this family is the origin, which determines a union that is obviously
consistent with the relation defined by the differential equation. Passing back
to the original variables, the origin goes into the circle 22 4 y2 = 72, which equa-
tion is therefore the singular solution of the original differential equation, while
the lines throggh the origin go into the tangents to this circle. The equation
of their family, y = cx — »VI + & = o, is the general solution.

52. First or Intermediary Integrals.— The differential equation
(136) ¢(x) Js P) =i,
for each value of the arbitrary constant a, has ! integral curves.
Allowing @ to take successively all possible values, (136) determines

«” curves which are the integral curves of the differential equation
of the second order

(137) 2= 4.+ s +$,L=o.

The differential equation of the first order (136) is known as a firsz
or intermediary integral of (137). From the above it is seen that @
Jirst integral of a differential equation of the second order classifies the
w? integral curves of the latter info ' families of o' curves each.

This classification is different, of course, for different first integrals,
of which there is an indefinite number. For

(138) (%, 9,2) =6
will also be a first integral of (137%), if, and only if,

& _ @ _
0]—— z‘*“,’yf‘f"{’,,[’l;;—

is the same as (137), 7.c. provided

¢£+¢ﬂp ¢P
YR

or

(r27) [gy]= | Pr Pt 92| —o,

Yo Yot 2
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Hence
TuEOREM 1. The necessary and sufficient condition that

b(x, 3, p) =a and Y(x, 5, p) =

be firstintegrals of the same differential equation of the second order
is that ¢ and  be in involution (§ 49).

Starting with the function ¢ (=, », #), a second function y(x, 7, )
will be in involution with it provided it satisfies the linear partial dif-
ferential equation

9 9
(139) [y] = ¢p;% +5%,5 ~<¢z +zﬁ¢m>

Iy
Y ——=o0.

ap
This linear equation in three independent variables has two inde-

pendent solutions, one of which is ¢ (x, ¥, ). All of its solutions are
functions of these two. Hence

TrEOREM 1.  Knowing ¢(x,y, p) = a, a first integral of a differ-
ential equation of the second order, all of ifs first integrals may be
obtained by solving the linear equation (139). Hawving found a solu-
tion of (139), independent of b, all the first integrals are given by

() =<

where @ is an arbitrarily chosen function of ¢ and y.

Since two independent first integrals
d(x, 3, p)=aand y(x, 3, p) =06

of a differential equation of the second order define the same set of
«?® integral curves but classified in distinct manners, for a particular
but arbitrary choice of @ and 4, say @, and 24, the differential equations

(140) ‘1’(“’3 .y:ﬁ) = a, and ‘//(v": N ]j) = b

will, in general, have an integral curve in common. At each point of
this curve both equations (140) determine the same value of p;
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hence the equation of the curve
o (x, 9, ay, b,) =0
may be obtained by eliminating p from (140).
Still keeping @, fixed but allowing & to be an arbitrary constant,
the result of eliminating p from ¢ = @, and ¢ = & gives
o (x, 9, @, b) =o,
a solution of ¢(x, 3, ) = a, containing an arbitrary constant which
1s, therefore, its general solution. Hence,
TueoreM 1II.  /f a second differential equation
Y(x, 5, 0) =10

involving an arbitrary constant can be found such that ¢ and § are
in involution, the general solution of

b(x, 3, 2) =a
can be found by eliminating p from the two differential equations.
This process is frequently of service. (See £/ Dif. Eq. §§ 23, 26).
Eliminating p from (136) and (138) gives
o(x,y, a b)=o0,
a solution of (137) involving two arbitrary constants. It is there-
fore the general solution. Hence,

Turorem IV. If two independent first integrals of a differential
equation of the second order can be found, its general solution is ob-
tained by climinating p from the equations of the first integrals.

Remark. —If ¢ and ¢ are in involution, it follows at once from
the above that the two relations
$(x, 7, ) =a, and y(x, y, p) =4,
determine an element union (§ 48) for all choices of the constants
@ and 6.
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It should be noted, however, that
(113) (%, 9, p)=0, Y(x,5,p)=0

may determine a union without the identical vanishing of [, ¥];
thus see Ex. 6, § 48. But in every case when the relations (113) de-
termine a union, [, ¢] must equal zero, either identically or because
of these relations. This follows readily from the fact that whenever
(113) determine a union, the equation of the curve of the latter is an
integral curve common to the two differential equations ¢ = o, y=o;
and conversely.

53. Differential Equation of the First Order Invariant under a
Group of Contact Transformations. The general type of differential
equation of the first order invariant under the group whose infinitesi-
mal transformation is

J
G32) B W, (oW, = M) L= (Wt W) D

is obtained (compare § 18) by equating to zero the general solution *
of the linear partial differential equation

d d g,
ar) WLk (W= ) G~ (ot ) L=

On the other hand, the condition that the differential equation
S (%, y, ) =0 be invariant under the group whose infinitesimal
transformation is 5/ is obviously ([12], § 11)

Bf=o0 whenever f=o.
As was noted in § 51, a differential equation of the first order
(142) p=o(x,7)

arranges the o lineal elements determined by it in o' unions, the
curves of which are its integral curves. If (142) is left unaltered by

#This solution is obviously the general expression for the first differential invariants
of the group, the name given by Lie to invariant functions of x, y, 2.
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a contact transformation
(I 1 7) A1 = X<~V) i Zj), h= Y(A’, Vs f): h= -P(x; Yy f))i

the latter interchanges the integral curves of (142) among them-
selves, since it transforms unions into unions.

As far as the differential equation (142) is concerned, the only
lineal elements operated upon by (r17) are those whose codrdi-
nates are (v, v, p=w(x, »)). These elements are transformed into
(ay, 11y pr=w(x, 1)) by (117), since the latter leaves the differ-
ential equation unaltered. Hence the effect of the contact trans-
formation (117) on the differential equation is the same as that of
the point transformation

(143) % =X (x,y, o(x, N h= Y (%, 3, o(x, 3))-
Whence the

THEOREM. — [If the differential equation
(142) 2= o(x, )

is tnvariant under the contact transformation

(117) 1= X3, 00 n=Y (%3 0), sh=2L(%232),
it is also invariant under the point transformation

(143) & =X (% 3, o(x, ), n=Y(x 3, olx, ).

Both transformations interchange the integral curves of (142).

It follows at once that if the differential equation
p=o(%7)

is invariant under a group of contact transformations whose infinttest-
mal transformation is

B =t 1) L1l 3 ) Ltento 1 DL,
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il is also invariant under the group of point transformations whose
infintlesimal transformation is

Uf = &(x, 9, o, y))s—f + (%, 3, o(x, 9)) —?f;

Either of the methods of §§ 12 and 20, Chapter 11, l‘nay then be em-
ployed for solving the differential equation.

Remark. —Since BW=— W, W, it follows that the differential
equation
(144) W(x, 3, p)=o0

is invariant under the group of contact transformations whose infini-
tesimal transformation has 7 for characteristic function.

But the invariance is of a special kind. The effect of this infinitesi-
mal transformation is to carry the point (x, y) of an element (x, 3, )
into (x + £8a, y+nda) where é =W, n=pW,— W. The slope
of the line joining these points is

g=]§_K,:pwhen W=o.

w,
Hence any element whose codrdinates satisfy (144) has its point
carried in the direction of the line of the element, that is, the ele-
ment and the one into which it is transformed are united (§ 48).
The infinitesimal transformation, therefore, leaves unaltered each of
the unions (§ 51) determined by the differential equation (144), and
the group has this effect on each of the integral curves of (144).
Such a group is said to be #7wial/ with respect to the differential
equation (144), (§ 12), and is of no service in solving it.



APPENDIX

NOTE 1

THE INFINITESIMAL TRANSFORMATION

In case both éa—qs(x, ¥, @) and aiz//(x, ¥, @) vanish identically
a a

for the special value of @ = a,, or if either of them becomes infinite
for that value of @, irrespective of the values of x and y that may
enter, a modification of the process for finding the infinitesimal trans-
formation employed in § 2 must be made. It should be noted that
they cannot both vanish identically for all values of , for in that
case neither of the functions ¢ and ¢ could involve @ at all ; nor can
either one of them become infinite for all values of %, ¥, and @, since
¢ and y are supposed to be generally analytic, which implies the
existence of finite derivatives, except perhaps for special values of
the arguments.

Let « be a value of the parameter for which g_q5 and g—(/l are finite
a a

and at least one of them different from zero. 'The transformation
7, determined by it has for inverse a definite transformation, 73, of
the group, corresponding to the value u of the parameter, where @ is
a function of « only. Since 737, = Ta0 is the identical transforma-
tion, 757u+éa is an infinitesimal transformation. If 75 is

X = ¢(x, v a): HI= ¢(x; Y EZ);
the infinitesimal transformation 7%7,,5, may be written, when ex-
197
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panded by Taylor’s Theorem
d
Xy = ¢(X“ J @ + 8‘1) =@ + (%L ¢(x1¥ Ju a>8[l* + ot

d
Vo= ‘/’(xj.; J &+ 8LZ> =y +a—“ll/(x1, Y1 a)Sa + ey

since ¢ (g, 31, @) =2, (%, gy, «)=y. Owing to the way in which
« was chosen, neither of the coefficients of 8« is infinite for all values
of x and y, and one of them, at least, is not -identically zero.
Writing

Dy 3y ) = 2 B8 3,7, (5,2, ), W] = (5, ),
(¢4 o
(145) 5 5
a_‘l’(xh Ju “) = a—lﬁ[¢(x, Vs (_/'): 1}/(36, ) E): “]E 77(36, Y, “):
o da

it follows that an infinitesimal transformation of the group (1) of the
tpe (2),§ 2,
(2) dx =¢E8a, dy=rnda
can always be found.

The forms for £ and 5 found in § 2 are exactly what the above
become for the special choice «=w = a,.

From the above it is seen that & and % in (2) depend upon the
choice of «. It remains to show /ow they depend upon the choice
of the parameter. Let

ox =E(x, y)da, 3y =H(x, y)da,
or x=x+E(x, y)8a, yy=y+H(x, )3
be some known infinitesimal transformation of the group (1), where
2 and H are not both identically zero, and neither of them is infinite,

in general. The result of performing successively any transformation
7., of the group (1) and the above infinitesimal transformation is

# Here é%cqj (), 7,, @) stands for [:9% ¢ (2, 4)11.
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some transformation of the group whose effect on the variables «
and » differs from that of Z, by an infinitesimal amount. In other
words, it is a transformation 7}, ,,, where Az is an infinitesimal which
is a function of @ and 3a only, because of the group property of (1).
From the first definition of this transformation

Ao =y + E('\.l’ J'l\’ da = 4)(.96, ¥y (l) + E((l” S[/) 84:
Ja=75 + H(‘\Al: }'1) 8a = l//(./\‘, s a) +H (qS’ l//) Sd)
while from the second definition

Hy=¢(x, 1, a+Aa)y=¢(x, 1, a)+ %Aa G eeey
(

2=y(x, 5, at+Aa)=y(x, 3, )+ % At v
Hence

(146)

2 Woa =001 -,
da

H(, y)oa=Y pat -,
da

for all values of x, 3, @ and 8z, Ae being a definite function of ¢ and
82, and an infinitesimal along with 8. By hypothesis & and H do
not both vanish identically ; suppose, to fix the ideas, that E%o.
It follows that x is not left unaltered by all the transformations of
the group (1) ; hence ¢ must involve a, and %‘3 % o. With a proper
choice of x, y, a the coefficient of 8z and that of Ag in at least the
first of the two relations (146) are different from zero. By a theo-
rem in the Theory of Functions, concerning the inversion of power
series, Aa is developable in powers of 8z, the development beginning
with the first power. Hence

Aa=w(a)da + - *

# Since, as was noted above, Az is a function of & and 8a only, the coefficients in
this development mvolve a only and are free of x and y.
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where w(2) %= o0. Aa is thus of the same order of infinitesimals as
3a. Putting this value in (146), dividing by 8z, and passing to the
limit 8z = o,

(147) B(p, ) E'w((l)g—j: H(, ¢)Ew(a)%5
or remembering that x = ¢ (ay, 3y, @), ¥=y(x, 3y, @),

these may be written

98— 2 glo (10 @), ¥l 1 3, )= wtay 2 ),

da w(a

9 _

a_a _'I/[¢(®1;}1’ a) ‘r”(xh)b [l), ]—"—H( ly_yl)
Using (145), and replacing «; and y, in these identities by x and y,
we have
(148) &(x, 0, )= e )E’(x ' )5 (%, 9, a)——(—) (%, 3)-

The effect, then, of using different values of the parameter in deter-
mining an infinitesimal transformation by ‘the method of the first
part of this note is to obtain pairs of coefficients of 3z in the two
formulee which are proportional, the factors of proportionality being
constants. Hence, by Remark 1, § 2, al/ the infinitesimal trangfor-
mations so obtained are one and the same. We have thus arrived
at the

THEOREM. — Every one-parameter group of transformations
By ‘i)(x: I a): J, = ‘//(x; Y a)
has one and only one independent infinitesimal transformation

dx = &(x, y)da, dy=n(~,r)da,
where

E= - B (0 3, @), Y, 0, ), @y 7= oo, 1), W03, @),
12 o
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and wis any value of the parameter such that at least one of <g—:¢> and

a
<g%)u s not identically zero, and neither of them is infinite for all
values of x and y.

In general @, is a possible value. In § 4 is shown that the trans-
formations of the group can always be put in such form that this is
true. When for a given group this value cannot be used, this is due
to the way in which the parameter enters, and is not a peculiarity of
the group.

Remark.— This theorem and its proof hold for » variables without
any but obvious modifications to take account of the number of
variables.

NOTE 1II

SOLUTION OF THE RICCATI EQUATION

@=I 4_33+£<311 6§>y,_£§§y12 (8 18).

ax g ox  E\dy ox £ oy

In § 18 the general method for finding the differential equations
invariant under a given group led to the solution of the Riccati

equation :
@' _ 10y 1(Oy 08\, 10¢,
(39) Pt x+$<6y e i

in which y, wherever it occurs, is supposed to have been replaced by
its value in terms of x and ¢ [say y = ¢(x, ¢)] obtained from
#(x, y) = ¢, the solution of the differential equation

(11) d—gz ‘:;-—J-)
1t is very easily seen that

_n_nlx é(x )]
Aige Y= e 9 0]
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in which y is replaced, as above, by ¢(x, ¢), is a particular solution
of (39). For differentiating (149)

"l’:la_ﬂ Iay\ _n a_$+§§dl
dx &\0x dydx) &E\O0x dydx

Remembering that dl:—ﬂ, this becomes
dx ¢
Fies
§) 19, 1/0y 0 n_la_f(ﬂ .
dx  E0x E\dx Odx)E £ay\&)°

"Whence follows at once that (149) satisfies (39).

It is a well-known fact that the knowledge of a particular solution
of a Riccati equation enables one to find a transformation of variables
which reduces the equation to a linear differential equation of the
first order, whose solution requires two quadratures (see £/ Dif. Eg.
§ 73, 1°). For the sake of simplicity, writing (39) in the form

a4y X
dyx o+ Xy + Xy
and its particular solution ¥ =,

the transformation vy =24
z
changes the differential equation into
% | (K42 30X)+ Xo=o,
dx
which is linear. If 5= w(x, £) iIs the solution of this equation,

e 1 7'[.96, ¢(.L, f)]
( 5 ) J/ m(x, /c‘) +f[x; ¢(x: [)_-l .

is the solution of (39). Solving (150) for £, and replacing ¢ (a, ¢)
by J, W (2, 9,5) = &

is the required second solution of (37), § 18.
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Inll, & & __a&

= x_l+y,2. uEx'2+y2:t. .'.y:\/c—xz.

The Riccati equation (39) is %' — 1ty

—Ve—a?
The transformation p=t4y F
— Ve 22
reduces this to ] i 3= 1 s
dr  c— > Ve — 2
—
Integrating, z= xVe— a2 + 2(c— a%)
=2 4 pe
P +4y
Hence ¥ = k. 5 LA &,
ATy
'
d b= VTR =y .
= x4+ +7 =0

Compare this with II, § 19.

NOTE III
ISOTHERMAL CURVES

The condition that two distinct families of curves
¢ (x, y) = const. and y(x, y) = const.

divide the plane into infinitesimal squares may be obtained from the
following considerations : *
Passing to the new system of codrdinates

(ISI) x=¢(x,y), y:l//(x,y)
the two families of curves have the simple equations

x=const. and y = const.

* All this holds, practically without change, for isothermal curves on surfaces,
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From dx=6—¢dx+%dyand a’y:a—‘ljdx-{—{z—‘/’dy,
dy Ox dy

dx
%dx—a—(bﬂ'y g#’ dy— 3¢ dx
a’x:ay———y— and /z’y—-——‘c —
J(é, ¢) J(:¥)
d
where J(b, )= g_‘#%f_ Z_j GZ

the Jacobian of ¢ and y, which is not identically zero, since the two
families of curves are distinct. (See £/ Dif. Zg. Note 1 of the
Appendix.)

The expression for the element of length of arc of any curve in the
plane, in terms of the new codrdinates, is

ds? =dx’ + dy*= E dx* — 2 F dx dy + G 4y,

where the coefficients

GG Eiray @) +(E)
[/(¢, )] W /(& 9T

are to be expressed in terms of x and y by aid of (151).
A first requirement, that the two families of curves form isothermal
systems, is that they cut each other orthogonally. The condition for

this is 3 oy
_dx _9Q
6¢ 5}'\;, or F'=o.
dy ox

Hence a necessary condition is that the expression for the element
of length of arc assume the form

a8 =FE dx* + G dy’.
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For a curve of the family x = consz. (which will be referred to as an

X-curve s
) dsy=/ G dy,

while for a y-curve dsyz V E dx.

If VE=+G at every point in the plane, the curves divide the
plane into infinitesimal squares, for choosing Zx the same as 4y,

dsy = {z’xy.

Moreover, if V£ and v/ contain a common factor, and each of
the remaining factors is a function of the corresponding variable

only, thus
’ VE=\Nx, y)a(x), VG=A(x, v)B),
the introduction of the new variables

X= | a(x)dx and Y:fﬂ(y)ziy
gives dsy=A(X, V)dX and dsy = A(X, V)dY,
where A(X,Y) is what A(x, y) becomes when x and y are replaced
by their values in terms of X and ¥. The families
X=const. and Y= const.

(which are obviously the same as x= consz. and y = const)) have the
desired property. Hence the

THEOREM. — 7Vhe necessary and sufficient condition that the curves
b(x, y) =const. and their orthogonal trajectories Y(x, y) = const.
divide thy plane into infinitesimal squares is that the choice of variables

x=¢(x,9), y=y(7)
reduces the expression for the element of length of arc to the form
as* = N(x, y) { Le(x)dx] + [B(&)dy]*},

where, in particular, a(x) and B(y) may cach be unity.
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Thus in the case of a family of concentric circles and their orthogonal trajec-
tories,

x=a4 gt y =,
2= —— dx2+

4x (I+y?)2y2 [( ) (Iiyyl)ZJ

Putting X =log Vx, Y =tanly,

a2 = 2X(dX?2 + dV'?).

For other examples of isothermal systems, see § 24.

NOTE 1V

DIFFERENTIAL EQUATION OF THE SECOND ORDER NOT
INVARIANT UNDER ANY GROUP

If the differential equation be written in the form
.y"—F(xl }’,}’/) =0
the condition that it be left unaltered by the group
o
Of=¢-2L x4
7 gax + ﬂay

is [(61), § 27]
(6r) —IF_F

P rit @-;- = o, whenever y' = F(x, 5, ¥).
Oy (0 0 9,

Here 9 =$+<‘9_J?’I_$> 6}’ s [(24), § 13],
y ay //dé
/ =ZZC——y o [(58Y,§ 26],

_ % Oy PE , (O % o (9"5 3
“axﬂ+<zaxay“axﬂ>y +<W—zaxay> e

617 a‘f a¢ A
+(g 20357 )"
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Replacing y”, wherever it occurs in %", by Z (x, », ¥/) the condi-
tion (61") becomes

<317 3§> ‘Sa_ﬁ' 0F dndr 62
ay Zox Tay ~ oxoy

" Iy 0% a¢ Oy A\ OF
(s g (5 - > 4

9* ¢ | IR ,, 0%,
L+<3)Z’_23x0y+5}67> g =0
for all values of =, 3, /.

Since (r52) is an identity with respect to x, y, and ¥/, it is equiva-
lent to a number of differential and finite equations in £ and «, the
exact number depending on the form of Z. Fixing one’s attention
on ¥ alone, (152) is equivalent to at least foxr equations, and per-
haps more. In general it is impossible to find functions &(x, y) and
y(x, y) to satisfy all these conditions.

As an example, consider the differential equation

¥y =axy-+tan y.
The identity (152) leads to
9 I
(@—z—>(xy+tany’) —&y— "= secly/ 4 ...

"36 (xy+tany’)y’ (ay—%>)/ sec23/+g—i}/25ec2}/+...5

the dots standing for terms free of tan y and sec ¥ and involving
second derivatives of £ and 5. (See below.) This identity implies

the following relations :
@ P25t =0,

@) &+m=o,


file:///east
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& =0

@ F=o,

@ P-F=o.
From (z) and (¢) %:g—fc:o.

These together with (¢) and () make it necessary that
&= const. and 5 = const.

Hence, the omission of terms involving higher derivatives of £ and
1 above.
Since (&) must hold for all values of x and y

$=77=o’

Z.e. there is no infinitesimal transformation and, therefore, no group
that leaves the differential equation unaltered.

Remark. — The case of a differential equation of the first order is
entirely different. The condition that

_J/—F(x,_}’)—:O

. . Lo af
be invariant under Uf=¢ i + "a_y
may be put into the form
dn  [(Og 0 9 , OF OF
’ 2 —
G (’ay 0x>F o T gy =

Here one of the functions, say &, may be chosen at random, leav-
ing a partial differential equation in %, which always has a solution ; as
a matter of fact it has an indefinite number of them. This is in
entire accord with the result arrived at in § 1.
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NOTE V
(WU = (Lh)'f.
The symbol of the infinitesimal transformation of the extended
group corresponding to Jf = ¢ g—f——}— qgj—( is [(24), § 13]
& )

L O (B Oy 0F 08\ OF
U = = U= —7’ —11— r2s _gete L
4 £8x+n0y+(8x+}} o Y 6y>6_y’

Introducing the symbol

=Y+v,

U'f may be written in the form

Uf=tLvnd + -y YL,

and (BU'\f = BEBf+p(%, 3, ) a}f;
where p(x, y, ¥') = B(By —y B¢) is some function of x, y, ', whose
actual form is of no importance in this discussion. Introducing the
L ]

R4
=
3’
(BU")f may be written in the form

(BU)f = BEBf+p(x,9,5) U

Also (COYf=o(x,9))C
where o (%, 3, ¥') = C(Bn— ¥ BE) is also a function of x, y, ¥/, whose
form is of no importance here. The fact to be emphasized is that

(BUf and (CU)f are linear functions of Bf and Cf, the coefficients”
being functions of x, y, y

additional symbol
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Moreover, if U f and U,f are any two groups, (B(' U)))f and
(C(LYUN))f are also linear in Bf and Cf. For from Jacobi’s
identity (§ 36)

(BN + (GG B)) [+ (T (BU))f = o,
BN =((BU)E) —(BU)U)f
= (BB +piC, U))f — (B&B + poC, U )f
= [U/(B&)— U/ (BL) 1Bf
+[P2351'— P1352+P102—P201+ Ul,P2 - Uz’Pl] Cf 5

and in an analogous manner,
(CTF TN = (Utoy— Uio) G
Since (T40%)f is of the same type as OF (§ 14), it may be written
iy =L 40,

and (GO f= “"f+naf+(3n J/Bé);j;-

Noting that (T4 UY)f coincides with (li{})'f in the first two
terms, at least, we may put

iy =t Lty Lo n N
It remains to show that o = By — y' B¢.

The alternant of Bf and (T} TY)f is
= 5L 4 By 4 5o
B@uy =8t + B -0 L+ 5

This being linear in Bf and Cf, as was proved above,

..BS:)\, B’)]—O)E/\._y’.
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Whence 0= B’q ——y’BE

This, as was noted above, establishes the identity
(G = (GO,

Remark.— 1t can also be proved that for the m-times extended
groups Ui and Uy f

(GO U™ = (GO,

NOTE VI

CONTINUOUS GROUPS INVOLVING MORE THAN ONE
PARAMETER

r-parameter Group of Transformations. — The aggregate of all the
transformations *

(153) le ({>(JC Js @y, Aoy tevy ar))

—‘/’(‘x! Vs @y, @y oty ar):

obtained by assigning to the parameters @, @, -+, @, all possible
values constitutes a group, if the transformation resulting from the
successive performance of any two of them is one of the transforma-
tions of the aggregate.

As in the case of one-parameter groups (Chapter I), the groups
here considered are supposed to have their transformations pair off
into mutually 7zzerse ones. That is, corresponding to any set of
values of @, a,, -+, @, there must always be another set @, @, -+, @,

#* As before, ¢ and y are supposed to be generally analytic real functions of x, y, ay,
ag, ++-. «,; and, unless specially stated, it will be understood that » and y are real
and that the parameters take such values only as render x; and yy real. Groups of
transformations involving two variables are considered here. For the theory of those
involving 7 variables the student is referred to Lie's works, especially his Zransforma-
tionsgruppen, Vol. 1., and his Continuierliche Gruppen; also to Campbell's /ntroduc-
tory Treatise on Lie's Theory.
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(functions of the former ones) such that

K= (P(‘\‘ly_l'l’ zilv —(;'.’: ;ir)’.
(153) { ’

r=a(vy o, @y Uy w00y U

Another way of putting this is: If the equations (153) are solved
for v and y, the latter must appear as the same functions, ¢ and y,
respectively of vy and 1y and a set of » functions of &, @3, -+, a,, as
indicated by (153).

Thus, consider the translations
XVII Xy =2 ay, =04 as.
Il one of them be followed by a second one,

Yo =y by ya =0+ b,

the result is Ny =t gem oo,

where co=ay+ by, o= as+ ba.

Solving the equations XVIT for .+ and g,

A

1l

K= ady, Y= —aa.

Ience A=y dy = —

Again, consider the displacements

XVITT Xp=awvcosayp — psinay 4wy, y = asinag 4+ ycosay + ag.

A second transformation of this type
No =y cc;s by — vy sindy 4 by 2 = vysindy + vy cos by + b,
results in
Wp = eos o — psine 4 ey pa = vsine + pyeos e + e,
where
oo =ay by ca = ancos by — aySindy A day, ¢y = ausin by + agcos by + by
Solving the equations X'VIII for .v and »,
wv=vycos(— a))— yisin (== @) — (aacosa| + aysinay),
y=aysin(— @)+ p1cos (— ay) + (agsin @y — aycosa).
Tlence

ap = =y, @y = — (@ucosay 4 agsinay), ay == a0 sin @] — ay cos a).
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In the case of the general Projective transformations

_ayx +azy - ag

1N @ + ary + a
XIX By =BT w A By 5 - )
a:x - asy + ag

’
ax + .y —ay

there is no difficulty in seeing that these constitute a group. For if one of the
above transfcrmatins be followed by

=TT b - A P i 2 )
T byt dsyi— by T buxp 4 bsy + be

_aXrt+ay+tc

=X TGyt
: -3 5=
OX T 3¥Y — 69

there results X2 2 S s
ax +y+o

&

where & = aiby + aybs + azbs,
€2 = asby + ashs + aghs,
c3 = azby + ashs + agls,
e = @by + asks L+ azbg,
¢5 = asby - asbs + asbs,
6 = agby + asbs + asbs,
o1 = ayby + asbs + azby,
g = asby + ashy + ashy,
o9 = azb; + aghy L agby.
Moreover, the result of solving the equations XIX for x and y is

it dr Aty + A+ A
T Aoz + Asyr + As’ Agxy + Aeyi + s

x

where 4y, A, ---, Ay are the cofactors of the corresponding elements of the

determinant o as a5

as a5 ag|-

27 ag ay

Since the successive performance of two mutually inverse trans-
formations results in the identical transformation, the latter must
always be a member of the Lie group; hence there must always
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exist a set of values of the parameters, @, @’ -+, @,°, such that

(1530)

{x1= ¢(xi Js a107 4207 ] aro) =4,
n=vy(xJ, a, af, -, aro) =J.

1t is readily seen that for

XVII, a1° = tlzo =0;
XVIII, alo = 020 o= a30 ] 0;
XIX, 2% = as0 = ay® = any number (different from zero),

al=a’ =a =a® =a" =as® =o.

We shall further presuppose that all of the » parameters in (153)
are essential, that is, that the formule of transformation cannot be
replaced by another set involving a smaller number of parameters
without reducing the number of transformations represented by
them.

Thus ri=x+a+ta yi=y+a
contains no transformation that is not included in XVII. It involves only two
essential parameters; @; + @3 is no more general than a;.

In XIX, as is well known, there are only eight essential parameters; since
the expressions are homogeneous and of degree zero in the parameters, it is only
the ratios of the latter to any one of them that count.

A group involving 7 essential parameters is known as an
r-parameter group.

Itis frequently possible to tell by inspection whether the parameters
appearing are essential or not. An analytic criterion is given by the
theorem of Note VII.

Show that the following sets of transformations constitute groups.
Find the respective values of the parameters that give the inverse
and those that give the identical transformations :

Ex. 1. my=aw+a 31 =ay + as
Ex. 2. X = ax + (2292 + Q3 1= ayx + asy + g
Ex. 8. xy=x+4+ay+ay n=y+a,
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EX. 4. mi=x4a)°+as p=ayy.
Ex. 5. oy = (g, + 1) + (@Ga— 1) y+ a5, 3= ax+ ay -+ a,

ax ’ a4y

Ex. 6. x,= y = .
X + azy + 1 ax +agy + 1

Infinitesimal Transformation. —The transformation
X = d’(x) )’; alo + 8“1: aZO + 8‘12; ¥ aro + Sdr),
= ll’(x; Y a" + 3a,, @ + 8a,, “ty a’+ S“r);

where @)%, af, .-, 2, determine the identical transformation and
da,, day -+, 8a, are infinitesimals, changes x and y by infinitesimal
amounts, since ¢ and ¢ are supp(;sed to be continuous functions.
Developing by Taylor’s Theorem,

£ 0
I X 12 P,
i=1 da;
a 0
=g+ FER S oo
0
Here —a(t’(?—{’ao) and % i;’ J;’ ) stand for what
a, a;

a¢(x9y’ Qyy gy *°y ar) and a‘l’(xy Yy &y @y -+, (Z,)
da; da;

respectively become when & =4, @;=a, -, ¢,=a,, and the
unexpressed terms are of higher degree than the first in 82y, 8ay, -,
daz,. The changes in x and y are then

T

0
xﬁx:ax:z:ﬂ%ﬁﬂgqﬁ

d a0
y,_y=sy=2_wéayTﬂlaa‘+...,
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We shall suppose that at least one member of the pair

I$(x, 3, a") W (x,y, ")
(154) dap day

for each value of 7 from 1 to », does not vanish identically, and that
all of them are finite. Calling them &(x, y)* and »,(x, y) respec-
tively, the transformation may be written

(155) Sx;f_zéi(xy .y) da; + -+, 83’:2771(?5: )’) da; + ---.

In exactly the same way as is done for one-parameter groups in
Note I, it can be shown that infinitesimal transformations of the form
(155) always exist, even when the parameters enter in such a way that
for the particular values @, @), ---, @,° both members of some pair

a¢(x’ y’ ao) alp(x)),’ ao)
dal ’ daf

vanish identically, or if some one of them becomes infinite.f
Here da,, 8as, --+, 8a, are any infinitesimal increments of the first
order. Taking 3z as a standard infinitesimal of the first order, we
may put
P da, = ¢)da, da,= eda, -+, 8a,=e¢da,

* Here ¢; and 5, are written as functions of » and y only, since a0, ay", +-, &
appear as numerical constants.
1 The general expressions for the coefficients in (155) are, in the notation of Note I,

Ei(x, 9, 0, oy o0, ()
= é?z(ﬁ[’ﬁ (3‘7:}': Wy, Wa, **+y 6_1.1), l//(x-J’. WU B, *++y W), 00, (L2, oy d,.:],
’ 1
(550 (o, s o, -, )
= a%l//[(/ﬁ(x,)’, Wy, Wo o @), Y (4,9, €y, Wayooe W), G Gy ooe, 0]
'
Here ¢, ¢, +++, @, are any set of values of the parameters for which both §; and i

are finite, and at least one of them is not identically zero. The forms (155) for &, #;
are what the general forms (155') become for the special choice ¢ = @) = a’
(k= 1,2 7).
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where ey, e, -- 'y ¢ are any finite constants. The general type of an
infinitesimal transformation may then be written

(156) {Sx:(61$1+ ey + v eTfT)S[z + ey
= (e + e+ - + o)z 4 e,

For the sake of brevity we shall write
(157) dx=¢8a4 -, Sy =nda+ -
where £ = 245 and 5= Zem,.. Introducing the symbol
) )
Ur=¢: f+ f 24@@[ j)

g;,a'—}f"" "7,6'_]’

and similarly

Wl

I

)
we have

(158) U=albf+ealf+ - +e0f

It can be proved * that when the » parameters of the group are
essential U f; 04/, +-- U, /, (in which &, 5, are given by (155" for
any properly selected set of values of the parameters, in particular
they may have the special forims (155)), are Znearly independent,
that is, that it is impossible to find a set of constants ¢, ¢y, ++-, ¢, such

Bt AOS+ aUf+ 4o Uf=o,

which is equivalent to saying that for no set of constants ¢, ¢, +-+, ¢,

can both the relations "
"151 + 5252 + £ + [7“:1' =0,
amt e+ - Hem=o0

* Thus, for example, see Lie, Continuierliche Gruppen, Chapter 6, or his Transforma-
tionsgruppen, Chapter 4. Also Campbell, loc. cit., § 42.

The object of this Note is to present as compactly as possible, consistent with a
clear understanding of the chain of reasoning, the relations between 7-parameter
groups and their infinitesimal transformations. Consequently when long and tedious,
the proofs of certain facts are omitted here. These may, however, be obtained from

the references given.
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hold simultaneously. Moreover, it can also be proved that if
dx=Eda+ -, Sy=Hda+ .-,

is any infinitesimal transformation of the group, E is a linear function
of &, &, -+, & with constant coefficients, and H is the same function

of 7 7z *++5 7, thus, B=hé& +bbo+ - + 74,
H=/lmp+dm+ - + Loy
_ . of ar .
h th =& ;= =
where the set Uf=¢; ax—l—m % (i=1,2,,7)

is any linearly independent one.

The coefficients of 8z in (156) can therefore never both vanish
identically. Hence at least one of the terms of first order must
appear. Infinitesimals of higher order than the first may conse-
quently be neglected, and the infinitesimal transformation may be
written in the form

(159) dx=(abi+ efo+ - + ) 8a, & = (e + ey + -+ +em,) da.
The change in any function / («, y) produced by (159) is then
8 = Uf 8a,

where
(158) U=alf +aUf+ - + 6, Uf,

as in § 3, is the symbol of the transformation (159) and will be used
to represent it.

The above may now be expressed as follows :

TuEOREM 1. — Every continuous Lie group involving r essential
parameters contains r linearly independent infinitesimal transforma-
tions U f, Usfy, -+, U.f, in terms of which every infinitesimal trans-
Jormation of the group can be expressed linearly with constant
coefficients, thus

(158) U=alUf+ealof+- +eUS

Moreover, cvery transformation of the tpe (158), for all choices of
the constants ¢, ey, ++- ¢,, belongs to the group.
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Remark 1.— Tt follows that in any set of infinitesimal transforma-
tions of the group, only » at most can be linearly independent.
Moreover, starting with any 7 linearly independent transformations
0V Oof, oo, U S, every set

Vif=e,Of +eqUof + - + e, Uf
(k=1,2, -, 7)

will be linearly independent provided

fny, oy » 6n
€12,  Cay s G2

A= =0,
€15 Copy PR

Any set of » linearly independent infinitesimal transformations,
v Vof, -, V./, may be taken as the 7 transformations (referred to
in Theorem I) in terms of which all the infinitesimal transformations
can be expressed linearly with constant coefficients ; for, since A== o,
each of U, f, U,f, ---, U.f is a linear function of Vi f, Vo f, -, V.f
with constant coefficients.

In the case of XVII 8x = a1 = ¢18a, 8y = daz = exda.

Uf—elgf-l— ené-f-

A set of linearly independent transformations is
(%Y, E—az U f= 9.
1/ 25 v o
In the case of XVIII,
dx =—yday + bay =(— e1y + &) da, 8y = xba; + daz =(e1x + ¢3) da.
a9 ) 74 i,
U= g ——
rea(-s+s vt eaty

A set of linearly independent transformations is

Uf=y af x%, Uf__g—/; Usf= af.
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In the case of XIX there are only eight essential parameters. Putting ap =1,

r— 6x_(1+6a1)x+y6a2+643
x dag + y dag + 1

1

But _ e —
x 0ar +ydag+1

=1—x0a;—ydag+

where the dots stand for terms of higher degree than the first.

cxr=a + 0x =x + x8aq + y bay + daz — a26a7— xydag + --.

‘Whence, dx = (e1x + eay + e3 — eqa — egxy)da.
Similarly, 0y = (eax + e5 y+ g — erxy — eg y%)da.
. o af /A of of af ( 2 0f Gf)
.Uf__elxa +e2ya +Ea +zxa +eyay+ 63}' e7 ax+xy8}/
_ o/ zaf)
ea(xva + 7 Y

A set of linearly independent transformations is
vl vr=y, vr=sLs vi=L, vir=sY, vy=Y

ol af

- _ . Of ar
2 , — oy Y 2
U f=x —l—xyay Usf_x}lﬂx_l-J_J W

Ex. 7. Find the infinitesimal transformations of the groups in
Ex. 1, 2, 3, 4, 5, 6 above.

Group Generated by Infinitesimal Transformations. — Starting with
the infinitesimal transformation

(158) U =alif+alf+ - +eUf
g 3
=(a& + el + +z,$,)~£+(elm—|—gm2+ +er"]r)é_§:

in which the constants e, ¢, +--, ¢, are fixed, the finite transforma-
tions of the group generated by it may be cbtained either by finding
those solutions of

ax: dy
160 1 = Lo e ift
(x60) Sk (e Sy
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for which & = x and 3, = y when 7=o0 (3§ 4), or in the form (§ 3),

x1=x+tEe,.U,.x-i—ﬁ'EEe,.ekUika—{— ey
24

(161) .
n=y+ 30y + 53300005+ .

In both cases # is the parameter, and 7=o0 gives the identical
transformation.

If e, e, +++, ¢, are arbitrary constants and U, /, U, f, ---, Uf are
linearly independent, the infinitesimal transformation contains »— 1
parameters (viz. the ratios of any »— 1 of the ¢’s to the remaining
one), and the general expression (161) for the finite transformations
generated by it contains » parameters. That these parameters are
essential follows from the linear independence of U} f, U,/ ---, U.f.
A proof of this fact may be found in Lie’s Continuierliche Gruppen,
pp- 186—190. Hence there are oo transformations in the set (161).

If 04 f, Usf, -+, U, fare r linearly independent infinitesimal trans-
formations of an »-parameter group, every transformation of the set
(158) belongs to the group (Theorem I). All the transformations
of the one-parameter group generated by any transformation (158)
belong to the »-parameter group (Lie, Continuierliche Gruppen,
p- 183). The o transformations (161) therefore belong to the
group. Moreover, every transformation of the 7-parameter group
(at least all such for which the values of the parameters are suffici-
ently small so that when developed by Taylor’s Theorem in powers
of the parameters, as (161) are, the series are convergent) is in-
cluded in (161) (Lie, Zransformationsgruppen, Vol. I, Ch. 4, § 18).
Hence

TueoreM 11.  ZF Uf, Uof, -+, U.f are » lincarly independent trans-
Jormations of an r-parameler group, the latler * is precisely the aggre-

# At least all its transformations corresponding to values of the parameters which

differ by limited amounts perhaps (see above) from those which give the identical
transformation.
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gate of all the one-parameter groups generated by the o™ infinitesimal
transformations Uf=eUf+ aUf+ - +e,Uf

Remark 2. Since £ and the ¢’s appear in (161) in the combina-
tions Ze,, fey, ---, te,, there will be no loss in suppressing the # and
writing the finite transformations of the group in the form

x1=x+25’iUix+_I‘| 336¢6,UUx + -,
2!

(161") .
n=y+3¢Uy +;22€i€k(]i(]ky+ Siaitly

where the ¢'s are now 7 distinct parameters. The identical trans-
formation is given by ¢ =¢= --- =¢,=o0, and the inverse trans-

formation by ¢, = —¢; (i=1, 2, -+, 7).
In the case of XVII the general type of infinitesimal transformation is

— . U L,
Uf=e; ax-}- 2o &

The finite transformations (161/) are seen at once to be

XL =x+ e, 1=y + ex
In the case of XVIII

==yl 4 2\ 4,0 4, 0
Uf_el( yax+x6y)+e2ax+f3ay

1 1 I
Sxr=x—ey+es——er+ —edy + —eptx — -
2! 3! 4!

=& cos ¢ — ¥ sin e; + ev.

Similarly YL =axsine; + y cos e + e3.

Remark 3. The expressions for x, and y, in (161") may at times
become extremely complicated, as for example in the case of the
group XIX. Also the actual problem of integrating equations (160)
with the ¢’s arbitrary constants is usually a difficult one. To over-
come this practical difficulty Lie suggested the following method,
which was also given independently by Maurer (Math. Ann.,Vol. 39) :
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Having found
(162) =i (v, 0 @), =9 0, @),
(l.= I, 2, 7‘),
the finite transformations of the one-parameter groups generated by
each of the 7 linearly independent infinitesimal transformations
U Sy Usfy -+, Ufof an r-parameter group, the result of performing
successively one transformation (with arbitrarily selected parameter)
out of each of the 7 groups (162) is a transformation belonging to
the »-parameter group and involving the » parameters a,, a,, *++, a,.

That these are essential follows also from the linear independence of
U f, O.f, -, U.f. (See Lie, Continuicrliche Gruppen, p. 194.)

In the case of XVII
Ulfzgé x=x+a, y1=7

_0f _
U — : = > 'y = + ag.
o f O Xg = X1 Y= 9.

The successive performance of these gives

x=x+a, y2 =y + aa.

In XVIII
U= —ya af : xp = xcosa — ysinay, y1 = xsina; + ycosay,
X
sz:._[; X2 = x1 + aq, Y2 =1,
=2, 5
Usf= = : X3 = X2, ys=y2+ as.
Ty

The successive performance of these gives
x3 =xcosa; — ysinay + a2, y3= xsin ey + y cos a1 + as.
In XIX
4

Ulea—.;: x1=x+a, =
/.

= Xo = X1, y2=y1+an
ay
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Us f= af x3 = agxy, Y38 =D
Udf—)’l Xy=X3+asys, y1= Y3

Usf= 6f X5 = X4y V5 = asxs + Ya,
Usf=y 49_f Xg = x5, V6 = agys,

I —amxg T = a7JC‘e’

/4 5 Of a7 X1
sf=x +y2 2. xg= Y= .
=T 5y 1 — agy;’ 1 — agy;

The successive performance of these gives

a3x + asy + ayaz + asay,

xg=
0x + g Yy + g
P + (ag + asasag) y + @2aq + arazasas + asasasag
O7x + gy + o9
where 0, =— (agar+asasacag), Og= — (asa;+ageg + aqasagag),

0tg = 1 — (aya3a7 + asasar + asegas + aiasasagas + asasazaga

Find the finite transformations generated by the following :
Ex. 8 Uf=(ax+e) % + (ery+ e5) ¥

dx dy
Ex. 9. U=(a+ex+ fsy)ai( + (e4+ esx + eﬁy)ai(.

dx dy

Ex. 10. Uf=(ay+ eg)al[ + esai(.

ox dy
Ex. 11. U= (e +¢,) % + e;,ya—f’.

Ex. 12. + (e, +exx+e }') f

Ex. 18. Uf=(eyx + ey + egp) 29]?: + (ery + exxy + eayz)%.
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Lie’s Principal Theorem.— It was shown above (Theorem II)
that if U/, U.f, «--, U,f are r linearly independent infinitesimal
transformations of an r-parameter group, the aggregate of the oo
transformations of the "' one-parameter groups, each generated
by an infinitesimal transformation of the set

(158) U = alif+alf+ - +¢,Uf,

forms an r-parameter group. On the other hand, starting with any
7 linearly independent infinitesimal transformations U, f, U,f, ---,
U, f (without knowing whether they form a complete set for some
group), there is no reason to suppose that the co” transformations
generated by the various transformations (158) form a group.

Thus, starting with 0f= %{—; , Uof=x g—f,
Y

the transformations generated by

Uqu%—*- fzx%f:

are ;m=x+ ay, 1= ax +y+ A2,
While these transformations involve two essential parameters, it is very easily
seen that they do not form a group.

A definite answer as to when the oo transformations generated by
the various transformations of the set (158) form a group is given by
Lie’s PRINCIPAL THEOREM : * The necessary and sufficient conditions
that the w" transformations generated by the ™ infinitesimal trans-

Jormations aUf+ e Uf +. o 2,0 1,

* Lie calls this theorem “ Der Hauptsatz der Gruppentheorie,” and gives a proof
of it for groups involving two variables in his Conzinuierlicke Grugpen, Ch. 12. In
his treatment of the general theory of continuous groups, this theorem is the second of
his ““ three fundamental theorems.” Seé his Continuierliche Gruppen, Ch. 15, or his
Transformationsgruppen, Vol. 1, Ch. g; also Campbell, Zoc. cit., Ch, IV.

A detailed proof of this theorem would be beyond the scope of this Note. A state-
ment of it with illustrative examples will suffice.

Lie first deduced this theorem in 1874.

Q
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where Ui f, Uyf, -, U.f are linearly independent and ey, ¢y, +++, €, are
any constants, constitute a Lie r-parameter group are that

(163) (GO = a0 S+ oo f+ - + . U,
(Z.: k= 1,2, 7);
where the c's are constants.

Remark 4.— This theorem is equivalent to the following two :
1°  The infinitesimal transformations of an r-parameter group form
an r-parameter group of infinitesimal transformations. (§ 43.)

2%, The transformations of the groups generated by the transforma-
tions of an r-parameter group of infinitesimal transformations form an
y-parameler group.

In the case of XVIII,

U=y 6'/ 85’ U/:Bf, U/Lf-

Here (U3 0h)f= Usf (Uan)f‘z— Uafs (Uhl)f=o.
In XIX
(hUs)f=o, (WU)f=Uif, (ThUDf=0, (IhUf=Tsf;
(WUNf=2 Usf+ Usfy (UiU)=Usfs (UsUnf=Usf, (UalUs)f=o0,

and so on.

Ex. 14. Show that the infinitesimal transformations in Ex. 8 to
13 satisfy the conditions (163).

NOTE VII

CONDITION FOR ESSENTIAL PARAMETERS

The 7 parameters in
(153) x1=¢(x: Vs @y gyt ar)) }’1:¢’(x, Dy @y, Agy *-y a,.)
are not essential if (153) can be replaced by

(164) xl:(p('x; Y, 0, Ogy **, “r—m)’ Nh= ‘I’(JC Vs Oy Ogy v ey (X,._m)
(1Zm<7).
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In this case the identities

(165) P=0, y=T

for all values of x and ¥, determine @, as, ey 'a,_,,, as functions of
@, @y >+, @, ; for by saying that (164) replaces (153) is meant that
as soon as the «’s are given a set of the «'s is determined (not neces-
sarily uniquely) which will give rise to the same transformation.

A homogeneous linear partial differential equation of the first order
in 7 variables

(166) AfEXI(al: Qay *oey ar)%“‘*‘ i +Xr(aly Qgy +2+y d,)
L

o _ o
da,

is determined uniquely by »— 1 independent solutions.* An equa-
tion of this type can therefore be constructed which shall have for

solutions
Oy Ogy =2y Oy Br—m+l) M) Br—l?

where S,

r—m+1s

«-s, B,_1, any convenient functions of the «’s inde-
pendent of the «’s, are added to the latter to make up the number
7—1 in case 7z >1. This equation will have for solution also any
functions of the «’s, in particular ® and ¥, x and y appearing as
parameters ; or owing to the identities (165), by which the «’s are
defined, ¢ and y will also be solutions.

Conversely, if ¢ and ¢ satisfy an equation of the type (166), they
are functions of some or all of its » — 1 solutions,

'Yl(al; Agy +=y ar)i ')’2(“1’ Aoy =20y ar)} ) Yr—l(a]) @y =22y ar) 5
i.e. the @’s enter ¢ and ¢ in such a way that for all values of x and y

ql)('x’ Y, @y, Qg+, a'r)E q’(xy Vs Y15 Yor *00s r——l)’
‘l/(x’ Y, @1y @oy v0v, ar) = ‘I’('x’ Vs Y1 Y2 00y 71'—1)‘

# A proof of this for the case of » = 3 is given in the first footnote of § 34. The
proof for » any number is exactly the same,
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Hence the

THEOREM. — 7%e necessary and sufficient condition that the » para-
meters in (153) be essential is the impossibility of finding v functions
of them X1, Xor *++5 X» SUch that the resulting linear equation (166)
shall have ¢ and  for solutions.

Remark.— There is' nothing in the above to show whether the
7 — I parameters y, yg, ***, ¥, are essential or not. The same test
must be applied to them also, unless, as is frequently the case, the
exact state of affairs is obvious on inspection.

To illustrate, consider the transformation
x1 = xalogb 4 ploge 4 c =g (x, y, «, b, ¢),

y1 = yalog?d =v(x, ¥, u, b, ).

If @, 4, c are not essential it must be possible to find three functions of them,
x1(a, b, ¢), x2(a, 6, ), x3(a, b, ¢), such that the equation

—., 9 . 0f_
(166) Af_X16a+X26‘b+xsac_°

is satisfied identically (for all values of x and y) by ¢ and ; that is

A¢ Elog 4 (xa logd + bloga)xl + IOg 4 (xalogb + bloga)xz + Xs=0,
a

Ay =yalos? (% *i+ 1——O§ axz)Eo

for all values of » and y. These two identities are equivalent to

alogb(]og bx _I_loga ) =0,

5“‘“(1—05—590 i lo%lm) +x: =0,
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By inspection, a set of forms for x1, x2, xs are found to be
x1=aloga, x» =— blogé, xs=o.

Hence the three parameters are zos essential.

To express the formule of transformation in terms of a smaller number, one
proceeds to solve the equation

(166") alog ag[ — blog b%g: o.

a

Passing to the corresponding system of ordinary differential equations

da db _dc

aloga —blogs o

it is obvious that log alogé and ¢

are a set of solutions of (166'). Putting

log @ log 6 = «, whence gl08? = (1053 = ca,

the formule of transformation take the form

xr=(x+1)er+ ¢ y1=yes,

or, more simply still, X1 =ax + ag, y1=a1y.






TABLE 1

Ix this table is given a list of the more readily recognizable forms *
of differential equations of the first order which are known to be in-
variant under certain groups. The same type of equation is some-
times given in various forms, and special cases are also noted when
this seems desirable.

In the second column appear the groups under which the equations
are invariant. The numbers are those employed in § 19. For the

sake of simplicity g"and ¢ are used instead of gl and %[ respectively.
X 2

The corresponding integrating factors of § 12 are given in the
third column.

In the fourth column appear the canonical variables.f

When variables which are separable in the transformed equation
(§ 20) can be obtained easily, they are given in the fifth column;
the form of the group resulting from the introduction of these vari-
ables is given in the last column.

* Other forms will be found in § 19.
+ There is a certain degree of freedom in the choice of canonical variables, since
they are particular solutions of the differential equations (16), { To, or of the correspond-

d ;
ing ones in case the group is to be reduced to the form 3_3{ Moreover, the right-hand

member, 1, in one of these equations may be replaced by any convenient constant (see
Remark 1, § 2) ; use of this fact is made when it will simplify the form of the resulting
variable.

231
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TABLE II

General types of differential equations of higher order than the
first, invariant under given groups, are usually complicated and not

easy to recognize.

perience will enable one to recognize.*

are simple are added.

In this table are given a few which a little ex-

Such characterizations as

(k—r+1)y]=0

DirFFERENTIAL EQUATION Group CHARACTERIZATION
Sl gy e (7)) =0 I; ¢ ¥ is absent
y Yyl e, () =0 Ty x is absent
Sy ey 2
ot o _ . _ x and y enter in the combi-
f(ax—i—by’) ’y 3 ’ J’(r)) =0 XII’ &P aq nation ax —IL b}/ Only
" x
f(x, JLI’ y_, -, L )) =0 11I; ygq Homogeneous in y, 3/, -, 3(»)
Y ¥ J
, Homogeneous when weights
fll, A ’ ’ £ ): o | VI; ap + nyq of w, 1, ¥y -, y(») are 1, n,
HE AL an—r 72— I, ---, 1z — 7 respéctively
Yo il
/<x’ PARCAE Rl IV; xp + g Special case of above, for z=1
x7=1y(7) ) =0
S 2y, 22yl xry()) =0 | 1115 ap Another special case, for =0
A linear function of the vari-
/.'(x, oy!—ply, py—p'ly, ..., VIL; ¢(x)g |98 elements, except ., gives
Py(r) — p(r)y)=o0 ’ rise to a linear differential
equation
JLx 2y —ky, 2% —f(k—1)y,
oy 7Y —R(A—1)ee | VI kg A special case, for ¢ (x) = x#

* Other forms will be found in § 28.
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TABLE II 237
DIFFERENTIAL EQUATION Grour CHARACTERIZATION
Sy xpl—y, gt vl File o A more special case, for
J;(r)):o % g ¢(x):x
B iy oo
f()’, J% — &, ;li + 7) =0 VII’; ysp
f X : k. T
¥ b » 3| =0 VI gp
o, '+ =0 vIIL; Ly
b
P4 N
f(;_: xy!—y, le'”) =o0 X; 2% + avg
S xy + 3, 2y +29)=0X; p -2 4
&
22 Y= bl
f(x +)’ El x_}_},},n ¥(I+y,2)3
— & B Each of the elements appear-
, xty 2 ’ ing in the differential equa-
f(5‘2+1’ s T\/—l-—ﬁ, m> 1I; —yp + g tion has a {geometmcal sllgmﬁ.-
R cance, which assures invari-
Y y—xy 112 ’ ance under the group of rota-
f(x~ +12, ‘\/ﬁ’ m) tions

=0







ANSWERS

Section 1
L a= 1; ao = 1; the equilateral hyperbolas xy y; = xy = const,
a
2. a=21; ap=1; the parabolas 2E = sonst,
a X1 X
_ 3 9
3 @a= E; @y =1; the semicubical parabolas P
a x® ad
@a=—a; ay=o0; the ellipses x12 + 23,2 = 4% 4 2 3% = const.
@=—a; ap=o0; the equilateral hyperbolas x,? — % =a?— y% = const.
6. 2=—a; uy=o0; the straight lines =7 _ onst,
X1 X
7. @a = %; @p = 1; the straight lines y1 = y = consz,
8. a =—a; ap=o0; the spirals log Vri?2 + 32 — tan-1 E4t
x1
=log Va2 4 y2 — tan‘li': const,
Section 2
1. = g=—9s _ 1 __ I 6. t=a% g=ay.
4. E==~, 1= .

2. f=2x n=y. & 2y 7. E=x+y, n=o0.
3 i=2x =3y 5. 6=y, 1=x 8 f=x—y, 1=x+y.
Section 4
Lon=ex, yr=cty. 2. 3 =d¥x, y1=dy. 3. x1=e"x% 31 =,

Lal=al4 24 y2=92—1 .. ;= +Valt 2y n=+vVy—u
Lxtn=2x+y), s—yr=et(xr—y).

w2z =x(ed e t)ty(d—et), 2y =x(d— ) Fy(d + et),

or

6.

7.
8.
1=

x1=xcosht+ ysinhé, y; = xsinh/+ vcoshs

AP Tl _ 4 o ow=TF , = y__.

Xy X X1 X I —xt 1 —xt

rn=p ntyn=dx+y). L a=drt(@—1)y y1=y

x124 912 = (x4 %), tan-1 X! = tan—+ X 4 £ .. x;=¢ (& cos £—ysin £),
X3 x

e(xsins 4 ycoss).
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Section 5
I. X1 =¢x, yjr=ety. 2 x1=&x, y=éy. 3. a1 = ¥x, 3 =¥y,

mxplp L2308 358 . - iVAET2Z
g el ;;+;; Tt =+ Va? 2L

=y fe T O O3> ., = +\/ 2
= 2y 482! 8y53! 16374! 3

5. xlzx(l +ﬁ+ﬁ+ --->+y(t+—li—|—ﬁ+ -~-):xcoshl+ysinht.
23 7 4l 3! 5!

2 t
}l1=x(t+ t3+z'_5+ ...>+J,(I+t_'+[_'+ .-.>:xsinht—l—ycosht.
2! 4! -

3t 5!
6. 1 =a(1 Lar+ 2224 )= & =y Fat 4 224 )= b4
I—ix I—Ix
7. xi=¢éx+(— 1)y, y1=.
8. While the coefficients in the developments can be obtained readily, it is not
easy to recognize the functions represented by the infinite series.

Section 6

2 2
1. oxy. 2. % g % 4. x2+ 292 5. 22—3% 6. J:/ T I

8. log Va® + y2 —tan-1Z.
x

Section 7
T Y =G Pit,Y &=y =0,1p: 6. y=cx,p.c, x =0, Lip.
2 JE= G Pty % == 0,1 J: W= g PeGy =0, Li.p
3. 2 =cad p.c, x=y=0,1ip. 8. logVaZ+ 2 —tan1 L=, P-tey
4 #*42y2=q¢p.c x=y=o0,1p. x
5. 22— )2 =¢ p.c., x=y=0,1Lp.

Section 10t

= 'y :1 2 2
1. X x}zl y logx 3. x:ﬁ’ y=logx.
X =, =10
2 - Yy gy 4 x=a% 4257 y=12

* The abbreviations here used are: p.c. for path-curve, i.p. for invariant point,
L.i. p for locus of invariant points.

+ The answers given for the exercises of this section are not unique, since they are
particular solutions of the differential equations (16’). Besides, the right-hand member
of the second of these equations may be replaced by any convenient constant (see Re-
mark 1, § 2) ; use of this fact has been made in the case of Ex. 3, 4, 6.
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5 x=2a%— 32 y=log(x .
7 ; (= +7) 8. x=log Va7 — tan-12,

6. x== S Y==- x

y =tan-1 L. )
x

R

7. x=y, y=log(x +y).
Section 11
c—  Of. .
s L_’f:éé{, x=a, y=46 p.c;* z=0, Lip; x=ux, Y=y, z=1logs,

2. 57‘Exg'£+,1’§[; y—ax, =0, pc; x=p=0, Lip; x=tan17,
x

a
y=logvar+ vy z=swv. nx=dcosx, y=2sinx, =z
3. U==x _.£+1,_[+~d/ —ax=0,3—{ly=0,p.c.; x=y=2=0,1.p3;
0
x = tan-! u’lm = tan—1 Z  y=tan- 1y, z=logVxi+ 32 ¥ 2 c. v.
Nt us? Va4 52

x=¢" cosxcosy, y=e% cos xsiny, z = ¢ sin x.
The introduction of polar codrdinates reduces the group to the form of the
group appearing in Ex. 1.

4 Uf==x _£+}I_-[+le—6f y—ax =0, xy—22=0,p.c; x =y =0, Lip.
x = tan~ 1i’,y:x_y—2:,z:'log\/x2+y2,c.v.
U= - Y 4 O 4 O, tan12 _logVEB P = a, 22+ 42
5. Ur=( 2 (x+y)6y+zazy an-l=—logVa? +y8 = a, 22 + 5
—&?=0,p.C; x=y=2=0,1.p.; X=w1, Y=1us z=1logzc. v
Section 12
2. 22+ 2 —¢cp=o. 3. tan 12 =VaZ F 2 4 splrals [p=06+].
4. tan-12 = 2log V2" + 37 + ¢, logarithmic spirals [p = [,_,Z-]_
x

224y —cxr=o.

n

Section 21
3. xy=c%x+cgs,f42%+1=0,55,y=0,p.s forc=0; § 25 51

* The abbreviations used in the answers of § 7 are also employed here, with the
additional one c. v. for canonical variables. '

+ The abbreviations used here are g. ». for general solution, ». ». for singular solu-
tion, p. s. for particular solution.

+While the methods of §§ 12and 20, especially the Jatter, may frequently be employed
in finding the general solution, serious practical difficulties may arise. The references
here given are to the places in £/, Dif. Eq., where these differential equations appear
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4 P42+ 2=0,g5,22—a%2=0,s5,y=0,p.> forc=0,§ 27,8

5. y=c(xr—0)? g s, }«(27;/—4;:3):0, 5. 5, also y =0, p.s. for c =o0;
§ 26, 4.

6. y2=2cx+ 2, ga,(32x3+27y4)_0,s s,y =0,p.s.forc=o0; §27,7.

7. x+cxy+ 2 =o0,g 8,50 —4=055; §28 3.

Section 24

1. The equilateral hyperbolas x* — 3* = a
2. Yo =cxb. s y=cx,whenb=a; xy=c whenb=—a,
3. The circles &2 + 32 + 1 = cx.

Section 26

1. vwr=9L.
ox
2 U("{fEx(—?é—y’Qz; zy”gyz;, . ——;zy"”a—%
7 () (9 QZ__ ’_Z_ — ")_-f_.
3 Unf= xx P ag (et D02

4 UOf= ax~+éy‘3i+(b—a)y'l+<é—za>y"i+

+ (6— 1za)y(”)

Ay (n)
5. Uoy=99L— w'l ("' +z¢y”)54, (8"y'+3 'y
+3¢y”’)‘9 Z, o[ oy + ( )¢<" 1>y"+( )¢<" Dyt 4 .
n, _L
TERr:
6. UnWf= QZ_ lﬂ II_L (n)_L
/ ¢6y ¢ ' ay"! oy

7. 00 =Wty &ty 4 = 200 Lt 2= D

O = 09" Lok 40 = otk 0D (= 2 my) L

as exercises. Practicable methods may be found there. But when the methods of
the text can be carried out, they should be employed, to obtain practice in them.

However, the method of § 21 for finding the singular solution leaves nothing to be
desired. (Compare Z/[ Dif. Eg. Chapter V.)
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Section 28
) 5
L y=cxe=, 4. y:xlog(;‘{-q)- 5. ¥y =x(c1log x + e3).
Section 29

a(®—yN—2xy =a.

' Section 32
A S fﬁz 5. F—G g a2 Ly 42— 2yz— 221 — 2ay.

X — az
x4+ )1 +5)
F—=»(1—2)
Section 34

The group 1 leaves ¢ and < unaltered.
The group 2 leaves & unaltered.

The group 3 leaves ¢ unaltered.
The group 4 leaves a, 4 and ¢ unaltered.

Section 35
2 2
% —ty, =g — P B
2

L u=y—x, v=(x+y)(x+y+42),0r xy+yz+ 2x.

. uzli—x—iw, V=y—x—yz+axz, 0t u=y +xz, v=x+ yz.
y—x—yz+xz

Section 38
. Method A, 3° applies. 4. Method B, 4°, (@) applies.

5. Method B, 1° applies. #=x—y, v=y—=

6. Method B, 3° applies. w=d Tt X2 v=(at —32)(1 — ).

x4+ yz
Section 39
. y=logsec (x + a)+ 4. 4. ¥ = ax®+ bx.
Section 40
o
. y=logsec(x +a)+ b 6. £ =cpem. 8. ¢ = ax?+ bx.
¥y
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Section 44
I, . 2. 0. 3. B. 4. B 5. 7. 6. v.

Section 45 *
I. x:tan‘ll, y:tau‘11+log\/x2 + 92
2. Since (UlUg)f- Uf— Usf, consider Vi f=Uf— Usf=y _i and V3 f

. x
=0 f= For these x = F= S
w=E »y=-

e Y __1I = ) ) — 1Y
e — = . . Xx= = tan-1Z.
3 y’yr w 4 xet g8 Y n

5 x:%, y=x+y.

6. Since (U Up)f=Usf, consider Vif=Usf; Vof=— Uif. For these
_ J I
Xr=—— = —-
) x(x+7) v #*

Section 49
L xi=x—ap, yo=y—Lat’ pr=p
2 B
2. xI:x:];—%—, i =P F ey LY
Va5 Vaipt + 52
_plap—y) y—xp _xt2yp—ap?
¥ HE e N DT e
x?p _ —1,2 . ¥
b RE Ty NSy T T
x — xp?
5. x1=pp 2, Nn=y-—xp, pr=— f +
NOTE VI
I. 51:1_, _2:——“—2, Eg:—tﬁ, ay® =1, ra)l = a3 = o.
a) a) ay
o *—‘:—tlg ‘-:agaﬁ-—tla(n; —-:—tl4 —:il_l —=(l;;tl4——a1(le’
2. al—A’ as A y B3= — A"' — &4 A ) as Ay ag A
A=ajas —asas; e’ =a’ =1, a = a® = a® = a® =o.
3. ay=—ay, a3=—as +aas, a3=—a3; a°=a =a’ =o.

#* Since multiplying its symbol by a constant does not affect the infinitesimal trans-
formation of a group (Remark 1, § 2), the answers in this section are not unique. Use

is made of this fact in Ex. 1, 3, 4, 6.
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Fi—_ & = - 1
4. a3 = —5s 42 =— Qg, (13:_;(11‘):!130:0, a3°=I.
as as
- —a - — wes
5. a1=—#,13=1+al,a= 9 a0 =af =0, a =1.
ay + a3 ay + as a; + as T
= = a - as
6. ar=—, a2=—23, g3=—3; 40=1, g0 = =o0.
ajy ay ay

7. Uif=(ax+ eg)g—{r-+(21y + e3) g_-y[
Usf=(e1x + 2y + ¢3) g—f; + (eax + sy + es)g—g-

¥,
ox ay

Usf=(ay*+ 82)%+ 6’3}’%'

Usf=(ey+e2) ==+ es

ay
Usf—(e1x+ezy+e3)(af gg)
Uef—(el+enx+zsy)( af+yg§>

The groups generated by the infinitesimal transformations of Ex. 8 to 13 are
precisely the respective groups of Ex. I to 6.
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The numbers refer to pages.

The following abbreviations are used: dif. eq.= differential equation ;

gr. = group ;

infl. = infinitesimal ; i, u. = invariant under ; ord. = order; tr. = transformation,

Affine tr., 3, 54
Alternant, 44

of symbols of extended trs., 209
Asymptotic lines, 8o

Bernoulli equation, 58

Canonical form, 26, 34, 64, I55
Canonical variables, 26, 34, 64, 156
Change of variables, 23, 33, 188
Characteristic function of infl. contact tr.,
186
Classification of two-parameter grs., 152
Commutator, 45
Complete system, 104, 106, 110
equivalent, 106
Jacobian, 107, 110
Contact tr., 178, 181; infl., 185
Curvature, lines of, 81
Curve of union of elements, 175, 189

Differential equation of 1. ord., 189

i. u. gr., 40, 44, 45, 46, 48, 50, 52, 194, 231
Dif. eq. of 2. ord: i. u. gr., 86, 9o, 134, 137,

148, 165, 236

not i. u. any gr., 206
Dif. eq. of z. order i. u. gr., 99, 101, 236
Differential invariant, 51, 88, 194
Dilatations, 185, 186
Displacements, 212
Distinct grs., 122, 123, 125
Distinct infl. trs., 7

Elements, lineal, 175
union of, 175, 194
Equivalent complete systems, 106
Essential parameters, 214
condition for, 226

Extended gr., 42, 84
Extended point tr., 41, 83, 180

First differential invariant, 51, 194
First integral, 191

General expression for gr. leaving dif. eq.
of 1, ord. unaltered, 49
Group, 1, 28, 211
distinct, 122, 123, 125
extended, 42, 84
generated by infl. tr., 10, 12, 14, 30, 220
involving one parameter, 1, 28
involving » parameters, 211
of contact trs., 185
of infl. trs., 146
property, 2
trivial, 39, 119, 196

Homogeneous dif. eq. (Boole), 93

Identical tr., 4
Independent linear partial dif. egs., 104
Infinitesimal contact tr., 185
characteristic function of, 186
symbol of, 186
Infinitesimal tr., 6, 29, 197, 215, 218
distinct, 7
gr. generated by, 10, 12, 14, 30, 220
linearly independent, 143, 217
r-parameter gr. of, 146
symbol of, 8, 42, 84, 85, 218
Integrating factor, 37, 47, 69, 76
common to two dif. egs., 72
two, for the same dif. eq., 48
Intermediary integral, 191
Invariant, 16, 31
curve, 17, 18, 31, 32
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Invariant
differential, 51, 88, 194
dif. eq., see Dif. eq.
equation, 18, 32
family of curves, 20, 22
linear partial dif. eq., 115, 118, 119, 122,
124
point, 17, 19, 31
surface, 31, 32
Inverse tr., 3, 29, 21T
Involute, 70
of a circle, 70
Involution, functions in, 179
Isothermal curves, 72,79, 203

Jacobian complete system, 107, 110
Jacobi's identity, 121

Lie gr., 3

Lie's principal theorem, 225

Lineal element, 175

Linear ordinary dif. eq. of 1. ord., 56, 57
of 2. ord., 92, 94, 139, 140, 173, 174
of z. ord., 102

Linear partial dif. eq. i. u. a gr., 115, 118,

119

i. u. two grs., 122, 124

Linearly independent infl, trs., 143, 217
number of, leaving dif. eq. of ord. # 7 2,

unaltered limited, 143, 146
Lines of curvature, 81

Method of solution of
complete system, 111, I13
dif. eq. of 1. ord., 38, 49, 63, 66, 193
" of 2, ord., 88, 134, 137, 165, 169, 193
of . ord., 101
linear partial dif. eq., 119, 124
Minimal lines, 78

n-times-extended gr., 84 ; tr., 83
Once-extended gr., 42; tr, 41

Parallel curves, 70
Path-curve, 4, 1o, I, 17, 18, 19, 31, 67
Perspective tr., 3
Point 1., 40
extended, 41, 83, 180
Poissonian symbol, 179
Product of trs., =
Projective tr., general, 213

INDEX

Reciprocal polars, tr. by, 180, 184

Riccati equation, 52, 59, 201

Rotations, =

r-parameter gr. of infl. trs., 146
of trs., 211, 214

Sgcond differential invariant, 88
Separation of variables, 63
Similitudinous tr., 3
Singular solution, 66
Subgroup, 149
Symbol of extended infl. tr., 42, 84, 85
of infl. contact tr., 166
of infl. tr., 8, 218
System, complete, see Complete system

Transform of a tr., 24
Transformation
affine, 3, 54
by reciprocal polars, 180, 184
contact, 178, 181
extended, 41, 83
general projective, 213
gr. of, 1, 28, 211
identical, 4
infl,, 6, 29, 185, 197, 215, 218
inverse, 3, 29, 211
perspective, 3
point, 40
product of, 2
similitudinous, 3
Translation, 2, 53, 212
Trivial gr., 39, 119, 196
Twice-extended gr., 84; tr., 83
Two-parameter grs., classification of, 152
Two-parameter subgroups always exist,
150
Types of dif. egs. of 1. ord. i. u. given grs.,
52, 231
of 2, ord. i. u. given grs., 9o, 236
of x#2. ord. i. u. given grs,, 101, 236

Union of elements, 175, 176, 194
curve of, 175,189
United elements, 175

| Variables

canonical, 26, 34, 64, 156
change of, 23, 33, 188
separation of, 63
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