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P R E F A C E 

The object of this book is to present in an elementary manner, 

in English, an introduction to Lie's theory of one-parameter groups, 

with special reference to its application to the solution of differen­

tial equations invariant under such groups. 

The treatment is sufficiently elementary to be appreciated, under 

proper supervision, by undergraduates in their senior year as well 

as by graduates during their first year of study. 

While a knowledge of the elementary theory of diiferential equa­

tions is. not absolutely essential for understanding the subject 

matter of this book, frequent references being made to places where 

necessary information can be obtained, it would seem preferable to 

approach for the first time the problem of classifying and solving 

differential equations by direct, even if miscellaneous, methods to 

doing so by the elegant general methods of Lie ; and this book is 

intended primarily for those who have some acquaintance with the 

elementary theory. T o such persons it should prove of great inter­

est and undoubted practical value. A n attempt has been made 

throughout the work to emphasize the role played by the Lie theory 

in unifying the elementary theory of differential equations, by 

bringing under a relatively small number of heads the various 

known classes of differential equations invariant under continuous 

groups, and the methods for their solution. Special attention may 

be called to the lists of invariant differential equations and applica­

tions in §§ 19, 28, 30; while the two, tables in the appendix include 

most of the ordinary differential equations hkely to be met. 

Only as many examples involving the solution of differential 

equations as seem necessary to illustrate the text have been intro-
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duced. The large number usually given in the elementary text­

books seems ample for practice. 

The short chapter on contact transformations, while not essential 

to the work, has been added for purposes of reference and to give 

the student sufficiently clear ideas, so as to provide a working 

knowledge, in case he has occasion to apply them. For the same 

reasons, the rather sketchy note on r-parameter groups has been 

added, where an attempt is made to bring out, as concisely as 

seems consistent with clearness, the relations between r-parameter 

groups and their infinitesimal transformations. A n exposition of 

the general theory would be beyond the scope of this work. 

To a large extent Lie's proofs and general mode of presentation 

have been retained, both because of their elementary, direct char­

acter, and because the.subject is so essentially Lie's own. An 

attempt has been made, however, at a more systematic arrange­

ment of the subject matter and at identifying more closely the 

classes of differential equations invariant under known groups with 

those considered in the elementary theory. 

The author takes pleasure in expressing his appreciation of the 

valuable suggestions made by Dr. J. R. Conner, who kindly con­

sented to read the proofs. 

A B R A H A M COHEN. 
Johns Hopkins University, 

Baltimore, Md., August, igii. 
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LIE'S T H E O R Y O F 

DIFFERENTIAL EQUATIONS 

CHAPTER I 

LIE'S THEORY OF ONE-PAKAMETER GROUPS 

1. Group of Transformations. — The set of transformations 

(i) Xi=<l>ix,y, a ) , yi = x(>ix,y, a ) , * 

each one being determined by some value of the parameter a, con­

stitutes a group if the transformation resulting from the successive per­

formance of any two of them is one of the transformations of the 

aggregate. In other words, assigning a definite but arbitrarily selected 

value to the parameter a, and theii any second value b (where b m a y 

or m a y not be equal to a), this second transformation being 

ipi) Xi = <^(xi, yi, b), yi = iltixi, yi, b), 

the transformations of type (i) form a group if the results of eliminat­

ing Xi andji'i from (i) and (i;,), i.e. 

Xi = 4>l4,ix,y, a), ̂ ix,y, a), b}, yi = xl,\_4>ix,y, a), >pix,y, a), b'] 

* Here ,p and \p are supposed to be generally analytic, real functions of the three 
quantities x,y, a; and, unless especially stated, it will be understood that x and y are 
real, and that a takes such values only as render xi andyi real. Besides, 0 and f are 
independent functions vrith respect to x andy, alone; i.e. 

50 
dx 
df 
dx 

d4> 
dy 
d-'p 
dy 

so that equations (i) can be solved for x andy. 
I 
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reduce identically to 

Xi=<j> ix, y, c), yi = \p (x, y, c), 

where ir is a function of a and b only. If (i) be represented by T^ 

and (i^) by 7^, the group property nfey be expressed symbolically 

We shall speak of TJ,, as the product of T^ and T^; and shall under­

stand that it represents the transformation resulting from the succes­

sive performance of T^ and T^, in the order named. With this in 

mind, the group property of a set of transformations m a y be expressed 

in the words, the product of any tvuo transformations of the group is 

equal to some transformation of the aggregate. 

As an example, consider the translations* 

I xy^x, yi—y-i-a. 

After having fixed upon some value a of the parameter, a second transformation 
of the set, corresponding to the value b, is 

Xi = xi, yi =yi -f b. 

The result of the successive performance of the two is 

Xi = X, yi=y -\- a -y b, 

which is again a translation of the set, with a -{• b as the value of the parameter. 
Hence, all translations of the type I form a group. 
As another example, consider the rotations f 

II xi^^ X cos a — y sin a, yi^ x sin a y- y cos a, 

* It will frequently be found convenient to consider this subject firom a geometrical 
point of view. A transformation of the form (i) may be looked upon as transforming 
the point (x,y) into the point {xy,yi). The effect of a transformation I is, obviously, 
to carry any point the distance a in the direction of the axis of^. So that the effect on 
all the points of the plane is that of a translation of the whole plane over a distance a 
in the direction of the axis ô y. 

f Obviously the effect of a transformation of this type on the various points of the 
plane is that of a rotation of the whole plane, through the angle a, about the origin. 
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The result of first performing the transformation corresponding to some definite 
value of a, and then a second one, 

Xi = xy cos b — yysinb, _y2 = .̂ 1 sin ̂  -|- jj/i cos b, 
is x-i = x cos(a -\- b) — y sin (a -\- b), yi = x sin (a -\- b) -{-y cos (a y b), 

-which is ag3in a rotation of the set, with a-i- b as the value of the parameter. 
Hence, all rotations of the type II form a group. 
The affine* transformations, 

III Xl = X, yi =: ay, 

form a group, since the result of two tr3nsformations in which the values of the 
parameter are a and b, respectively, is 

Xi = X, yi ̂  a by, 
•where ab is the value of the parameter. 

In the same way it is resdily seen that the perspective or si-mililitd'inous f 
transformations, 
IV Xl = ax, yi = ay, 
form a group. 

In the groups considered in the Lie theory it is presupposed that 

the transformations can be arranged in pairs, the members of which 

are mutually inverse t ; that is, if (i) be solved for x and y, their 

values in terms of Xi and y'l assume the forms 

(i) * = 't>ixi, yi, a), y = \̂iixi, yi, a), 

where a is some function of a. 

Thus in the examples above we have the inverse transformations : 
y = yi — a; here d = — a . 

X = Xl cos a -\-yi sin a, y == — xysin a -{-yi cos a ; ir. = — a. 

y = ̂ yy; '7=---. 
a a 
I - I 

y--yi; a = -
a a \ a 

* Following Lie, this name is used here in a restricted sense to apply to transforma­
tions of the types III and HI', § 19. The term goes back to Mocbius (1790-1868), and 
usually includes all entire linear transformations jti =ai x -I- biy -|- Cy, yi=a.2X-{- biy -f- ĉ . 

t So called because the effect of any one of them is to stretch the vector going from 
the origin to the point (x,y) in the ratio -.leaving its direction unaltered. Any figure 
in the plane is, therefore, tran.5formed into one similar to it by a transformation IV. 

X Such groups will be referred to as Lie groups when this property is to be em­
phasized. 

I. 
II. 

III. 

IV. 

X = Xl, 
X = XlOf. 

X=Xl, 

x=lxi. 
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Since the successive perforinance of two mutually inverse trans­

formations results in the identical* transformation, the latter must 

always be a transformation in every group considered in this theory f ; 

hence, there must always exist a value, â ,, of the parameter which 

reduces the corresponding transformation to an identity 

fxi=<l>ix,y, ao)=x, 
^̂ "̂  1 ,t \ 

-[yi = il>ix,y, ai)=y. 

It is readily seen that in the case of 1,11, III, IV the values of aa are o, o, i, i 
respectively. 

Since <̂  and ^ are continuous functions of the parameter a, if we 

start with -the value ay,, and allow a to vary continuously, the effect 

of the corresponding transformations on x and y will be to transform 

them continuously; that is, for a sufficiently small change in a the 

changes in .^-and y are as sixiall as one pleases. Looked at geometri­

cally, the effect will be to transform the point ix, y) to the various 

points on some curve, which is known as a path-curve of the group. 

Thus in the case of I, the point (x, y) is transformed into the various points 
on the line through it, parallel to the axis of _y; in the case of II, the path-curves 
are obviously circles having the origin for center ; in III the path-curves are 
again lines parallel to the axis of y, while in IV the path-curves are straight lines 
through the origin. 

It is evident that when x and y are considered as constants while 

Xl and yi are taken as variables, the equations (i) are the parametric 

equations of the path-curve through the fixed point (x, y). Hence, 

the path-curve corresponding to any point (r, y) may be obtaitied by 

eliminating a from the two equations of ii). 

* Identical transformation is the name given to a transformation that leaves un­
altered all the elements upon which it operates. 

'f Groups exist in which the parameter ehters in such a way that there is no iden­
tical transformation. (See Lie, Transforiiiati.Qnsgruppen,Vo\.\,\ 44^ 'Such groups 
will not be included among those considered here. 
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Remark i. — It is readily seen that, in .general, the path-curve 

corresponding to any point corresponds equally well to every other 

point on it. 

There is a possible exception to this statement. A point may be left un­
altered by every transformation of the group; as, for example, the origin in the 
case of II. Such a point would natur3lly not have a path-curve. In the case of 
III, every point on the axis of x is left unaltered; hence, a line parallel to the 
axis of 1' is the path-curve of every point on it, except the point where it cuts the 
axis of X. In IV a line through the origin is the path-curve of every point on it, 
except the origin, which is left unaltered. 

Remark 2. — The parameter may appear in various forms in the 

transformations that determine a given group. 

Thus Xl = x,yi =;)/ -{- d^ also determines the group of translations I. In this 
case a must take imaginary vslues, as well as real ones, in order to give all the 
transformations of I. As a matter of fact a = ia. On the other hand, a negative 
value for a determines the same transformation as the corresponding positive 
value. 

The group of rotations II can also obviously be written 

Xl = x-\/-i. — a^ — ya, yi=^xa -\- j/Vl — â . 

It is always possible (and in an indefinite number of ways) to 

choose as a new parameter such a function of the parameter appear­

ing in any gro,up that the value giving the identical transforma­

tion is any desired number. For example, this number will be Q if 

a is replaced by a^~^. In particular it will be zero if a is replaced 

by a ^ . 

Thus if III and IV, -where a^ = i, are written 

Xl = X, yi = e'̂y and xi = e'-x, y\ = e'̂y, 

respectively, a = o will determine the identical transformation. In this form, 
complex values of a are necessary to determine transformations which cor­
respond to negative values of the parameter in the original forms of the trans­
formations of these groups. 
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Show that the following transformations constitute a group. Find 
the respective values of the parameter that give both the inverse and 
the identical transformations. Also find the path-curves : •—• 

Ex. 1. Xl = ax, jFi = -y. Ex. 2. Xi = a^x, yi = ay. 

•• d'-x, yi = d^y. 

Ex. 4. Xi = -\- J CI? -{- 2 a, yi = y- Jy^ — a. 

Ex. 5. Xi = xcosh a-\-y sinh a,yi=:xsinhay-ycosh a, 

X V 
Ex. 6. Xl = ,yi~ I — ax I — ax 

Ex. 7. Xi = ax-\-ia—j)y, yi=y. 

Ex. 8. Xl = e''ix cos a — y sin a), yy = e\x sin a -{-y cos a). 

2. Infinitesimal Transformation. — Since <j) and ij/ are continuous 

functions, the transformation 

Xl = <j>ix, y, «o + 8a), yi = >pix, y, a„ -\- 8a), 

where ao is the value of the parameter determining the identical trans­

formation and 8a is an infinitesimal, changes x and y by infinitesimal 

amounts. Developing by Taylor's Theorem 

Xi = cj>ix,y, ai) +(^)3a + •", 

yi = i' ix, y, ai) -\- (-^j8a + • • •• 

Noting that 4'ix,y, a^ — x, ^ix, y, a^ = y, the changes in x and y 

due to the transformation are 

Xl— X ̂ 8 x =: I -^\8a -\- •••, 
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where terms in higher powers of 8a are indicated by dots. Since aa 

is a fixed value of the parameter, the only variables remaining in 

I -^] and ( — 1 are x and v. Writing 

/Of, \ y aa 

the transformation takes the form 

8x = iix, y)8a-\- •• •, Sy = r](x, y)Sa-\- ... 

Higher powers of the infinitesimal 8a may be neglected, provided at 

least one of ̂  and -t} does not vanish identically ii.e. for all values of 

x andy), and neither of them is infinite. In this case the transforma­

tion producing an infinitesimal change in the variables is 

(2) 8x = ^(x, y) 8a, 8y = tjix, y)8a. 

This is known as an infinitesimal transformation. 

Remark I. —- Since k8a, where k is any finite constant different 

from zero, is an infinitesimal when 8a is, the latter may be replaced 

by the former in (2). Hence, the infinitesimal transformation (2) is 

8x = kiix, r])8a, 8y=kirjix,y)8a. 

On the other hand, iifix, y) is not a constant, 

8x =fix, y) • &x, y)8a, 8y =f(x, y) • rjix, y)8a 

is distinct from (2). 

Remark 2. —- In case ( -? ) and ( -"̂  ) are both identically zero, 
\da),^ \da),̂  

or if one of them is infinite, the method of this section for finding an 
infinitesimal transformation of the group must be modified. In Note I 

of the Appendix the existetice of an infinitesimal transformation of 

the group is established in every case, and a method for finding it is 

also given. Moreover, in the same note it is proved that a one-param­

eter group contains only one distinct infinitesimal transformation. 
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In general, the method of this section for finding i and rj will be 

found applicable ; when not, that of Note I may be employed. 

In the case of I the infinitesimal transformation is 
xi = X, y i = y -{- da, 

or Sx = 0, Sy ̂  da ; 
{ = 0, r, = ̂. rf^=o,f=i.] 

Lda da J 
For II, the infinitesimal transformation is 

x i = x cos (Sa) — y sin (da), yi = x sin (Sa) -y y cos (da). 

Since cos(«a) = i --2f?l% ..., and sin (da) = da-^^ALy ..., and infini-
2! 3! 

tesimals of higher order than the first may be neglected, cos (da) m3y be re­
placed by I, and sin (5a) by da. Hence, 

5x = — yda, dy = x3a; 

*=- '='• [m.-Au-A 
Simil3rly, it is re3dily seen th3t for 

III f = o, v=y, 
IV i = x, -T) =y. 

Ex. Find the infinitesimal transformations of the groups in the 

exercises of § i. 

3. Symbol of Infinitesimal Transformation. — In the. infinitesimal 

transformation 
(2) 8x = iix,y)8a, Sy = r]ix, y)8a, 

8 is the symbol for diiferentiation with respect to the parameter a; 

but in a restricted sense, since it is used to designate the value 

which the differential of the new variable Xi or yi assumes when a = 

us 

Sx = i 8 a = f ~ ^ \ 8a, Sy = r,8a = f ^ ^ 8a. 
\ / Oq \ / "̂0 

* The exceptional cases noted in Remark 2, ̂S 2 are due to the way in which the 
•parameter enters and are not peculiar to any group, (See $ 4.) Hence, no modifica­
tion of the statement made in the text need be insisted upon, provided it is understood 
that the parameter is chosen in proper form. 
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^^A{x,y) is a generally analytic function of x and y, the effect 

of the infinitesimal transformation on it is to replace it by 

fix -̂  jSa, y -^-qSa), which on expanding by Taylor's Theorem 
becomes 

fix-^iSa, y-\- n 8a) =/(x, y)-i-U¥^ + n ̂ \ s a -f .... 

Hence, S/=(^ f+. |) ^^^ + •-

Lie introduced the very convenient symbol Cf for the coefficient 

of 8a in this expansion ; so that 

8f^UfSa-\- ..., 
where 
(3) 

It is readily seen that 

where 

In particular 

Since Lf can be written when the infinitesimal transformation (2) 

is known, and conversely, (2) is known when IJ is given, Cf is said 

to represent (2). For convenience of language we shall usually 

speak of " the infinitesimal transformation U f " instead of " the trans­

formation represented by IJ." But it must be borne in mind that 

t^is not a transformation; it is only the representative of one. 

The infinitesimal transformations in the cases of I, II, III, IV are 

Uf=^, Uf=-y^+x^, Uf^y^-A, Uf=xfyyf 
dy dx dy dy dx dy 

respectively. 
ri ri 

Remark. — The differential operator C / s | hi? — has striking 
dx dy 

properties, many of which will be brought out in the course of this 

Uf = i 

uj 

Ai-

Ux-. 

1 - 4 , 

- m . . 

=fixi,yi). 

= i, Uy=r]. 
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work. It is, to a large extent, because of these properties that Lie's 

introduction of the idea of the infinitesimal transformation has 

provefi so prolific of results. 

4. Group Generated by an Infinitesimal Transformation. — In § 2 

was given a method for finding the infinitesimal transformation of a 

one-parameter group when the finite transformations are given. Con­

versely, the finite transformations can be obtained when the infini­

tesimal transformation is known. 

Attention was called in Remark 2, § 1 , to the fact that the 

parameter may be made to enter in such a way that the identical 

transformation is given by any desired value of the parameter. It 

is frequently convenient to have the parameter in such a form 

that its vanishing gives the identical transformation. In future, 

when this is specifically understood, t will be used for the param­

eter. In the general case, when this form is not insisted upon, a 

will be retained. 

The infinitesimal transformation i f = ^ - A - y . ^ A ^ or 
dx dy 

(2') 8x = ^ix,y)8t, 8y=:-qix,y)^t, 

carries the point ix, 7) to the neighboring position {x -\- i8t, 

y -f- y]8t). The repetition of this transformation an indefinite 

number of times has the effect of carrying the point along a path * 

which is precisely that integral curve of the system of differential 
equations 

(4) '̂ ^ = iixi,yi), ^ i = r,ixi,yi), 

which passes through the point (x, y). At any stage of the above 

process x and y have been transformed into .Vi and yy, and the 

* This is obviously the path-curve (^ 1) of the group, corresponding to the point 
(x.y). 
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formulae of transformation are given by those solutions of (4) or of 

their equivalents 

(5) ^^:l_ y S i _ ^ ^ ^ 

for which Xi reduces to x and j'l to y ior t= o. 

The first two members of (5) being free of t form a differential 
equation whose solution may be written 

uixi, y'l) = const. = «(x, y), 

since Xy = x, j'i=>' when t = o . This is tfie equation of the path-

curve corresponding to the point ix,,y). 

Solving uixi, J'l) = c for one of the variables,* to fix the idea, say 

Xi = a>ij'ij c), and replacing Xi in -q by m, the resulting differential 

equation 4,^ 

•ni'̂ i.yi, Oo'i] 
-dt 

can be solved by a quadrature. Replacing c by its value in terms of 

Xl and J'l this solution takes the form 

»(xi, J'l) — t = const. = V ix, y). 

Hence it follows that 

,g. [»ixi,yi) = uix,y), 

\vixi,yy) = vix,y)+t, 

determine Xi and j'l as those solutions of (4) or (5) which reduce to 

X and y respectively for 2*= o. 

Looking upon (6) as a transformation, the following may be noted : 

1° The result of the successive performance of two transformations 

Kxi,y\)=uix,y) I , \uix2,yi)=^Axi,yi), 

•Vixi, y i = v i x , y ) + t \ \vix,i, yi) = »(jCi, j'l) +t', 

*At times it will be more practical to use some of the other methods given in 
the author's Elementary Treatise on Differential Equations (in future referred to as 
El. Dif Eq.) § 65 for finding a second solution of (5). 



12 THEORY OF DIFFERENTIAL EQUATIONS §4 

is the same as that of the single transformation 

uixi, yi) = uix, y), 

»(*,, j/2) = vix, y)-\-i+ t'. 

2° The value — t determines the transformation inverse to that 

obtained by using t. 

3° t — o gives the identical transformation. 

Hence the aggregate of all the transformations (6) for all values 

of / constitute a group of the kind considered in the Lie theory ( §1). 

This group (either in the form (6) or when solved for Xy and j,) is 

known as the group generated by the infinitesimal transformation (2').* 

Moreover, the parameter enters in such a way that ( -^ ] = ^ix, y), 
d \ \dl Jo 
--j ] = Tjix, y). Since there was no restriction placed on the ^ and 

-rj in (2'), other than that they are generally analytic, which is always 

presupposed, we have shown that it is always possible to put the finite 

transformations of a one-parameter group in such form that the ex­

ceptional cases noted in Remark 2,% 2 will not arise. 

In I, equations 

In II, 

Using method , 

(5) are f ^ i ^ ^ ^ . 

u(xi,yi)=xi = x. 

•o(xi,yi)=yi = y + t. 
dxi dyi dt 
-yi Xl I 

. . u(xi, yi) = xP y yP ^x'-y y\ 

3° (a) of ̂  6s, El. Bif Eq. 

xidyy—yydxi_ ̂ ^ 
xx'-yyi^ 

v(x,y) =tan-i — = tan-i-:- -1-1. 

* Since the finite transformations of a group can be calculated when its infinitesi­
mal transformation is known, the latter may be looked upon as the representative of 
the group. ' W e shall often speak of " the group TTf" understanding by this " the group 
whose infinitesimal transformation ib represented by Ufi' 
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VI 

I 
xi-

Xl 

I 
-f r^ 

yi 

I 
ix 
X -

= cos 

XT 

+ r̂  
-yj 
-yr 
+ r' 

t and 

+y 

I 

— .arcos 

T 
Vi+-

= X sin 

t — ys\n t. 

T̂  

. t + y cos-i. 

To solve these two equations for xi and j'l, so as to obtain the transformation 
in the usual form, one may proceed as follows : 

Taking the tangent of each side of the second relation, 

J'l )' 4- .rr 
— = , wliere t = tan t. 
Xl X — yr 

Adding i to the square of each side and taking account of the first relation. 

^Vhence 

and _, ̂  
V i -f T-

In III, it is readily seen that 
«(-*•!) yi) =xi = X, 
v(xi, Ji) = ^ogyi = logy + t, or yi = ify. 

Note. — It is evident that the solutions of (5) need not always be found in the 
form (6). Other forlns may be easier to solve for xi and yi. Thus in IV 

log Xl =log X -\-1 and log;!*! = \ogy -f-1 

are a p3ir of obvio-us solutions of the differential equations (5), and lead at once to 

xy = ^x, yi = e'y. 

Find the groups whose infinitesimal transformations are the follow­
ing: 

-r. df df ^ 3/ 3/ 
Ex. 1. x ^ - y ^ - Ex. 5. y ̂ -y X •' dx dy ' dx dy 

df df E 6 ^-^ ^ 
dx dy ' ' dx dy 

df df ^ , , 5/ 
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5. Another Method of Finding the Group from its Infinitesimal 

Transformation.— Starting with an infinitesimal transformation 

it was seen in § 4 that the finite transformations of the group 

(i') Xl = 4>ix, y, t),yi = >Pix, y, t) 

generated by it can be found in such form that 

The finite transformations can be obtained (expanded in powers 

of t) -without integration by means of the following considerations : 

The effect of any transformation (i') being to replace x and y by 

Xl and J'l, it will change any function fix, y) into /(^i, J'l). Assum-

ingfix,y) to be generally analytic, since fixi,yi) depends upon tit 

can be developed by Maclaurin's Theorem. 

/•=/HI).-(i)i-. 

where f^fix,y),fi^fixi,->ji). Writing likewise 

. _ 5Xi Sl'i rr / .^idfy, df 

so that (li)o = $, irjy)o = i?, ( UJi)o = Uf it follows that 

I =^1/1, whence (1)^=^/. 

Moreover |^ = £ lAf = Ui UJi= Uif. 

Hence (^l^^^^f^^y. 

Similarly fS£) = UUUfs UH; and so on. Hence the effect of 
\dt^ jt, 
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any finite transformation (i') on/is given by 

(7) 

15 

/i=/+f7^+t^y-'+ 
2! 

In particular the finite transformations of the group are given by 

the formula (7) when/"is simply .v and j', thus 

(8) 
xi= <f''x = x-^Uxty- U^xf- -t- ••• , 
2 ! 

J'l = ^'V = J' -^Uyt^ U-y- -+-•••, 

where, it will be recalled (§ 3), Ux = ̂ , Uy = rj. 
It is readily seen that for the group in the form (8) as in the form 

(6) § 4 

In I 

Hence 

In II 

Hence 

Similarly 

In III 

TJ,. = T,+t', i=-l, to = o. 

Uf^¥. 
dy 

Ux = 0, U'̂ x = 0, ••• ; U y = i , m y = o, U^y = 

^i = -̂ .7i=/-|-̂ -

Uf^-ydJyxf 
dx dy 

Ux = -y, W-x =U(-y) = -x, UH= U (-

xi = x[i— — -\ ••• ] — y I 

= X cos i — ysin t. 

' ' - A A . A - J A A A r 
= xsin i -y y cos i. 

uf^y%.-

: 0, •• 

- X ) ^ 

•) 

••) 

•• 

- y, and so on. 

Hence 

dy 
Ux = o, U'^x = o, •.- ; JJy -y, U^y =y, U^y =^y, •• 

I t'^ t^ \ 
xi = x,yi=yl^i + t + - ^ y - ^ J ...j 
=: ye' 

* Symbolically this may be written fy = e"^f. 
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In exactly the same vay the'finite transformations of IV are found to be 

Xl = xe', yi ̂ ye^. 

Ex. Solve the problems of § 4 by the method of this section. 

6. Invariants. —• A function of the variables is said to be an i/tva-

riant of a group (or invariant under the group) if it is left unaltered 

by every transformation of the group. 

Thus, it is immediately obvious that any function of x alone is invariant under 
the groups I and III, while any function oi x- + y- is such under II. 

We saw (§ s) that 

(7)' A(xi, yi)-A{x, y) = U A t ^ U f ^ + -. 
2 ! 

In order that /(«i, yi)—fix, y) for all values of x and y, and the 

corresponding values of Xi and ji into which they are transformed by 

each of the transformations of the group, i.e. for every v'alue of t, it 

is necessary and sufficient that each coefficient in the right-hand 

member of (7) be zero for all values of x and j. In particular, it is 

necessary that 

Moreover, since U''f= UUf Uf= UU-f •••, it follows at once 

that (9) is also the sufficient condition that/(.Xi,j'j) =_/"(.», j;) for all 

values of x, y, and t. Hence, the 

THEokEM. — The necessary and sufficient condition tfiat fix, j') be 

invariant under the group Uf is U f = o. 

Remark.—This theorem may also be expressed as follows : The 

necessary and sufficient condition that fix, j') be invariant under a 

one-parameter group is that it be left u-naltered bv the infinitesitnal 

transformation of the group. O n succeeding pages will be found 

conditions for invariance of curves, famihes of curves, differential 

equations of various types, and so on. In each case it will be found 
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(although specific mention of the fact will not be made) that the con­

dition for invariance under the group always reduces to that of in­

variance under the infinitesimal transformation of the group. 

T o determine invariant functions, it is necessary to solve the partial 

differential equation ^^ -5̂-

dx dy 

The corresponding system of ordinary differential equations is 

/ N dx dv df 
(10) = ^ = ^. 

f 77 o 
/ = const, is one solution of the system. 
If, besides, u{x, y)= const, is the solution of the equation involving 

the first two members, the general solution of (9) is, by Lagrange's 

method,* f=F i u ) . 

InlandlH dx^cfy^df^ 
0 7 0 

.•. u^x; andf=F(x). 

In II uSiX- +y-; and/= F(x''-yy^). 

In IV u = A and f = F { y A 
X \xj 

Ex. Find the invariants of the groups in the problems of § 4. 

7. Path-curves. Invariant Points and Curves. ^—As was seen in 

§ 4, the differential equation of the path-curves of a group is readily 

obtained from the infinitesimal transformation of the group. Thus, 

using X and y as the variables, it is 

-.IV 

t f y _ 

dx 

dx 
T ^ 

=^, 
'̂ 

d̂y 

V 

* See El. Dif. Eq. \ 79. 
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The general solution of this equation, 

u ix, y) = const., 

is the equation of the fai/iily of path-curves. As u ix,y) is an invariant 

of the group (§ 6), it follows that the equation of a path-curve is 

obtained by equating an invariant to a constant. Moreover, it is clear 

that this property is characteristic of 'an invariant; that is, if equa­

ting a function to any constant whatever gives the equation of a 

path-curve, that function must be an invariant. 

But this is not the only form in which the equation of a path-

curve may appear.* A path-curve is an invariant curve of the 

group, hence its equation must be invariant. If/(jc, j) = o is to be 

an invariant equation, fixi, yi) must vanish for all values of Xi andji 

into which the various values oi x and j' which satisfy/(.«, j) = o are 

transformed by the transformations of the group. N o w , we have seen 

(7) A(xi, yi) =fix, y)+Uft+ U^f^ + •••: 
2 ! 

If the right-hand member is to vanish whenever/(.t, y) does, for every 

value of t, it is necessary and sufficient that each coefficient should do 

so. In particular, it is necessary that 

(12) Uf=^ O) whenever/(x, j') = o, 

that is, Uf rxm.st contain/(.«,j') as a factor.f 

But if U f = u>ix, y)fix, J'), 

then U f = U U f = Uoyf-\- w U f = ( Uu> + «=)/; 

i.e. U f a^so contains/(x, j') as a factor. 

* Thus, while -^ = c is readily seen to bo the equation of the family of path-curves 

of the group U f ^ x -— -\-y -f, y—ex = o is another form for it. U(y— cx^^ — ex -yy 
dx dy 

does not vanish for all values of x and7; but it does vanish for those values satisfying 
the equation of the path-curves ; see (12) below. 

t It is presupposed ̂ a\f(x,y) contains no repeated factors. 
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In the same way it can be shown that every coefficient in (7) con­

tains/(.v, j') as a factor, whenever C^does ; for if 

C/"/= eix, y)fix, y), u - + j = u u y = iU0 + 5u,)/. 

Hence the vanishing of Uf whenever fix,y) does is both the necessaty 

and sufficient condition that fix,y) = o be an invariant equation. 

In case U f = o for all values for x and y, the above condition is 

fulfilled. But this we recognize as the condition (9) that fix, y) be 

an invariant. Hence, not only is fix, j') = o a path-curve, but 

fix, j) = any constant is one in this case. 

Remark. — It should be noted that 

dx dy 

may vanish because ̂  = o and 17 = o * for certain values of the vari­

ables. In general these two equations determine a finite number of 

values of the variables. Remembering the significance of i and -17, 

these values of the variables are left unaltered by all the transforma­

tions of the group ; so that the points having these values for coordi­

nates are invariant points. If it happens that i and ij contain a 

common factor, Kiix,y), it is obvious that u)(x, j) = o is an invariant 

curve, in that every point of it is invariant. Following Lie, and 

desiring to preserve the significance of the name, we shall not include 

this class of invariant curves among the path-curves. 

Summing up the results of this and the preceding section we 

have the 

Theorem.— The necessary and sufficient condition that fix, y) = o 

be invariant under the group Uf is that U f = ofor all values of x and 

y for which fix, y) = o, it being presupposed that fix, y) ftas no 

repeated factors. 

' Still another possibility is that J = o and ̂ ^ = o whenever/= o. But this is 
dx dy 

excluded by the restriction \ha\.f(x,y) have no repeated factors. 
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Points whose co'ordinates satisfy the two equations iix, j) == o, 

vix, J') = o '̂ ^̂  invariant under the group. J ^ix, j) ̂ = o '̂''̂d. 
Tjix, y) = o whenever fix, y)=^o, this curve is composed of invariant 

points. Curves of this type are not included among the path-curves 

of the group. 

In all other cases fix, j) = o is a path-curve. 

If U f = o for all values of x and y, fix, y) is an invariant, and 

fix, y') = dny constant ijncluding zero) is a path-curve. 

In I, l=o, •!;=I. 
.*. ti^x ̂  const, is the equation of the path-curves. 
There are no invariant points. 
In II, |S—jc, rî .x. 
:. u'=lx'̂  y y''- — const, is the equation of the path-curves. 
There are no other invariant curves. The point ,t = o, j = o is invari3nt. 
In III, ? = o, 5)=/. 
.'. ?<sx = const, is the equ3tion of the path-curves. 
;C = o is an invariant curve, each point of which is invariant. 

Ex. Examine for invariant curves and points the groups appear­

ing in the problems of § 4. 

8. Invariant Family of Curves.—A family of curves is said to be 

invariant under a group, if every transformation of the group trans­

forms each curve into some curve of the family. W e shall consider 

at this time families containing a single infinity of curves only, that is, 

those whose equations involve a single parameter or arbitrary constant. 

Writing the equation of the family in the form 

fix, y) = c, 
it will be invariant, if 

fixy, yi =/[<)!> ix, y, t), xjt ix, y, /)] = mix, y, t) = c' 

is the equation of the same family of curves for every value of ;", c 

and c' being arbitrary constants. 

A single infinity of curves determined by an equation involving 

an arbitrary constant is equally determined by a unique differential 
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equation of the first order, of which the equation involving the arbi­

trary constant is the general solution. If/(x, j')= c and ft)(:v, j, t)=c' 

are to be the same family of curves, these equations must be solutions 

of the same differential equation of the first order. Hence the left-

hand member of the one must be a function of that of the other,* i.e. 

^^Fif). 

Making use qf the relation (7) § 5, viz. 

fixi,yi)=fix,y)^ U f t + U f l - + ..., 
2 ! 

we see that fixi, yi) will be a function of/(.^, j) for all values of t if 
and only if each coefficient in the expansion on the right is a function 

oifix, y). In particular we must have 

(13) Uf=Fif). 

If (13) is true, 

U f ^ UUf= U F i f ) = ^ ^ uf='^-^Fif), 

which is again a function oif 

In the same way each coefficient on the right is seen to be a func-

d^( f\ 
tion of/; for if UJ=^if), U-^f^ UU'f= m i f ) = ^ ^ F i f ) . 

Hence (13) is both the necessary and sufficient condition that the 

family of curves ŷ ^̂  ̂ Ĵ̂  ̂  

be invariant. 

* The differential equations arising from these equations are 

3/ , , 3/. J 30!^ , 3« , 
-^dx-\- ̂ dy = o and —-dx-\- -^ dy = o. 
dx dy dx dy 

In order that these be one and the same equafion it is necessary and sufficient that 
3/ 
dx 
da 
5^ 

3/ 
dy 
da 
Ai 

But this is the condition that w be a function of/. See El. Dif. Eq., Note I of the 
Appendix. 



22 T H E O R Y OF DIFFERENTIAL EQUATIONS §8 

Remark. — A special case should be noted. \i Uf=o for all values 

oi X and y, fix, y)= c is a family of path-curves, each one of which 

is invariant, hence the family is. This particular family is charac­

terized by the fact that its differential equation is 

tjdx — ^dy = o. 

The problem of finding all the families of curves invariant under 

a given group Uf will be considered later in another form (§ i8). 

The general type of such famihes* may be found by noting that 

fix,y) must satisfy (13), wher6 Fif) is some function oi f, not de­

termined. As a matter of fact, F J ) may be taken as any convenient 

function oif, as may be seen from the following consideration: 

The family of curves fix, y)=c may equally well be written 

^[fix, y)~\ = const., where *(/) is any holomorphic function oif. 
Applying (13) 

UHf)^^Cff=.^F(f). 

This will be any desired function of/, say Q(/), if 

^ir(/)=fi(/); i.e.^f)=f9maf 

Since the family of path-curves is excluded, Fif)^o. Hence the 

function $ can be obtained by a quadrature, such that when the equa­

tion of the invariant family of curves is written ^fix,y)] = cofist. 

the right-hand member of (13) will assume the desired form 0(/). 

In the case of I, equation (13) is Uf= ^ = F'(f). 
dy 

From the corresponding system of ordinary differential equations 

cix_ _ d y _ df 
o ~ A ~ F(f) 

* In ll-iis discussion the family of path-curves is excluded, since a method for find­
ing these curves has already been given (§ 7). 
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the general solution is seen to be of the form 

y-4>(f)=yp(x), 

where ^ is an arbitrsry function, and 0 = f—A. Solving for / this takes the 

form f=^(y — \j/ (x) ). 

The most general family of curves invariant under the group Uf^^ is then 
dy 

i(y — 1/'(.*-)) =: const., or simplyjj; — ^(x) = c. 
Geometrically this is obvious at once. For such an equation represents a 
family of curves all of which may be obtained by moving any one of them con­
tinually, in either direction, parallel to the axis ofy. 

In II, —y^yx^= F(f) leads to -^ — '-^ = —I—, whence the general 
dx dy — y x F(f) 

solution is of the form tan'^^Z — 0(_/') = i^ix^ -^y^"), 
X 

or f-=^{lan-^t-,^(x^yy'^)\. 

The equation i = f, representing the family of straight lines through the origin 
X 

is a simple example under this head, as is immediately obvious geometrically. 
As an exercise, the student may show that 
yi,(x)=c 

is a general type for III, while x^ ( — j = ^ 

is such for IV. Simple examples are 

x''- y^—^=i,a family of central conies of fixed transverse axis for III, 
c 

ax"̂  -f- iSŷ  = c, a family of .similar central conies for IV, 
as is readily obvious geometrically, and as may be verified easily analytically. 

9. Change of Variables. — The form of the transformations of a 

group depends upon the choice of variables that are operated upon 

by them. 

Thus it is obvious that while the group of rotations II affecting the rectangu-

lar co6rdin3tes is ^^ ^ ^ ^^^ a-ysxna, yi = x sin ayy cos a. 
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when operating upon polar coiirdinates, it is 

,-'1 = P, ei = e + a, 

which, in form, is identical with the group of transitions I. 

To find the effect of the change of variables * 

(14). x = Fix,y), y=^ix,y), 

which, of course, carries with it 

(14') Xi = Fixi,yy), yy = <^ixi,yi), 

on the form of the finite transformations of the group 

(i) xi=<l> ix, y, a), yi^ip ix, y, a), 

X, y, Xl, yi must be eliminated from the six relations, (14), (14'), (i) 

and the resulting two relations solved for Xi and Hi. This elimination 

is usually effected by solving (14) and (14') ior x,y, Xi, y\, and substitu­

ting these in (i). 

*The introduction of new variables in a transformation involves the following 
processes : 

Designating by S the transformation of variables (14), or (14'), and by 5~l its inverse 
x = F(x,y),y=i(x, y) 

obtained by solving (14) for x and y, the new coordinates (x, y) of any point are ex­
pressed by means of S~l in terms of the old coordinates (x, y). These in turn are 
transformed by (i) or Ta (§ i) into (xi, yy) of the new point. Finally .S transforms the 
latter into (xi, yy), the new coordinates of this point. Designating by Ta the transfor­
mation in the new variables corresponding to Ta in the old, the above may be expressed 
symbolically T,= S-lTaS. 

The transformation Ta is known as the transform of Ta by S. 
That the aggregate of the transforms of all the transformations of the group (i) form 

a group follows, of course, from the fact that the transformations imply certain opera­
tions which are independent (except as to form, but not as to effect) of the kind of 
variables operated upon by them. It is very easy to verify this, however, as follows: 
TaT^ = S-i TaSS-i TbS = 5-1 Ta T,,S = S-i T,S = T, 
since SS-l is the identical transformation, and, TaTi, = Tc ({ i). 
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In the case of the above example the formulae for the change of variables will 
be chosen in the inverse form 

X = p cos 6, y = p sin B. 
Ehminating x, y, xi, yy, 

pi cos di = p cos 6 cos a — p sin 9 sin a = p cos (S y dy, 

pi sin 9i = pcos9sina-|-psinScoso = p sin (d y d). 

Whence, solving for pi and di, 

H — Py Bi = e + d. 

(The other possible solution, pi = — p, 81 = 6 y -ir y a, while exactly the same 
geometrically is not to be used here, since the above transformation must reduce 
to the identical one for a ̂= o. In the above transformation of variables, it is 
understood that p = -|- Vx'^ y y^). 

In general, the actual work required to carry out this process is 

long, to say the least; on the other hand, the problem of finding the 

new form of the infinitesimal transformation is a very simple one. 

For, remembering that 

^ '-^^ da \da 

^^"' '^ -l37j„„-^UJ. ^^y KdaJa.-^Tx^'Ty 

.•.%ix,y)=Ux. 

Similarly T|(jr, y) = Uy. 

Hence 

(is) Ufix,y)^Ux'^+Uy%-, 
dx dy 

where Ux and Uy are to be expressed in terms of x and y by means 

of (14). 
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In the above example, choose (14) in the form 

p = -f y/Wy^, 0 = tan-i^. 

Since 

I = uAl^^Af = 0, -^ = 0 tan-i-2 = I. 

.-. Vf^^-A. 

§§ 9.10 

Uf^-ydJy.dJ^ 
dx dy 

10. Canonical Form and Variables. — It is always possible theo­

retically, and often practically, to find the change of variables that 

reduces the group to a desired form. Thus, in order to have the 

group take the form 
jjrydf. df 
''^=Hx + '̂ dy 

any convenient pair of independent solutions of 

(16) 
Ux^i{x,y)f^ + rjix,y)^A^=iix, y). 

[ U y ^ ^ ( ^ , y ) ^ + v î . .r) |; = 11 ix, y), 

may be taken as the new variables x and y. In particular, to reduce 

the group to one of translations in the direction of the axis of y, 

when it takes the form U f = - A ^ the equations to be integrated are 

(16^ 

\ dx , dx 
dx dy 

,. dy , dy 
dx dy 

The first of these is (9), § 6 ; so that for x may be taken any con­

venient invariant of the group, itix, }<). 
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To solve the second equation, Lagrange's method leads to the sys­

tem of ordinary differential equations 

dx _ dy _ dy 

i rj I ' 

which are equations (5), § 4. Making use of the fact that u(x,y) = 

const, is the solution of -— = ^, y may be obtained by a quadrature.* 
t rj 

Following Lie we shall say that the group is in the canonical form 

when it has the form Uf=-A, and the variables which reduce it to 
dy 

this form will be called canonical variables. The above result may 
then be stated: 

Every group can be reduced to the canonical form Uf^-J-- In 
dy 

order to find the canonical vat tables, it is only necessary to solve the 
differential equation of the first order 

dx dy 

and to follow this with a quadrature. In case an invariant of the 

group (or what is the same thing, the equation of its path-curves) is 

known, a quadrature alone is necessaty. 

Remark. — \ i the equations (16) cannot be solved readily, it may 

be practicable to find the canonical variables for both the original 

and the desired forms of the group. A proper combination of these 

will then give the required transformation.of variables. 

In II, J = —J, 7)S.r. Here, as was seen (§ 4), tî x''- yy"̂ , 2'Stan~i^-
x 

These are a possible set of canonical variables. But it is customary to choose 
yPu instead of u for x, thus giving the usual polar coordinates. In III, J so, 

• * Inspection of equations (6), ̂  4 shows that the transformation X— •u(x,y'),y = 
v(x,y) reduces the group to the form 

I xi = x, yi = y y f. 
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ri'^y. Here, as was also seen (§ 4), « = .sr, z'Slogy. In IV, — = — gives 
X y 

û s.y., which may be taken as x. By composition the system of equations 
X 

dx dy dy . dx y dy dy , 1 / 1 n 
— = ^̂  = -̂  gives —^ = —^; whence y = log (x +y). 
X y I X y y I 
Another set of canonical variables for this group is of some interest. By com­

position, after having multiplied numerator and denominator of the first member 
by * and of the second member by jc, we have ^ ̂  = -̂ ; whence y = 

x!'- y y^ I 
log-\/j;'̂  + ŷ . Choosing this form for y and tan"! u = tan-̂ -i- for x, the canoni-

X 
cal variables are very similar to the usual polar coordinates, in that the old 
variables, in terms of them, are 

X = ey cos X, y = eV sin x. 
From their nature, it is obvious that in passing to the usual polar coordinates 
the transformations IV assume the form of the affine transformations III, as may 
also be verified readily analytically. 

Ex. Find the canonical variables of the groups in the problems 

of § 4. 

11. Groups Involving More than Two Variables. — The previous 

theory of one-parameter groups involving two variables can be gen­

eralized in two directions : the number of variables can be enlarged, 

and the number of parameters can be increased. In this section* 

will be considered one-parameter groups involving more than two 

variables ; and as the argumenfis almost the same for n variables as for 

three, the latter number will usually be employed. As a matter of fact, 

the previous arguments for two variables hold, with only slight modi­

fication, for a larger number ; hence, as a rule, only the facts will be 

given here, it being left as a reviewing exercise for the student to 

fill in the supplementary arguments. 

* A brief extension of the above theory to groups involving more than one-pa 
rameter will be given in Note VI of the Appendix. 
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Starting with the transformations 

f.vi = <̂ (̂ .v,j-, 5, a), 

[i] I j'i = V'Cv.,r, =, a), 

I Si = X(,-̂ '' .1'. 2, «), 

where <̂ , i/f, ;( are supposed to be generally analytic, independent, 

real functions of .r, y, z, a, they will constitute a Lie group provided 

the set has the following properties : 

1° The result of carrying out in succession two transformations of 

the aggregate, determined by any two values a and b of the parameter, 

is the same as performing a single transformation of the set determined 

by some value c oi the parameter, where <: is a function of a and b. 

2° Solving [i] for x, y, z in terms of Xi, j'j, Zi, the resulting 

formulae take exactly the same forms as [i], some function of a tak­

ing the place of a. In other words, the transformations of the group 

occur in pairs of mutually inverse ones. 

As a consequence the group contains the identical transformation. 

A group of this type contains one and only one infinitesimal trans­

formation (§ 2, and Remark, Note I of the Appendix), which may be 

written * • 

[3] C/= iix, y, z ) ^ + rjix, y, . ) | + «*, y, ^ ) % , 

where, in general, 

t — dx __(d(f 
da \da 

_dy Idij/ 
da \da 

da ydaja. 

* For n variables we have likewise 

M W^h^ + ^i-^+- + L^. 
3xi dxi dx,. 
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The finite transformations of the group may be obtained from the 

infinitesimal transformation either in the form of a power series in the 

parameter (§5) r 2̂ 
X y = : X -\- Uxty- U'^X --f- •••, 

[8] yi=yy- Uyty- U ^ y — + 

zi = z + Uzt-y Uh-t-y-
2 ! 

or as.solutions of the differential equations (§ 4) 

r 1 'î î ^ dy'i ^ A ^ ^_ 
iixi,yi,zi •tjixi,yi,zi C(-«i, J'l. ̂ O i 

If Uyixi, yi, z^^= const, and «2(.*i, J'l, zij = const, are the solutions of 

the first two equations (not involving t), and vixi,yi, z^ — t = const. 

is a third solution of the system independent of the other two, then 

[6] 
[Uiixi, ji, Zi) = ttipc, y, z), 
uipcy, ji, Zi) = Uiix, y, z), 

[v{xi, ji, Zi) = vix, y,z)y-t 

determine the finite transformations of the group. 

In both these cases the parameter t enters in such a w a y that t — o 

gives the identical transformation, and 1^=— ?• determines the inverse 

transformation.* 

* In the case of n variables, the development form of the finite transformations is 
exactly the same. To obtain the second form, the system of differential equations is 
J- f-, dxy' dx.j dxyi' lU 

and their solutions are of the form 
I U i ( X i , x.p •••, Xn) = 2̂1 (i'l, x.i, ..., :ir„), 

Un-l(Xi, X.2 , •••,x„')= •Un-i(Xy, X.^, •••,X,t), 
v(Xi, X./, •••,X,/) =v(Xi, X.2, •••,Xn) +t. 

Primed letters are used here to designate the transformed variables, since the sub­
script, previously employed, is-no longer available. 
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The effect of a finite transformation of the group on any function 
X.v,j', s),is(§ 5) 

[7] Aixy, J'l, Zi) =fix, y, z)+ Uft+ U f f A + .... 
2 ! 

A function/(.Tjj), z) is invariant under the group Ufii 

for aU values of x, y, z (§ 6). 

This equation, involving three independent variables, has two inde­

pendent solutions. Hence a one-parameter group in three variables 

has two independent invariants. Since uix, y, z) and u.iix, y, z) are 

such a set, every invariant of the group is a function of «i and u.J 
Those points whose coordinates satisfy the three equations 

^{x, y, 2) = o, rjix,y, z)=o, t,{x, y, z)= o 

are invariant under the group (§ 7). In general, that is, in case the 

three functions are independent, there is only a finite number of 

such points. But if only two of the functions are independent (which 

will show itself by having their Jacobian vanish, without all of its first 

minors doing so) the two independent equations will be the equations. 

of a curve, every point of which is invariant. If all the two-rowed 

determinants in the Jacobian vanish, there is only one independent 

equation, and it is the equation of a surface, every point of which is 

invariant under the group. 

The path-curves are obtained 

1° either by eliminating a from the finite transformations of the 

group (§ i), 

2° or by solving the system of ordinary equations (§ 7) 

- r -1 dx dy dz 
[11] = . y = . 

i V C 
* In the case of n variables, every invariant of the group is a function of the « — i 

independent ones aj, k̂ . •••. "n-i-



32 T H E O R Y OF DIFFERENTIAL EQUATIONS §n 

From the latter we see that if Uy and ?/o are two independent invari­

ants of the group, Kj = const and Ui = const, are the equations of the 

path-curves. 

Each of the surfaces Uy = const, and Ui = const, is invariant, being 

made up of an infinity of path-curves obtained in either case by keep­

ing one of the constants in the equations of the path-curves fixed and 

allowing the other to run through its full range of values.* 

The equation fix, y, z) — o, or the surface represented by it is 

invariant (§ 7) if 

[12] C / = o whenever/= o, f 

provided / contains no repeated factors. (If t j vanishes because 
^ = 0 , 17 = 0, ̂ = 0 whenever/=o, every point of the surface is 

invariant.) 

The curve/ (jc, y, z) = o,/ ix, y, z) = o is invariant if 

[i2'3 Cfi = o and Ufi = o whenever/ = o a n d / = o, 

provided/ a n d / contain no repeated factors and are independent 

functions, not containing a common factor. This last condition 

assures us that not all of the two-rowed determinants-in the matrix 

vanish for all values of x, y, 

df 
dx 
df 
dx 

z. 

df 
dy 
df 
dy 

df 
dz 
df 
dz 

* In the case of n variables, i° holds without change ; in 2° the differential equations 
of the path-curves are 

d ^ ^ dxi^ ... ̂ dxn 
••1 -.a f,. 

[II'] 

and their finite equations are Ui —const., •iii= const., ••• fia-i = const., where UyU.2, ••• . 
u,i—i, are any // — i independent invariants. Each of the (« — i) -way spreads in // 
dimensions -Uy = const., h.̂  = canst., •••, «„_] = canst, is invariant, as well as the various 
spreads of lower dimensions obtnined by taking these invariant relations two, three, 
... , a—I together, the last case giving the path-curves. 

t This condition holds when the equation involves any number of variables. 
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The argument employed in establishing this theorem for a curve in 

three dimensions is different from that available in the case of a 

surfiice f{x, y, 2) = o (in the latter case the one employed for a 

curve in two dimensions (§ 7) appHes). 

The necessity of the condition is seen as before; for, using 
formula [7] 

Aiixi, J'l, Zi) =fiix, y, z ) + Uft-JrUfi—-{-..., 
2 ! 

fiixi, yy, Zi) =fiix, y, z)-\-Ufit + U%~y--. 
2 ! 

If/i(.Ti, J'l, Zi) and/(jci, J'l, Zi) are to vanish .whenever/(x, j, 2) 

and fix,y, z) do, for all values of 4 it is necessary that U J = o 

and U J = ^ o whenever/ = o a n d / = o. 

The sufficiency of the condition follows at once from the fact that 

^^ = ^3^ + '? 35^ + ^32=°' 

Ufi=^^-y- ^-\-r^ = o 
dx ' dy dz 

all along the curve/ = o, / = o, ,̂ rj, ^ * are proportional to the 

direction cosines of the tangent of this curve at each point ix, y, z); 

that is, this curve is the path-curve through the point ix, y, z). 

Remark. — If U f = o whenever / = o, and 6 / = o whenever 

/ = o, the surfaces / = o and / = o are separately invariant; and 

their intersection is also invariant. In the case under consideration 

above, however, [12'] is the condition for invariance of the curve 

without regard to the nature of these surfaces. 

The change of variables 

[14] x = Fix, y, z), y = ^ix,y, z), z = * ( * , y, z) 

* If I = o, 57 = o, f = o whenever/ji = c, 72 = °i every point on this curve is invari­
ant, and hence, the curve itself is; so that the sufficiency is also established in this case. 
But such a curve is not included among the path-curves of the group (Remark, ̂  7). 
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causes the infinitesimal transformation to take the form (§ 9) 

[is] Uf^Ux^y-Uy^+Uz^-. 
dx dy dz 

So that the n e w variables satisfy the differential equations (§ 10) 

dx dy dz 

^ - ^ l + ' l + ^ s - " * ' - ' - ^ ) ' 

In particular, when | = o, t| = o, ̂ = 1 , the group is said to be in 

the canonicalfortn.* If the equations of the path-curves are known, 

the canonical variables can be found by means of a single quadrature. 

To illustrate all that has gone before consider the group of screw motions 

Xy ̂^ X cos t — y sin t, 

yi = X sin t y y cos t, 

01 = 2 -f ml, 
where m is any constant. 

The student will have no difliculty in proving that these transformations have 
the group property, and that in this case (§1) 

also t= — t, and to = o. 

The infinitesimal transformation is readily seen to be 

rr^- • 3/ , 3/ , 3/ 
Vf=-y-^yx ip + m ^ . 

dx dy dz 
*More generally, the group will be said to be in the canonical form, when any one of 

i, ̂ , i equals a constant, and the other two are zero. 
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Conversely, starting with the infinitesimal transformation the finite transforma­
tions are found to be, using [S], 

'. t^ t^ \ / /•> /5 \ 
•''̂  = ''[^-'^ + - J - y y ^ ' - T ^ + j ; - •••) = ̂ ^o^t-ys\nt, 

f t^ t^ \ I t'^ t^ \ 
y i - x \ t - — y - - — ...\yy\ I |-4---y- •-•) = xsin/-|-/cos4 

zi = zymt =zyml; 

or, using the other method, 

dxy _ dyy _ dzy _ dt 
— yi Xl m I 

.-. Ui = xpyyP = x->-yyfi, 

-iZ. 

in m 

For practical purposes it will be simpler to replace z, in the second equation 
by its value in the third one. Then 

xP y yi^ = x-^ y ip, 

tan-l.2i = tan-ii'-F/, 
Xl X 

01 = 0 -)- mt. 
The third equation is already in proper form. 
Th-? first two equations are free of z, and, as was found in § 4, reduce to 

xi = X cos t — y s\n t, 

yi = X sin t y y cos t. 

Two independent invariants are ui = x'^ -\-y'^, ^i-iStan'^y — — - Plence the 
, X m 

path-curves are 1 
x'iyyi^r^ tan'-̂  ̂  - - - c; 

X m 
or, introducing the parameter 0, 
X = rcosd, y — rsinS, z =. m(9 — c), 
which is a fsmily of helices, involving the 3rbitrary constants r and c. 
If m ^ o there are no invarisnt points. 
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Two of the canonical variables, x and y, must satisfy the differenti3l equation 

9/ , 3/ , 5/ 
— y^-\-xf-ymf-=o, 

dx dy dz 
while the third, z, must satisfy 
• 3/ , 3/ , 3/ 
3.a^ dy 32 

Knowing the invariants of the group, ui 3nd M2, we m3y put 

x = \lx^+y\ y = tan-il--. 
X ni 

By inspection, z may take'the simple form 

z = ^. 
m 

Solving for the old variables, the formulae of transformation of variable? are 
seen to be , , ^ • , , \ 

X =̂  xco%(y y z), y = ys\n(y y z), z = mz. 

It is obvious that the change to cylindrical coordinates 

X = p cos 0, y = p sin 0, z •= z 

reduces the group to the form 

pi = p, 01 = 0 y t, 2i = 2 -|- mt, 

which is a group of translations, but not in the canonical form. 

Discuss as was done in the text the following groups: 

-Ex. 1. Xi = x, yi=y, Zi=:az. 

Ex. 2. Xi= ax, yy = ay, Zi = 2. 

Ex. 3. Xl = ax, J'l = ay, Zi = az. 

Ex. 4. Xy = ax,yi=ay, Zi = z-\-^ia^—i) xy. 

Ex. 5. Xl = e'ix cos a —y sin a), ji = e'ix sin a -{-y cos a), Zi = e'z. 



CHAPTER II 

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER 

12. Integrating Factor.—-We have seen (§ 8) that if (j>ix,y) = 

const, is a family of curves invariant under the group 

. . . _ . 9 / 3/ 
^ = ^ 3 ^ + ̂ 3^' 

(13) U ^ = -Fi<i>). 

Moreover, it was also shown in § 8 that if the curves of the family 

are not path-cur\'es of the group, the equation of the family can be 

chosen in such form that the right-hand member of (13) shall be­

come any desired function of ̂ . In particular, there is no loss 

in assuming the equation so chosen that" this right-hand member is 

I ; for if a given choice ^ = const, leads to -F(<j!>), the selection 

$(<^) = const., where $(<^) = | f , will give U<̂ i<f)) = i. 
J Fi<l>) 

Suppose now that 
(17) Mdx + JVdy=o 

is a differential equation whose family of integral curves 

(18) 4'ix, y) = const. 

is invariant under the group Uf, the integral curves not being path-

curves of the latter. Let ̂  be so chosen that 

37 
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Since (18) is the solution of (17), 

d(f> = —^ dx y—— dy=o 
dx dy 

must be the same equation as (17) ; hence 

3^ 3^ 
dx dy 

(20) JV^-M^ = o. 
^ -̂  dx dy 

From equations (19) and (20) the values of -^ and —2 are found 
to be X y 
d(t>^ M 3<j!)^ N 
dx ~ iM-\- rjN' dy ~ iM^tjN' 

, ^ Mdx -f Ndy 

Hence the 

Theorem.* — If the family of integral curves of the differential equa­

tion Mdx -f Ndy = o is left unaltered by the group Up= ^ — 4- ij-^, 
dx dy 

is an integrating factor of the differential equation. 

Remark i.—This theorem ceases to hold in case the curves (18) 

are path-curves of the group Uf. In this case (19) becomes 

i-^ •\-r)-A-=o ; whence, taking account of (20), ^M-\rrjN=o. 
dx dy 

As a matter of fact, it is obvious that in this case the curves (18), 
being the integral curves of (17), are the path-curves for every group 

of the type ^, ,. 
Uf^pix,y).NA^^-pix,y).M'A, 

* This theorem of Lie was first published by him in the Verhandlungen der Gesell-
schaft der Wissenschaften zu Christiania, November, 1874. 
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where p(x, y) is any holomorphic function of x and y. Such groups 

are said to be trivial for purposes of assisting in solving the differen­

tial equation (17). 

Remark 2. — At times it is obvious from the nature of the problem 

that the family of integral curves is invariant under a certain group. 

This will be found to be the case in the following examples : 

Ex. 1. Find the curves whose tangent at each point makes an 

isosceles triangle with the axis of jc and the radius vector to the point 

of contact. 

This family of curves is clearly invariant under the similitudinous group 

U f = x ^ + y ^ - Its differential equation is 
dx dy 

^ ^ y 
dx X = _ * , ory(^Yy2x^y--y = o. 
i + y ^ '̂^ \dxj dx 

xdx 

Reducing to the form (17), which is characterized by being of the first degree 
in dx and dy, 

(x ± -vx'̂  + y^) dx y y dy = o. 
The integr3ting fsctor 

I _ I I 
iMyir)jv x-yy"- yx-dx^yy- y^x^ yy'^(xy^x-y f-) 

dx , ydy 
gives - I — •̂  °-± ^x'- y y ± v.*'-* yy'^(x y v V y y^) 

Integrating, log (x± J ^ A A ' ) = const, or .a; ± -slx̂ -i-y'' = ̂• 

This reduces at once'to yf = c^— 2 ex, a family of parabolas having the origin 
as common focus and the axis of x as common axis. 

Ex. 2. Find the curves such that the radius vector to each point 

makes an isosceles triangle with the tangent at the point and the. 

axis oi X. 
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Ex. 3. Find the curves such that the length of the radius vector 

to each point equals the tangent of the angle between the radius 

vector and the tangent to the curve at that point. 

Ex. 4. Find the curves such that the radius vector to each point 

makes a constant angle with the tangent to the curve at that point. 

Ex. 5. Find the curves such that the perpendicular distance 

from the origin to the tangent to a curve at any point is equal to 

the abscissa of that point. 

13. Differential Equation Invariant under Extended Group. — 

While at times it is possible to tell from the nature of the problem 

whether the integral curves of a differential equation form an invariant 

family under a certain group, it is desirable in order to extend the 

usefulness of the theorem of the previous section, to be able to tell 

when this is the case from the form of the differential equation itself. 

A point transformation 

Xi=<l>(x,y), yi = itix,y)* 

carries with it the transformation 

-A^dx-{-Jdy 
dyi _ ox dy 
dxrd^^^^dj>^^' 

dx dy 

dx dy 

* This is called a point transformation because it transforms the point (x.y) into 
(xi.yi). It thus transforms the various points of a curve F(x,y) = o into the corre­
sponding points of some other curve Fiixyy) = o, and may therefore be said to trans­
form the curve F(x, y) = o into ̂ î (xy, y p = o. 
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where y' = -A and j'/ = ^ • Since x is a function of x, y, v' only, it 
ttX d.Xy 

follows that the point transformation implies the transformation 

^1= 4,ix, y), yi = ^ix, y), y^ = ^^-|— = xi-^' J'' •>'') 

dx dy 

affecting the three variables x, y, f. T h e Matter transformation is 

k n o w n as an extended point transformation* 

Starting with the one-parameter group of point transformations 

(i) • Xi = <̂  ix, y, a), J'l = iĵ ix, y, a) 

it is easily seen that the corresponding extended transformations 

(21) Xi= ^ix, y, a),yi = iltix,y, a),y-l = -^= xix,y, y,' a) 

also constitute a one-parameter group in the three variables .r, y, y'. 

For, since the equations of a point transformation are precisely the 

first two of the corresponding extended transformation, and since the 

third equation of the latter is determined uniquely by the first two, 

the fact that the transformations (i) have the .group property (§ i) 

predicates the existence of the group property in the case of (21). 

Thus if a and b are any two selected values of the parameter, the result of per­
forming successively the two point transformations 

Xl = <t>(x,y, a), yi = yp(x, y, a) 
and x.2 = (j)(xi, yi, b), yi = f(xi, yi, b) 

is Xi = (j,(x,y, c), yi = ^(x, y, c) 

* An extended point transformafion is a special kind of a contact transformation 
(§49) ; for it transforms (x,y,y'} into (j;i,ji,;'i'), where, if ix,y) is some point on some 
curve .P(;i:,j) = o,>'' is the slope of the tangent to the curve at that point andyy is the 
slope of curve ̂ 1̂(̂ 1,71) = o (into which the other is transformed by the point trans­
formation) at the corresponding point (xy.yi). Since the value of yy depends upon 
:!;, J, j'only, any curve tangent to F(x,y)=oat (x,y)vfi\\ be transformed intoacurve 
tangent to Fi (^i,7i)=o at the point (xy.yp. 
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where c is a function of a and b. This follows from the group property of (i). 
In the case of the corresponding extended transformations 

xi = <p(x,y,a), yi = 4>(x,y, a), yi'= f,, ''''''. =xix,y,y,' a), 
dip (x, y, a) 

and Xi = <j>(xi,yy,b),yi = yp(xi,yi,b),yi' = '^ffy, yy, f =,-)^(xi, yy, yy^,b), 
d<t>(xi, yi, b) 

the result of replacing xy and yi in the first two equations of the second trans­
formation by the values giv«n in the first transformation is therefore 

Xi = ^(x, y, c),yi - \l/(x, y, c). 

Hence in the last equation of the second transformation, 

, dyi dil/(x, y, c) _ , , ^ 
dXi d<p(x,y, c) 

In exactly the same way, the fact that a value of the parameter 

exists giving the identical transformation for the group (i), and also 

the fact that the transformations of (i) can be separated into pairs 

of mutually inverse transformations, assure these same properties for 

the transformations of (21). The latter therefore constitute a Lie 

one-parameter group. This group is known as the once-extended 

group corresponding to (i). 

With Lie, w e shall write as the symbol of the infinitesimal trans­

formation of the once-extended group 

(22) U'f^iix,y)f^^rjix,y)f^y-rj'ix,y,y')^Jy„ 

t ^^ ^y u-i r 8y' 8 (dy 
where, as before, f s ^r-, i? s =^, while rf ^ p — = ^ J -

ha ha ha ha\dx 

It was seen in § 4 that, with a proper selection of the parameter, 

I = {^^ , rj = (^-Al\ , and, for any function/-§^ = (^A 
\dajaa \daja„ Sa \da 

file:///dajaa
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In a sense then 8 is a differential operator, so that 8 and d are 

commutative operatois ; thus, for example, 

lidx) = (^dxi) =(d^-A^] =di = d(^-
8a \da y„„ V da J a, \Sa 

.... hdy) dv^idx) df^^:) ^ d(^^) 
Hence >_V^^A_g'' " g" '^ \8aJ dy A>aj. 

8a\dxJ dx idxf dx dx dx 

f \ , drj ,di 
(̂ 3) •^=Tx-yiix-

Remark. — Attention should be called to the fact that, while y' is 

equal to — , -n' is usually different from J- Expanding the right-
dx dx 

hand member of (23), we have 

/ \ I drj fdrj 3A 3^ , 
(̂ 4) ^ = d x + [dy'Txy'-dyy' 

where it is to be noted that r/' is a quadratic polynomial in y' when 

di^ 

^y^°-

Given a differential equation of the first order 

(25) f{x, y, y") = o, 

the effect of any transformation (x) on the variables x and y is to 

transform the differential equation (considered as an equation in the 

three variables x, y, y') by the corresponding extended transformation 

(21J. The family of integral curves of (25) is invariant under the 

group if each integral- curve is transformed into some curve of the 

family by every transformation (i). Hence every transformation (21) 
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must leave the differential equation unaltered. The condition for 

this is ([12], § 11) 

(26) Uf= i^£ + ,^ + ^'^ = o whenever/(*, J, j'')= o. 

Hence the 

Theorem. — The family of integral cuives of the differential equa­

tion fix, y, f ) — o, and, therefore, the differential equation itself, is 

invariant under the group U f if U ' f = o whenever f ^ o. 

In the case of II, fs—jj/, tjSx. Hence, from (23) 7)' = i yy''^. The ex­
tended group of rotations is then 

The differential equation of the family of lines Z = c (which is invariant under 
II) is xy' — y = o. Flere 

U'(xy' — y) = — yy' — .ar -|-(i y y'^)x =y'(xy' — y). 

This vanishes whenever xy' — y does. 

14. Alternant. — Let Uy and K be any two homogeneous hnear 

partial differential operators * 

Ui = fi(.^, J')-^ -I- rjiix, J ' ) — , 
dx ay 

3 3 
Ui = iiix, y ) — - -\- rjiix, J ' ) — . 

dx dy 
Then 
UiUif= C/1&I+ C/i..|+4&g+(^i,. + ,i&)-,^4-,i,.f, 

UMyf= mi'£+ U.,i%+iA%+ii.Vi+V.ii)^y + V.Vi |-

(27) .-. UyUj- UiUj=^iuAi- Uii)^ + iUirji- u^y)y. 

* For the sake of simplicity we shall suppose that two variables are involved. But 
this entire section holds without any modification for n variables. 
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Writing UiUJ- U.,Uif=iUiUi)f,* 

the operator i U i U ) , which is known as the alternant-f of (Tj and U , 

is seen to be one of the satne type as Uy and Ui. 

The following properties of alternants are immediate : 

iUiUi=-iUiUi), 

iUyUi)=o, 

iUi, Ui±Uz)=iUiUi)±iUyUz), 

i<t>ix, y) Uy, Ui) = ^ix, J')(Uiup-Uii^Ui. 

]5. Another Criterion for Invariance of a Differential Equation 

under a Group. — .-\ second form for expressing the condition that a 

group leave a differential equation unaltered plays a very important 

role in the further development of the theory. It was seen (§ 12), 

that if 

(18) ^ ix, y) = const. 

is the solution of 

(17) Mdx-yNdy = o, 

1^ is a solution of the partial differential equation (20) 

(28) A<l> = N^-M^ = o. 
dx dy 

Moreover, if the family of curves (18) is invariant under the group Uf 

(without being path-curves of the latter), <J3 may be so chosen that. 

Consider now the alternant of C^and A (§ 14) 

(27) iUA)f^ UAf-AUf=iUJV-Ai)^-iUM+Ari)^. 

* Lie v/rites ( U^ U.2) or ( Uxf, U^f) instead of ( U^ U.^ f. 
f- Also sometimes called the covimutaior of U-̂  and 6̂ . 
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Because of (28) and (19) (tt4)<^ = Z7(o)- ^(i)= o. 

(29) .-. iUIV-AO^-iUM+Ar,)^f^ = o. 

Since <^ is a function of at least one of the variables x and y, 

-i^ and -^ are not both identically zero. Hence the coefficients of 
dx dy 
(29) must be proportional to those of (28); i.e. 

t^n) UN-Aj UM+Ar, ., ,. 
(30) ^ = ^ "^^Kx.y),* 
or UN-Ai=lN, UM+Arj = XM. 

Putting these in (27) 

(31) iUA)f^\ix,y)Af 

Hence (31) is a necessary condition that the-integral curves of (17) 
be invariant under Lf. 

Conversely, if (31) holds 

i U A ) ^ = UA4, -AUcl> = XA<f> = o, 

because of (28). Hence AUcj>t=o. 

Since every solution of (28) is a function of <j) 

Ucj> = Fi4>). 

This is the condition [§ 8, (13)] that the family (18) be invariant 
under the group Uf. Hence the 

Theorem. — The necessaty and sufficient condition that tfic differen­

tial eqitation M d x -\- N dy = o be invariant under the group Uf is 

(31) iUA)f^\ix,y)Af 

where Af^. nA- _ mA^ 
dx dy' 

* The common ratio \(x,y') is, at most, a function of the variables. It may be a 
constant or gero. 
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The condition (31) was found independently of what has gone before. It 
may be obtained at once by means of (26). It is suggested as an exercise, that 
the student do this. "Here f(x, y, y')-^M y Ny'. The expanded form of ri', 
given by (24), must be employed. 

This theorem leads to another one, of some interest, which is, as 

a matter of fact, the converse of the theorem of § 12. 

If f (x, J') and rjix, y) are any two functions such that. 

_ I 
'^^ iM+r)N 

is an integrating factor of 

(i 7) M d x y-N dy= o, 

d ( N \ 3 / M 

dx\iMy-rjN) dy\iM^rjN 

or U'l'-^-iN'M^MN^-N^'-^-rjN'-f-VrjM'-fp-M^-f 
dx dx dx dx dy dy dy 

y-MN^=o. 
dy 

Dividing by M N and rearranging the terms, 

^ dx^^ dy dx^ dy ^dx^^dy^ dx dy 

N M 

°^ . UN-Ai UM+Arj 
(3°) - N " M ' 

from^which follows (31) as before. Hence, if ij.(x, y) is an integrat­

ing factor of the differential equation M d x - \ - N d y = o , and A.x,y) 

and rjix, y) are any holomorphic functions of the variables satisfying 

the relation 

(32) 
m A -rjN 

* See El. Dif Eq. \ 7. 
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the differential equation is invariant under the group 

ox dy 

Since ̂  and rj are subject to the single condition (32), one of them may 

be chosen at pleasure, and then the other is determined uniquely. 

Hence, starting with an integrating factor of a differential equation 

of the first order, an infinite number of groups can be found which 

leave the differential equation unaltered. 

It will be seen in § 17 that the general expression for such groups involves 
two arbitrary functions. As a matter of fact, this can also be seen from the form 
of (32). For if/t is an integrating factor giving )j.(Mdx y Ndy) ̂ du, then for 
F(u) any function of a, p.F(ti) is also an integrating factor. (See El. Dip. Eq. 
§ 5.) Using this as the right-hand member of (32), and selecting i(x, y) arbi­

trarily, 17= iL^Jli . The general type of group leaving (i-j) 
Np.E(u) N 

unaltered may, therefore, be put in the form 

Uf^i(x,y)fy[--^-m^\K, 
dx \Nii.F(u) N I dy 

where t, 3nd F are arbitrary functions. 

16. Two Integrating Factors. — Since the knowledge of a group 

which' leaves a differential equation unaltered gives an integrating 

factor, thus reducing the problem of solving the differential equation 

to a mere quadrature, it should be expected that the knowledge of a 

second group which leads to a distinct integrating factor still further 

simplifies the problem of solving the equation. This is actually the 

case. 

Suppose fxi and fXi to be two integrating factors of (17). Then 

di^iM) difiyN) ̂  ^ diiJiiM) difijAl) ̂  
dy dx 9r 3.v 

3 ^ _ d N ^ ^l^^djyi _ j^djyi\ W ^ 3 ^ _ j^djyi 
dy dx ixy\ dx dy J /xjV dx dy 
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Remembering that i^ = ^l2g>), £ gj^ ^ 3(log ^)_ ^^^ 
ji dx dx ft, dy dy 

logfti—log/i.2 = log^', the last equation becomes 

TK^ log^M-7)/^ logtM=o: 
3-rV fi-ij dy\ ,XiJ 

i.e., log ̂  is an integral of 

(28) Af=N^-M^=o. 
dx dy 

Hence ^ is also an integral of (28), and 

^^ = const. 

is a solution of (i 7). So that the knojvledge of tivo integrating factors 

gives the solution of the differential equation without any analytic 

work whatever. 

Remark. —- It is interesting to note that in the proof usually given 

for the theorem that when one integrating factor /a is known, an in­

finite number of others can be found [viz. if ixiMdx -\- Ndy')'s. du, 

then ji-Fiu) is an integrating factor where Fiti) is any function of «],* 

all possible integrating factors are found. 

17. General Expression for Group under which a Differential Equa­

tion is Invariant. — W e have just seen that if Uyf and U^f are any 

two groups which leave the equation (17) unaltered, 

iLi^m±vAA^,,„st. 
jXi ^yM+ rjiN 

« See El. Dif Eq. § 5. 
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is a solution of (17) ; hence, 

where <f>ix, y) = const is any selected form of solution of (17). Re­

arranging the terms in (33), 

(34) ^-.=JMAA=--^-.^^^ = ,ix,y), 

where pix, y)'is the common value of the two fractions. Whence 

4 = Fi.jP)iy + p N , rji = Fi4,)rji - pM. 

(35) ••• Uif=Fict>)UJ+pAf 

Conversely, if UJ leaves the differential equation unaltered, Uif 

given by (35) will also do so, no matter how Fi4>) and pix,y) may 

be chosen (it being understood throughout that all functions involved 

are to be generally analytic). For, by hypothesis, using (31) 

iUiA)f==XAf; 

then (UiA)f=iFict>)Ui, A)f+ipA, A)f 

= Fi<^)iUiA)f- AFi4>)UJ-V p i A A ) f - A p A f 

= iFi.i>)\-Ap-]Af 

= vix,y)Af 

Hence every group which leaves the differential equation unaltered 

is given by (35), Uyf being one group of this sort. 

If Fi<i>) is a constant, the resulting group gives the same integrat­

ing factor as Uyf 

If Fi<l)) is identically zero, the resulting group is trivial (§ 12). 

18. Differential Equations Invariant under a Given Group. ^—^In 

order to make use of the theorem of § 12, a group leaving the differ­

ential equation unaltered must be known. While such groups always 
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exist, and are sometimes suggested by the nature of the problem 

giving rise to the differential equation, the number of equations for 

which they are known is comparatively small. The converse prob­

lem of finding the general type of the differential equations invariant 

under a given group is much more direct. And while its complete 

solution requires the knowledge of the path-curves of the group and 

usually one or several quadratures, it is practicable to supply these 

in a large number of ca-ses of interest. 

It is clear that the differential equation obtained by equating an 

invariant of the extended group (§ 13) to an arbitrary constant is 

invariant. The general type of invariant of the extended group is 

obtained by taking an arbitrary function of two independent solu­

tions of ([9], § 11) 

w ''/=€*'|+''|-°-

Passing to the corresponding system of ordinary differential 

equations 
, . __^^ dy _ dy' 
^̂ ^̂  iix,y)~t)ix,y)~ylix,y,A)' 

the first equation is recognized as (11), § 7. Its solution is 

uix,y)-=c. 

A second solution, independent of this one, must involve y'. Writ­

ing this in the form ,, ,, ,„„,,* 
° u'ix, y, y ) = const.^, 

the general solution of (36) will be of the form/(«, u'). Equating 

this to an arbitrary constant gives the general type of invariant dif­

ferential equation. There is no loss of generality in equating/(», a') 

* Since ̂ '(x,y,y') is an invariant of the extended group U f and involves/', it is 
known as afrst differential invariant of the group Uf. 
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to zero, the arbitrary constant being incorporated in the arbitrary 

function/. So that the general type of invariant equation is 

(38) fill, u') = 0, or u' = Fiii). 

Several methods for finding ti' suggest themselves: -
(a) Solving u(x, y) = c for y, and replacing it by its value in terms of x and 

c wherever it occurs in the first and last members of (37), the Riccati equation 

(39) Jf = i|2 + i(|2_|i)y_I^y. 
dx idx i \dy dxi i dy 

results. In Note II of the Appendix it is shown that this equation can be solved 
by'quadratures. 

(b) The introduction of canonical variables (which can be found by a quad­
rature when u is known, § 10) reduces the invariant differential equation to the 
simple form 

dlydVy, 
dy^dx dy _ , , 
dx dx dx J-̂ '̂'̂ ' 

dx dy 
as vrill be shown, I, § 19. Since the one canonical variable x is the invariant« 

or a function of it (§ 10), F(x) is a function of u. Because of the general type 

dVydMyf 
of invariant differential equation (38), 2f S Z — may be taken as a'. 

d ^ y d ^ yi 
dx dy 

(c) Frequently some special method (see El. Dif. Eq. § 65) may be found 
which is more direct. 

19. Illustrations and Applications. 

_ df 
I- ^ A = ~ ^ - i = o, rj=i. .-.rj'^o. Equations (37) are 

dx dy dy' 
o I o ' 

.-. u=x, u' =y'. Hence the general type of differential equation 

invariant under Ufs:-^ i^ f ix, y') = o, ory'= Fix). 

'Vrcni\idCo-n% in ihl iliVttli'ow ffiKt't o"f V 

t 
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This equation is characterized by the absence of y. The variables 

are separated when the equation is solved for j;'. 

I'. Uf= -g-. It is readily seen* that the general type of differ­

ential equation invariant under this group (of translations in the 

direction of the axis of ;v) is y' = Fiy). 

This equation is characterized by the absence oi x. The variables 
dy T'. %-a-n)le^iuvt in tht dfrftllov^ 

are separable, thus , , = d x . ef e.Hi'i e-f X 

II. ^s-J^ + ^l- i^-x,rj^x. .-.rj'^l+y'^'. 

^ ,. , , dx dy dy' X^o1dtty,a AiicZ\ ov>f. 
Equations (37) are = -ri=—i—--. , 

.•. u^.:)P -\-y^. To find u', multiply numerator and denominate? of 

the first member by — y, and those of the second member by x ; then 

by composition iEl. Dif. Eq. § 65, 3°), 

X dy —y dx dy' 

x^+f i+y" 

u 
= tan-lZ tan''=^ — tan"^j''. It is simpler to take the tangent of this 

X 
function as the second invariant; i.e. u' ̂ - ^. Hence the gen-

x+yf 
eral type of differetitial equation invariant under U f ^ ~~y a—'"'^T 

,-,y(^+//_^Vo, , r l ^ = Fix^+f). 
•̂  V x + yy'J x-\-yy' 

* It is suggested as an exercise that the student actually carry out the work here 
and in the cases below, where results alone are given. 

Of course, the differential equation invariant under a group whose number is 
primed may be obtained from that invariant under the corresponding unprimed one 
by interchanging x and y andy' and L. But as an attempt is being made here to 
make a collection of differential equations -invariant under known groups, the forms 
by which these differential equations are most readily recognized are given. 
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Note.—This form of the invariant differential equation is obvious 

from geometrical considerations, since u is the square of the radius 

vector to any point on an integral curve, and u' is the tangent of the 

angle between the radius vector and the tangent to the curve. Since 

any function of u and «', containing y', can be used as a first differ­

ential invariant, \\——-, or — -̂-̂  is available. So also is 
^ I + «" V i -f J''' 

'̂' \ —'•—-, or --̂  y -. These are respectively the distance of the 
^ I -f- a'2 J T + i A 

normal and that of the tangent from the origin, each of which is left 

unaltered by the group of rotations about the origin. Hence the gen­

eral type of differential equation invariant under this group may also 

be written 

X -\-yy'= V i -{-y"Fix^ y- A), or y — xy' = J t -^y'^Fix^ + A ) -

"*•' df 
g III. U f = y - ^ . i = o, rj =y. .rj'=y'. Equations (37) are 

^ , dx dy dy 
V o ~ y . y' ' 

P . . ?< s jc, ?^' s^. Hence tfie getieral type of differetitial equation 

"^ invariant under Uf^ vA is f\ x, —], or — = Fix). 
dy 'X y ) ' y ^ ' 

t>; This equation is characterized by being homogeneous in y and y'. 
^ v' 
•̂  The variables are separated when the equation is solved for -!-. 
•̂  df ^ 
t- III'. U p ^ x - ^ . It is readSfy seen that the general type of differ­

ential equation invariant under this groitp (pi affine transformations) 

•is xy' = Fiy). 

The variables are separable, t-hus ̂ . , = ~ ^ 
Fiy) X 

IV. UA=x-^+yA, B.ererj' = o,andu=^,/t'=y'. Hence 
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the general type of differential equation invariant under 9imiiiiikd{noi*i 

r-f df df . Jy \ , Jy\ t r%«». 5 •firWal,'*, 

This equation is characterized by being homogeneous in x and y. 

Note. — An equation f\Idx -f Ndy = o is of this type when M and 

A'"are homogeneous functions of x and y, and of the same degree. 

In this case the integrating factor of § 12 is (Compare 
ELDif Eq.%ri:) xM-VyN 

V. Uf=x-A—yJ, 'Here rj'= — 2y', and u^xy, u' = xy. 
dx dy 

Hence the general type of differential equation invariant under 

Uf= x-A —yA is fixy, x^y') =0, or xy'=yF ixy). 
dx dy 

This equation is characterized by being homogeneous in x, y, y', 

when these elements are given the weights i, — i, — 2 respectively. 

(Compare VI below.) 

Note. — An equation Mdx -\- Ndy = o is qf this type when. M= 

yfiixy), N=xf.2ixy). In this case the integrating factor of § 12 is 

^ (Compare EL Dif. Eq. § 17.) 
x M — y N 
VI. Uf=x^-^ny%-* i^x,rj=ny. •.-7'=(«-i)j', and 

dx dy 
u = A u' = A—. Hence the eeneral type of differential equation 

x^ A-"-' 

• n may be any number. In particular « = i gives IV, while k = - i gives V, and 
» = ogives.III'. 
If the group be written in the more symmetrical form Uf^^ax -f-yby J^ the 

dx dy 
invariant differential equation takes the form xy' —yF (^V a = b gives IV, a = - * 
gives V, fl = ogives III, i = ogives HI'. 
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invariant under Uf = x J-\-ny -f is f[A .^^] = o, 
dx dy ix" x" 7 

or y' = x"-^F (A-\ orxy'=yFfA 

This equation is characterized by being homogeneous in x,y,y' 

when these elements are given the weights i, n, n — \ respectively. 

Thus the differential equation 
ŷ2j,(2 _ ̂ yl _|_ _̂  _ o 

comes under this head; for gvi'xng x,y,y' the weights I, n, n — i respectively, 
the separate terms have the weights I -)- 2 m -|- 2 ;/, — 2 or 4 m — I, 3 » -|- « — I 
or 4 ?j — I, I respectively. These are equal to i if » = J. Hence the differen-
tisl equation is invariant under the group 

Uf^2xMyy^. 
dx dy 

VII. Uf= ^ix) ^- ^=0, rj = i>ix). .-. rj' = <i>'ix), and u = x, 
dy 

u' = 4>ix)y' — 4>'ix)y. Hence the general type of differential eqitation 
invariant under 

Uf= <l>ix) -g is f[x, <l>ix)y' - <l.'ix)y-] = o, or i - |g j' = Fix). 

This equation is characterized by being linear in y and y'. 

Note. — Using the usual notation for the linear equation 

y'^Pix)y=Qix), 

the group which leaves it unaltered is Uf = eA'''^"A. The integrat-
dy 

ing factor of § 12 is er'''-. (Compare El. Dif. Eq. § 13.) 

VII'. Uf^s.-^iy)-A-. It is readily seen that the general type op 
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differential equation mvariant under this group is 

/,. I i/''(j') \ dx ib'iy) „, , 
y .'. , — ^̂ -̂ ^ x ] — o, or Ŝ -î ^ x = Fiy). 
V v' ^h(\^ I dv ik(v) -̂̂^ 

'PA') J ' dy VO')' 

This equation is linear in x and — • 
dy 

VIII. Uf=\jii))A. The getieral type of differential equation 

invariant under this group (which includes III as a special case) is 

A^=Eix). 

In this equation the variables are separated. 

VIII'. Lf=<j)ix) -f-- The general type of differential equation 
dx 

invariant under this group (which includes III' as a special case) is 
y'<i,ix) = Fiy^. 

The variables are separable. 

IX. Uf=-i>ix)^iy)^^. ^ = o,rj = ^ix)rpiy). 

.•. rj' = <ji'ix)il/iy) -t- <j>ix)ij/'iy)y'. Equations (37) are 

chc _ dy _ dy' 
o ~ <t>ix)^ltiy) ~ <t>'ix)^iy) + ^ix)f'iy)y'' 

.'. u^x. u' may be obtained by solving the linear equation 

df ^'iy) y ^•<t>'ix)^ 
dy itiy) 4>ix).' 

in which x is treated as a constant. An integrating factor is —-- • 
'I'iy) 

iltiv) 4ix)J \h A'iy) 4ix)A ijtiy) 
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Hence the general type of differential equation invariant under 

The transformation v= \ -A- reduces this to the linear equation 

d!L^^M^ = Fix). 
dx 4> ix) 

fSfote. — In particular, if i/'(j') is f, Uf-=4> (x)j' -A leaves unaltered 

the equation y' -f- -,— \ A ^J* =y'Fix). Hence the Bernoulli 
is-i)4>ix) 

equation '^-\-Py= Qf is invariant under the group Uf=fei'-^^''''''-p. 
• dx ^ r dy 

gi a-')pi'x 
The integrating factor of § 12 for this equation is (Com-

y 
pare El. Dif. Eq. § 14.) 
IX'. £/s (j>ix)ij/iy) -A. The general type of differential equa­
tion invariant under this eroiip is ——^—— ^-J-l. \ —'— 

^ <l>(x) dy ^ i ) 
Considering y as the independent variable in this equation, the 
/' dx 
(j>[x) 
X. lJ=^ix)(^x-£ + t,y-Q. isx4.ix),rj = tiyi>ix). •» = jP 

J - i r _ i ^ = ^(j,). 
y)J cl^ix) ^^ 

u 
are 

is easily found by method ib) of § 18. The canonical variables 

V f dx , dx xy' —ny . 
x = ~ , y = i — y ^ . it' = — - = — — d>(ji;). 

X"' J x<^ix) dy x" ^^ ' 
Hence the general type of differential equation invariant under 

or xy' — ny = --—-F[ — , or xy' — nv =-fy-rFi —„ ]• 
4,ix) ix")' •" - 4,ix) \x-J 
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A otc. — Several particular cases are of special interest: — 

I If </)(.v) = .v'', the general type of differential equation invari­
ant under 

^•'''^ •'{•" %+"-•' f) ^' "^y' ~ "y=•*••""' ^(i^ 

Hence xy' — ny = :^f{ ^ j is invariant under 

Cf.,.-.JI^.,PI 

The Riccati equation 

dy 
x ^ ay -y br = ex", 
dx 

c - b ' y 

comes under this fiead when n = 2 a ; for in this case 

xy' — ay = x _ , 

(Compare "^ooXe, Differential Equations, p. 92; Yorsyth, Differential 

Equations, § 109.) 

2° If 4>ix) = x', ;z = I, the invariant differential equation reduces 

to xy' — y = x'-'^Fi-Y The right-hand member is simply a homo­

geneous function of x and y of degree i — r. Hence a differential 

equation of the form y — xy' = o^F\. - \, where the right-hand mem­

ber is a fiomogeneous function of x and y of degree k, is invariant 

under the group , -,. 
^i-JJA , A 

The integrating factor of § 12 is —— • (Compare El. Dif. Eq. 

§ 16.) ^ ^M^ 
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3° li <j>ix) = x'',n = — 1, the invariant differential equation reduces 

to xy' -i-y = x-'-^'Fixy), or xy' -^y=y^'^'Fixy). Hence a differential 

equation of the form xy' -y y = y^ F ixy) is invariant under the group 

The integrating factor of § 12 is , , ^^—-, a well-known fact. 
x''y'Fixy) 

X'. Uf =^iy)\x-Ay. iiyAA. Xhe general type of differential. 
dx dy 

^\,iy) \x 

i'' If i/'(j) =J'', this differential equation reduces to 

xy I y 
equation invariant under this group is xy' — ny = F' 

\h ( V) 

xy f y 
xy — ny =^-^—F\ — 
-' •' f \_.x» 

2° Iiij/ip) =y', «= I, the differential equation takes the form 

*y-J' = ~^Q. °r 'xy'-y=y'x^-'F(^^. 

Hence a differential equation of the form 

y — xy' =7' [fl homogeneous function of x and y of degree IP\ 

is invariant ttnder the group Cf^A~''i x -A + V )• 
\ dx dy j 

3° If n=—\, fiy)=y'', the differential equation reduces 

xy' -\-y = y' xf^'^Fixy). Hence a differential equation of the form 

xy' -\-y = xl'y'Fixy) 

is invariant under the group 
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The student should show that the following groups leave the corre­

sponding differential equations unaltered: 

™- ^^'^I + '^f' y' = Fibx-ay). 

xm. Uf^y^-L+x%, i^;=^-lV(^._y), 
•'dx dy' i+j' x-yy ^ ^" 

using method (<-), § i8. 

^ ^ = ix-y)Fi^-f), 

using method (b), § i8. 

XIV. ^/-<^w(|±^.|), .Tj'y=^i^(^Ty). 

xiv ^-^0')(f|±|), .Tjj' = ^)i^(^TA-

XV. Uf^^f±r%,r,s^r, i^^^pi^^y^ 
dx dy y' \r—i s—i 

XVI. Uf= ^,ix)(^^-l<l>ii^)y+U^)^^£j, 

ci>yix)ip.y'+Ay+v') = J^in-y + y), 

where p. = e^ ,v= I pi.(l}3ix)dx. 

* This group is characterized by having ^ a function of x only, and rj a linear func­
tion of y. It is mentioned by Professor Dickson, Bulletin of the Am. Math.. Soc, 
Vol. V. p. 453-



62 T H E O R Y "OF DIFFERENTIAL EQUATIONS §19 

XVI'. uf= Uy)([.xUy) -Hsiy)'] f^ - ^)> 

» Uy)[.p+(xp'+<^')A'\ =y'Fixp+d), 

where p^e^ ", 0-= i p>l'oXy)dy. 

Remark.—-When a differential equation is recognized as coming 

under several of the above heads, and the corresponding integrating 

factors are distinct, the solution of the differential equation is obtained 

at once by equating the quotient of two distinct integrating factors 

to an arbitrary constant (§ 16). 

Thus the differential equation 

xy' — y = x' 

is linear. Hence, from VII, the group Up= xA leaves it unaltered, 
I ^y 

and gives the obvious integrating factor —• 
XT 

But it is also readily seen that each term of the equation is of the 
weight r whenx,y, y' have the weights i,r, r — r. respectively; hence, 

from VI, the group Uf's.x— -\-ry— leaves the equation unaltered, 
dx dy 

and gives the second integrating factor • The solu-
( r — \)xy — x'"̂ ^ 

tion of the equation is therefore 

ir — r)xy — x^^''- , ,j' ,.. . 
^ '-̂, ^=ir — r)-'- — x^ ̂  = const. 

X- X 
It may be noted that the equation also comes under X, 2°, and is 

df df 
therefore invariant under Uf^x-~^-^y-x'-~''y-d-. This leads to the 

dx dy 
previously found integrating factor -7̂  • 
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As another illustration of a class of equations obviously invariant 

under several distinct groups, the equation 

xyy' — J''+' = X' or xy'-y = f-\ 

may be mentioned. Under the head of VI it is readily seen to be 

invariant under C f = i r + i ) x j + rv-A ; as a Bernoulli equation, IX, 
dx ' dy 

x^^ df 
it is mvariant under U p = -t-- From these its solution is found 

/ 3i' 
at once to be 

A^^+iA+AlA: = ,,„,,. 

This equation also comes under Xj 2". 

20. Second General Method for Solving a Differential Equation. 

Separation of Variables.* — The simple form of the differential equa­

tions invariant under the group of translations U f ' = A (Ĵ  § jp) gug-
dy 

gests as a practical method for solving a differential equation invari­

ant under a known group the introduction of canonical variables 

(§ 10). The reduction of the group to the canonical form reduces 

the differential equation to the form 

y'^Al^Fix), 
dx 

in which the variables are separated. The solution is then obtained 

by the quadrature 
= (Fix)di 'x-{-c. 

Finally it is necessary to pass back from the canonical variables to 

the original ones. 

* This method was discovered by Lie in 1869, thus antedating the method of § 12 by 
five years. Historically it is of interest because it is the first known method of integra­
tion which makes use of the invariance of a differenlial equation under a group. 
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Since the differential equation invariant under Uf=^*i V, § 19) 

is of the form ^ = dx, the reduction of the group, under which a 
-f^{y) 

differential equation is invariant, to this form also enables one to 
separate the variables in the differential equation. 

While either of the above transformations brings the differential 

equation into a very simple form, the actual introduction of canonical 

variables into the differential equation and the final passing back to 

the original variables may not prove as simple as in the case of other 

variables that could be used to equal advantage. Thus, for example, 

if, in the group Uf^.iA-y.y^J which leaves the differential equation 

unaltered, ^ is a function of x only, the introduction of the new vari­

ables (§ 9) 
x = x, y=u{x,y) 

reduces the group to the form 

uf^ii^)'i, 

whence the differential equation must take the form (VIII', § 19) 

(40) tix)y'=^Fiy), 

in which the variables are separable at once. 

This set of variables works especially well in the case of two perfectly well-
known classes of differential equations, and leads to the usual methods for solv­
ing them: 
''i" The homogeneous equation 

M d x y Ndy = o, 

* Owing to the complete symmetry of the two groups Of^^of ĵ̂ j Uf^El^ ,^e 
dx dy 

shall say that the group in either case is in the canonical form., and the variables that 
reduce a group to either form will be said to be the canonical variables of the group." 
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where .1/ and sV are homogeneous and of the S3ine degree, is left unaltered by 
the group (IV, Note, § 19) 

U f ^ . r § i + y ^ . 
dx dy 

y 
The new variables x = x, y = - reduce the group to the form 

Uf^x^J^, 
dx 

whence the differential equation assumes the form (40), an-d the variables are 
sepsrable. (Compare El. Dif. Eq. § 10.) 

2° The equation ^̂ ^̂ ^̂ ^̂ ^ ̂  ^^^^^^^j^, ̂  „ 

is left unaltered by the group (V, Note, § 19) 

r„_ 3/ 3/ 
Uf=xf- — ŷ --

dx ^ dy 
Hence, the new variables x = x, y — .j-j'Teduce the equation to the form (40) 

in which the variables are separable. (Compare El. Dif. Eq. § 12.) 

In an analogous manner, if 17 is a function of y only, the introduc­

tion of the new variables 
x = u{x,y), y = y 

reduces the group to the form 

whence the differential equation must take the form (VIII, § 19) 

in which the variables are separated. 
More generally, if ̂ (x) and ^(2/), any functions of the respective 

canonical variables, are taken as new variables, it is readily seen that 

the resulting differential equation will have its variables separated. 

In certain cases such forms can be chosen for these functions as to 

simplify the actual work required in introducing new variables. 
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Remark. — It is interesting to note that the knowledge of a group, 

under which a given differential equation of the first order is invari­

ant, enables one to find both an integrating factor (§ 12) and a set 

of variables which are separable in the transformed equation. (Com­

pare El. Dif. Eq. § 17.) 

The integrating factor can be written down at once when the dif­

ferential equation has been solved for -J, or what is the same thing, 

when it has the form M d x -y- N d y = o. 

To find the -new variables that are to be separable, the solution of 

another (frequently simple) differential equation of the first order 

(giving the path-curves of the group) and usually one or several quad­

ratures are necessary. 

In actual practice, neither method should be insisted upon to the 

exclusion of the other. In Table I of the Appendix will be found a 

list of the more commonly occurring and easily recognizable classes 

of equations of the. first order, and methods for solving them. 

21. Singular Solution.* — Let 

(25) fix,y,y') = o 

be an invariant differential equation under the non-trivial group 

Uf-.^A , df 

Its family of integral curves being left unaltered, as a whole, if this 

family has an envelope, the latter must be an invariant curve of the 

group ; moreover, it is a path-curve, since the group is supposed to be 

non-trivial, thus interchanging the integral curves among themselves. 

The equation of the envelope being a singular solution of the dif­

ferential equation iEl. Dif. Eq. § 30) the value of its slope y' at each 

* This section is based on an article by J. M. Page, entitled " Note on Singular 
Solutions" in the American Journal of Mathematics, Vol. XVIII, p. 95. 
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point (x,y) must satisfy (25). Since the slope of a path-curve at the 

point (X, y) is J - S ^ ^ the equation of the envelope must be con­
tained in ''V'Jj 

(41) /(-r,;',| 

Remark. — In the above process (41) was found as the equation 

of a path-curve which satisfies the differential equation. If a par­

ticular integral curve happens to be a path-curve of the group, its 

equation is also included in (41). But all extraneous loci, such as 

nodal, cuspidal, and tac-loci iEl. Dip. Eq., § 33) which may be path-

curves but are not solutions of (25) will not be included in (41). 

Ex. 1. xv"v''- — r"y' -\- x = o. 
df df 

This equation is invariant under Uf^2X-^—'"-^'5" ̂ ^̂ >̂ ̂  ^9)" 
Its general solution is civ- — cy- -f- i = o. 

Replacing y', wherever it occurs in the differential equation, by 

-^— gives x(4 x^ —y*) = o. 
2 X 
* = o is a particular solution for <• = 00 . 

4 x^ — y ^ = o is the singular solution. 

Ex. 2. ii-yx^y'^=i. 
df 

This equation is invariant under J / s ^^ (Ij § i9-) 

j' = - = CO. In this case, writing the differential equation in the form 
o 

I 
/ 

— = o gives the singular solution i -\- x^ = o. 
y' 

Ex. 3. x y ^ — x A — y = o. (VI, § 19. n = —2.) 

Ex. 4. a-yy'--2xy' -\-y = o. (IV, § 19.) 

y"- ' 
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Ex. 5, y'" —y xyy'-{-Sy = 0. (VI, § 19. « = 3.) 

Ex. 6. y = 2 xy'-\-y'-v'-̂ - (VI, § 19. 7z = |.) 

Ex. 7. x y - + x'yy'+ I = o. (VI, § 19. n = ~ }.) 

It is suggested as an interesting exercise that the student examine, 
in the light of the Lie theory as presented in this chapter, the vari­
ous examples involving differential equations of the first order to be 
found, for example, in Chapters II, IV, V of the author's Elementary 
Treatise on Differential Equations. 



CHAPTER III 

MISCELLANEOUS THEOREMS AND GEOMETRICAL APPLI­
CATIONS 

22. New Form for Integrating Factor. ^ In § 12 it was seen that 

__ I 
^^iM+ijN 

is an integrating factor for 

Mdx -I- Ndy = o 

if the latter is invariant 

under 

dx dy Fig. i 

Lie, by purely geometrical considerations, gave a new form * to this 

factor, which is not only interesting but also useful in certain classes 

of problems. In Fig. i, let 
</.(.«, j) = <r 

be some one of the integral curves of the differential equation. The 

infinitesimal transformation of the group transforms this into an 

infinitely near curve of the family 

4>ix, y) = c-\-8c 

by transforming any point ix,y) oi it into ixy-iSa,y-\-rj8a). 

P P i = the distance between these points is V ? -1- rf 8a. 

• First published in the Gesellschaft der -Wissenschaften zu Christiania, 1874. 

69 
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The slope of the tangent at P is . If 7'is the point ix—N, 

y-\-M), the length oiFI'is jM'-y-N^, and the area of the paral­

lelogram P T R P i is iiM-i-rjN)8a, or —. 
^ 

Let 8n = P N , the length of the normal to the first curve at F, 
intercepted by the second curve ; this is, to within infinitesimals of 

higher order than the first, equal to P Q , the altitude of the above 

parallelogram. Hence 

- = jM^+AA8n, 

or 
, , I 8(7 
(42) u, = -—-. 

JM^+AV^ 8« 
This form of the integrating factor is serviceable in the case of an 
interesting class of differential equations : 

If the integral curves of a differential equation are known to be 

a family of parallel curves,* ior which —- is constant all along each 
8a 

one of the curves, it follows at once from (42) that 

(42') /^= , ' =. 
A m ' -f- N' 

is an integrating factor. The involutes of a curve, which are the 

orthogonal trajectories of the tangents to the curve, are known to 

form a family of parallel curves. Hence an integrating factor of the 

form (42') is known at once for their differential equation. 

Ex. Find the involutes of the circle x''- y y"̂  = \. 

The differential equation of the tangents to the curve is (writing/ for -^A 

y =ifx y Vi yp^. 

* Two curves are said to he parallel, if the distance between them measured along 
the normal to one of them is constant all along the curve. (In this case, it is well known 
that the normal to either curve is normal to the other.) 
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Hence the dilTereiitial equation of the family of involutes is 

y = --LyAl±Ji 
t P 

•- (xy y V.r-J -I-ŷ  - y)dx y(yl'- - \)dy = 0. 

The integrating factor given by (42) is 

xyy\fx- y y- — i 

To integrate the exact equation 

(.rr -f \ x^-^y'^-\)dxy(y-'-- f)dy 
xyyVx--\-y^— I 

one may proceed in the usual way (see El Dif. Eq. § 8) to integrate 

<:'̂ yĴ AAAiL̂ î dx, 
•/ 1-4- va/i:'-̂  4- 1'- — 1 -yy^x:'-yy--\ 

where v is considered a constant. Multiplying numerator and denominator by 

X — y-dx'- y y- — I, this becomes 

r _ - ' ^ L . = _ t a n -
J .x-^yy-

fx^ -t- 1/2 — I 

y. 

J x'^yy^ 

-yy 

Letting x"- y f = t. 

C ^ x J x y y f - \ ^̂  ̂  y CAP^^i ji^^pTZTi + sin-i -1-
J x^yy^ -J t -p} 

= Vx^~yy^—i H-sin~l - I 
Vx^-\-y^ 

Hence, the equation of the family of involutes is 

^jfi y y"-— I y sin-i — ' — tan-i ^ = const. 
•sJx'- y y •* 
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Remark. — From the nature of the problem, it is evident that the family of 

involutes is inv3riant under the group of rotations f/= — y -=,—^ ^'dv' Hence, 

the methods of §§ 12 and 20 are also applic3ble. It is re3dily seen that the inte­
grating f3ctor given by the method of § 12 is the S3me as that found in the text. 
The method of § 20 should be carried out as an exercise. 

23. Two Differential Equations with Common Integrating Factor. 

If/i is an integrating factor for two distinct differential equations, 

Mydx-yNidy = o and Midx-\-N^dy^o, 

dip.Mi dip.Ni)^^ ^j^j dip^Mj di,jN.i^^_ 
dy dx dy dx 

(43) 

jy 31og/x _ ^ 31og/^ ̂  dMy _ 3iVi 
dx dy dy dx 

jyjdiogp. j^^d\o^p.^dMi dN'î  
dx " dy dy dx 

Here N i M i — N M i ̂  o, since the differential equations are sup­

posed to be distinct. Hence (43) can be solved for —'^^ and 
3.;i; 

sJ^ ; log p. can then be determined by a quadrature, and p. may 
3j' 

be obtained at once from this. H e n c e the 

Theorem. — Ip tivo differential equations of tfie first order are 

k n o w n to have a c o m m o n integrating factor, the latter can be found 

by means of a quadrature. 

24. Isothermal Curves. — A family of curves which, together with 

the family of orthogonal trajectories, divides the plane into infini­

tesimal squares, is called a family of isothermal curves. ' In general, 

* This is also obvious from the form of the differential equation, when cleared of 
fractions, viz.: x y y p =:̂ -L-\-p̂ . (See II, Note, ̂̂  19.) 
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Fig. 2 

a family of curves and their 

orthogonal trajectories divide 

the plane into infinitesimal 

rectangles. For, selecting 

any pair of neighboring 

curves, /and // (Fig. 2), of 

the one family it is always 

possible to find a pair, A 

and B, of the second family 

to form an infinitesimal 

square * with them ; besides, 

selecting any third curve III 

of the first family, a fourth 

curve I V can be found such 

that A, B, III, I V form a square also; again, selecting any third 

curve C of the second family, a fourth curve D can be found such 

that C, D , I, II form a 

square. But with these se­

lections made, the curves 

C, D, III, IV do not, in 

general, form a square. 

Concentric circles are read­
ily seen to be isothermal curves, 
Their orthogonal trsjectories 
are the straight lines through 
the c o m m o n center (Fig. 3). 
Any pair of circles of radii 
r and -r y A r respectively 
( r > o ) form an infinitesimal 

Fig. 3 square with any two of the 

* This curvilinear quadrilateral is a square when infinitesimals of higher order than 
the first are neglected, the length of arc of one of the sides being taken as an infinitesi­
mal of the first order. 
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straight lines which intercept the length Ar on the inner circle. Moreover these 
same two lines form squares with any other pair of circles of radii kr and 
}i(r y ti.r), respectively, k being any constant different from zero. 

From the definition of isothermal curves, S» (of § 22) can be made 

the same, at any point, for this family of curves and for that of their 

orthogonal trajectories. Moreover, if the differential equation of the 

one family is 

o, (17) 

that of the other is 

(17') 

Mdx -y Ndy 

Ndx — Mdy 

Hence the two equations have a co m m o n integrating factor, as is 

evident from the form (42). T o determine this integrating factor, 

the method of § 23 applies. The equations (43) take the form 

jy^jd log p. j^^dXogp.^ dM dN 
dx dy dy dx 

^3jog>^^_31og^ 

dx dy 
dN dM 
dy dx ' 

whence 

(44) 

„ n'-^-m'-^-m'-^-
d log p _ oy dy dx 

•N-
d_N 
dx 

dx M'' -t- N^ 

5 log /A 
M dN_ 

dx 
ffd_M__j^dJf_^d_N 

dx dy 
dy 

dy 
M'--yN' 

dx 

Equations (44) are interesting, not only because they enable one 

to find p.hy a quadrature, but also because they lead to the condition 
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that the integral curves of the differential equation (i 7) be isothermal. 

For, differentiating the first of (44) with respect to y and the second 

with respect to .v, and equating 

(45) —-,-F—^ tan ^-—EE V tan ^-—= o. 
d̂xr dy-j M M 

The general solution of this is * 

(46 ) ^ = tan \_^ix y- iy) -f % x - 2»], 

where <E> and * are arbitrary functions. 

The condition (45) is not only necessary that (17) be the differen­

tial equation of a family of isothermal curves, but it is also sufficient. 

For, when M and N satisfy (45 ), equations (44) are consistent, hence 

a c o m m o n integrating factor for (17) and (17') can be found. But 

the sum of the squares of the coefiRcients of dx and dy is the same 

for these two differential equations. Hence, remembering the form 

(42), 8n must be the same (to within a constant factor, which may 

be made unity by a proper choice of neighboring curves) in the two 

cases at any point. Hence the integral curves of (17) are iso­

thermal curves. 

Remark. — The condition for isothermal curves in terms of their 

finite equation and that of their orthogonal trajectories is obtained 

in Note III of the Appendix. 

1° In the case of the f3mily of concentric circles, x''- y y''-= const, the differen­

tial equation is xdx y y d y = o. Hence (45) is satisfied, since y^ tan̂ -̂̂  = o. 

While the solution of this differential equation, as well as that of the differen­
tial equation of the orthogonal trajectories, ydx — xdy = o,is very simple, it is 
interesting to note that (44) give very readily 

^iog.=---;+y-»^-^iog(.^-f/). . . = ^ . . 

This is the common integrating factor for the two equations. 

* See El. Dif. Eq. § 90. 
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2° The family of circles tangent to the axis ofy at the origin x^ y y'' — cx = o 
has for differential equation (x'^—y'')dx y 2xydy = 0. It is readily seen that 

V^ tan"l 2 ^ = o; hence these circles form an isothermal system. The dif-
x'̂  — y2 

ferential equation of the orthogonal trajectories is 2xy dx—(x^ — y'̂ )dy = 0. 
While this is easy to integrate, it is worth noting that (44) give p. = 

(x'yyi)^ 
RJoreover, since the differential equation is " homogeneous," it is invariant under 
the group U f = x S L y y S L (IV, § 19). Hence, a second integrating factor is 

dx dy 
(§ 12) pi= . The solution of the equation is therefore (§ 16) 

y(x'^yy'-) 
ui x^ y -v̂  . 9 , 9 
-̂i = —̂ - = const, or x^ y y^ — cy = o, 
M2 y 

the equation of the family of circles tangent to the axis of x at the origin. 
Show that the following curves are isothermal, and find their 
orthogonal trajectories : 

Ex. 1. T h e equilateral hyperbolas xy = const. 

Ex. 2. T h e similar conies axî  -f by'̂  = const., when and only when 

b = ±a. 

Ex. 3. T h e coaxial circles through the points (i, o) and (— i, o), 

— L - i = const. 
y 

25. Further Application of the Theorem of §23. — A n obvious 

corollary of the theorem of § 23 enables one to find an integrating 

factor, by means of a quadrature, for an interesting set of differential 

equations. This corollary is : If the ratio of the integrating factors 

of two differential equations is a known function, tfie integrating 

factors cati be found by a single quadrature. For, suppose that 

(47) ^=<^ix,y) 
\>-i 

is a known function, where pi and p.i are the integrating factors of 

Midx -y Nidy = o and Midx-\-Nidy=o 
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respectively. If the second equation be written in the form 

^Mi dx 4- <^Ni dy = o, 

its integrating factor is also p.i. Hence it and the first equation have 

a common integrating factor and, by the theorem of § 23, this can 

be found by a quadrature. 

Suppose, now, that it is known that the solutions of three differen­

tial equations of the first order 

Midx-\- Nidy=o, M.,dx-^Nidy=o, M^dx-{-N^dy^ o 

can be made to assume such forms, (^1 = const., <^2 = const., 

<̂3 =: const., that 

(48) ^3 = ^1 + <̂ 2. 

If p-i, po,, p.3 are their respective integrating factors, 

d4>i = p-iiMi dx-\-Ni dy), d(f>i = p^iiMi dx -\- Ni dy), 

d^^ = ps.iM^ dx-\- N^ dy). 

Because of the identity (48) 

dcf)3 s d<f)i -\- d(f>i, 

or 
(49) iXiM3 = p.iMi + piMi, ps^s^jiiNi + piNi; 

,vhence ,^ = /^i^±i^. = /V^i±iVV5, ,„d 
Mn, Nr 

(47') 
yn̂  ̂  M i N j — M^Ni 
jx.1 M-iN^ — MJSfi 

By the corollary above, p-i can be found by a quadrature; and p-i 

is then known from (47'). After finding ̂1 and (̂, by a single quad­

rature each, <̂3 is given immediately by (48). Hence the 
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Theorem. — If it is known that the solutions of three differential 

equations of the first order can. be put in such forms <̂i = const, 

<j)i = const., <̂ 3 = const, that a, =(b -i-d, 

these solutions can be found by means of three quadratures. 

This theorem has some interesting applications in the theory of 

surfaces * : 

A. If the rectangular coordinates of any point ix, y, z,) on a sur­

face are expressed in terms of the parameters u and v, the expression 

for the element of length of arc is, using the usual Gauss notation, 

dŝ  = E dû  + 2 Fdu dv + G dv̂ , 
where 

dx'i fdyA fd^A j-._dxdx dy dy dz dz 
•J \du) \dtij ' ~ du dv dudv du dv' 

<^-iiKiAA. 

The differential equation of the lines of zero length, usually called 

minitnal lines, is then 

(50) E du'- -y 2 F d u dv -\- G dv- = o. 

This differential equation, being of the second degree, is equivalent 

to the two 
\Edu->riF+ JF^ -EG)dv = o, 

(51) \ 
VEdu^iF- -AF^-EG)dv=o, 

which are essentially distinct, since it is always presupposed that 

E G — F^ is different from zero. Let aiu, v) = const, and y8(?/, v) 

=^ const, be the solutions of (51). These are the equations of the 

minimal lines. Choosing them for parametric curves, equation (50) 

* These applicarions will be of interest to those only who have, at least, a slight 
acquaintance with the elements of Differential Geometry. They have been taken from 
Lie's Varlesungen i'tber Dtfferentialgleichungen, Chap. 9. 

file:///dtij
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takes the form ilo. dfi = o, i.e. £(«, p) = G(«, /3) = o, and the expres­

sion for the element of length of arc is 

ds'=2Fia, P)dadp. 

Introducing the new parameters Uy and Vi defined by 

<^(«) = i4i + ivi, ij^iP) = Ui — ivi* 

where ^ and i/f are any desired functions of their respective 
arguments, ^̂., _ ^ ̂^̂^̂  ^̂^̂  ̂ ^̂ ^̂ i ̂  ^^i^ ̂  

since du dp =——-A-—--itltti + d-vi). This form of the expres-
<l̂ 'ia)xjt'il3) 

sion for the element of length is characteristic of isothermal para­
metric curves. (Compare Note III of the Appendix). Hence, 

2 tti = U= ipia) -i- i/'(|S) = cottst. 

and 2 ivi = V = <f>ia) — i^(^) = cottst. 

are the equations of the isothermal curves and their orthogonal tra­

jectories, respectively. Since (j>id) ̂  cottst. and ipiP) = const, are 

equally well the equations of the minimal lines, it is evident that the 

identity (48) is satisfied by the equation of any isothermal system 

and those of the minimal lines. It follows then from the theorem 

above that the differential equation of a fatnily of isothertnal cuives 

on any kncrwn f surface can be integrated by means of quadratures. 

Besides, the knowledge of a family of isothermal lines on a known 

* In the case of a real surface, a and fi may be selected as conjugate complex 
functions of u and v, when the original parametric curves are real. Real isothermal 
curves are then obtained by choosing 0 and -̂  conjugate functions of u. and fi 
respectively. 

t A surface is said to be known if the values of x.y, z in terms of the parameters 
a, V are known, or if the forms of E, F, G, and of D, D', D" (to be introduced below) 
are given in terras of k, v. In this particular case E, F, G only need be known, mini­
mal and isothermal lines not depending upon D, D', D" 
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surface enables one to integrate the differential equations of the mini­

mal lines (51) by means of tip0 quadratures. 

Remark i. — For surfaces of the second order, surfaces of revolu­

tion, and minimal surfaces, the lines of curvature (see B below) are 

known to be isothermal lines. Hence, in the case of these surfaces 

the differential equation of the lines of curvature can be integrated 

by means of quadratures. 

Remark 2. — In the case of a minimal surface the asymptotic 

lines are also isothermals. Hence, on such a surface the differen­

tial equation of these lines can also be integrated by means of 

quadratures. 

B. The tangent plane to a surface at a given point cuts the sur­

face in a curve which has a double point at that point. In general, 

the directions of the tangents to the two branches of the curve at 

that point are distinct. In this way two directions (in general) are 

determined at every point on the surface. A curve on the surface 

whose direction at every point coincides with one of these directions 

is called an asymptotic line. So that, in general, through each point 

on the surface there pass two asymptotic fines. The differential 

equation of the asymptotic lines is 

(52) 

where 

D = 

d'x 
du' 

d̂ y 
du" 

dh 
du" 

dx 
du 

d_y^ 
du 

dz 
du 

Ddu' + iD'du dvy-D"dv'' = o, 

dx 
dv 
d^ 
dv 

dz 
dv 

, D's 

d^x dx dx 
du dv du dv 

d'y dy dy 
du dv du dv 

d'z dz dz 
du dv du dv 

, D " = 

d'x 
dv' 

d'y 

dv' 

d'z 
dv' 

dx 
du 

3y 
du 

dz 
du 

dx 
dv 

dy 
dv 

dz 
dv 

In case D D " — D " = o, the two curves coincide. This happens 

at every point of a surface where the Gauss measure of curvature 

is zero. 
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.\nother system of curves playing an important role in the theory 

of surfaces is that of lines of cur-oature, which have the property, that 

along them consecutive normals to the surface intersect. Their dif­

ferential equation is given most conveniently in the determinant 
form 

d-d̂  — du dv dit' 

(53) E F G 

D D' D" 
= o. 

This differential equation is again of the second degree, so that 

through each point pass two lines of curvature. These are mutually 

orthogonal, and besides their directions are harmonic conjugates 

with respect to those of the asymptotic lines through the same point, 

as may be seen readily from the forms of equations (50), (52), and 

(53)-
Suppose that on a certain surface the asymptotic lines are known 

to cut out rhombuses.* This can be expressed analytically in the 

following way: 

The selection of the asymptotic lines as parametric curves does 

not affect the appearance of the expression for the element of length 

of arc. But since u = const, and v = const, must then be the solutions 

of (52), it follows that D = D " = 0. Hence the differential equa­

tion of the lines of curvature (53) reduces to 

(53') Edu'-Gdv' = o. 

The elements of length along the parametric curves are -VEdu and 

J G dv. These will be equal at every point on the surface, and the 

surface will therefore be divided into rhombuses, if J E = X(«, v)4>iu) 

and V ^ = A.(«, v)\piv). (See corresponding argument in the 

case of isothermal lines in Note III of the Appendix.) Letting 

* This is known to be the case for surfaces of constant Gauss curvature, for 
example. 

file:///nother


82 THEORY OF DIFFERENTIAL EQUATIONS §25 

j <j>iu) du = U, i xpiv) dv = V, the expression for the element of 

length takes the form 

ds' = KiU, V)idU' + dV')-\-2FiU, V)dUdV. 

The differential equation of the lines of curvature takes the form 

dU'-dV' = o; 

whence the equations of the lines of curvature are 

U-^ V = const, and U — V = const. 

Since the identity (48) holds, it follows that if the asymptotic lines 

divide a surface into rhombuses, the asymptotic lines and lines, of 

cutvattire can be obtained by means of quadratures. 



CHAPTER IV 

DIFFERENTIAL EQUATIONS OF THE SECOND AND HIGHER 
ORDERS 

26. Twice-extended, n-times-extended Group.—A transformation 

of the variables x and y carries with it a transformation of the various 

derivatives of y with respect to x. Thus, just as the point trans­

formation ,/ ^ ,/ v 
xi=(l>ix,y), yi = -̂ ix,y) 

carries wth it (§ 13) g^ ^ ^̂  

dyi_ , _dx dy^ _ 
dxi-^'-d^^dj^yj^^'^'y'y^' 

dx dy 

so it also imphes 3^ _^'^^r y_ d^y" 
dy' ,. dx dy dy' ' , .,. 

dx dy-
The transformation 

xi=.j>ix,y), yi = ^ix,y), j'i' = x(^> >,/)> y i = <̂ {x, y, y', y") 

affecting the four variables x,y,y',y" which is impHed by the point 

transformation is known as a twice-extended point transformation.* 

Starting with the one-parameter group of point transformations 

(I) xi = '^ix,y,a), yi = \\t {x, y, a), 

* In precisely the same way we are led to the n-tlmes-extended transpormation 

Xi=<l>(x,y), yi = f(x,y), yi = X(x,y,y'), yy" = o,(x,y,y',y"), •-, 

dx 
83 
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by employing the method of reasoning in § 13, the corresponding 

twice-extended transformations 

(S4) Xl = <^ix, y, a), yy = t/'(x, y, a), yi' = -p- = xi^' y^ A, d), 
aXi 

J'l"= ^EE0.(x,J,r',J'",4 

are seen to constitute a one-parameter group in the four variables 

X, v,y',y''- This group is known as the twice-extended group corre­

sponding to (i). 

Writing as the symbol of the infinitesimal transformation of the 

twice-extended group 

where as before 

i = ^, „=Sj_ ^/ = S/_^_yi^ [(23), §13], 
Sa' Sa Sa dx dx 

8v" 
rj", which is -^, may be found in exactly the same way as rj' was; 
thus 

,.^i(ir.^tAlAiiAlAMl.^AM. 
Sa\dxJ dx dx' dx dx dx 

w -•-'"=g-yi-

Reasoning as before we have the n-times-extended group 

Xl = 4'ix, y, a), yi = if/ix, y, a,), y^=z-AL = x{x, y, A, d), 

yA = '^y^ = '»ix,y,y',y", a), -, j.w = ^^^ = ^(^^ v, •-, r"-', a). 
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the symbol of whose infinitesimal transformation may be written 

,,, ,, .3/ 3/ ,3/ ,,, 3/ , , 3/ 

where 

^5") '''^i;r=^-^^ (^='''''' •••' ''^-

Remark. — While rj' is a quadratic polynomial in j' ([24], § 13), it 

is seen, on expanding (56), 

<=«) ^'-t-%^-iA-l-VA 

that rj" is hnear in y". In the same way t;"' is seen to be -linear in 

j'<" for .^ > I, since 

^ ^v3j(*-^' dx dy' y 

In I, Uf=^, fso, 77=1. .-.-^'^o, 7)"so, --•, i)(")so. 
3/ 

Hence, U^f^dJ. 
dy 

In II, tA/=-j,|^-fxf, ?s-;', . = ^. .-. vsi+y^ v'ss/y, 
-̂  -̂  3jr dy 

r,"' = 3y"'^y4y'yi", rjl^SS (2y"y"' y y'y^"^), ••-

Hence, -, 
^ i v — ^ i + -|+o+y^)f+3yy'|^+(3/'^ + 4yy")|^ 

+ 5(2yy"+yyv)J/. 

In HI, f/sj'g. f=o, ^s^. .-.r^y, v'^y. •••,'!(»'=y"*-

Hence, u^.y^y%yy'M^yy',^,y...yy^''^^,. 
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In IV, Up=x%yy%, i = x, r,=y. .-. Vso, v"=-y", v"' = -2y"<, 
-' dx ^ dy 

Hence, m.f^x%yyf-y"^-2y"'-M^,-... - ( . - l)y».J^. 

., •i7(™) = — C « — !)/(">. 

'd~x^y%-''"W^-^^W' ^"-'^-^ ^y* 

Extend the following groups : 

df df ^ df df 
E- 1- £ • Ex. 2. x £ . Ex. 3. x£-yA^^. 

Ex. 4. -|-f^j|- Ex. 5. 4'ix)'£. Ex. 6. .^(.)|. 

,5/ 3/ 
Ex. 7. a;''̂ r--|-r jcŷ r--

dx dy 

27. Differential Equation of .Second Order Invariant under a Given 

Group. — The effect of any transformation (i) on the variables x and 

y is to transform the differential equation 

(60) fix,y,y,y")=o, 

by the corresponding extended transformation (54). In order that 

the equation (60) be invariant under the group (54), it is necessary. 

and sufficient that ([12], § 11) 

(61) U'f— o whenever/(;«:, y, y', y")=o. 

Using the same argument as was employed in § 18, it is seen that 

all the differential equations of the second order invariant under the 

group are obtained by equating to zero an arbitrary function of three 

independent solutions of ([9], § 11, footnote) 
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Passing to the corresponding system of ordinary differential equa­
tions 

(63) ^^ = dy ^ dy' ^ d f 
iix,y) rjix,y) r,'ix, y,y') rj'V, y, y', y")' 

the first three members are seen to be the same as those of (37), 

§ 18. Hence, two of the solutions, uix, y)= const, and u'ix, y, y') 

= const., may be found by the methods of that section. 

To find a third solution, tP'ix, y, yl, y")= const., which must neces­

sarily mvolve y", use may be made of the two already found to 

ehminatej' and j' from -A- ='i-,or x andy' from ^ = ^ , or ^ 

and y from -^r = ^ (whichever turns out to be the simplest). Each 
dy' rj' 

of these differential equations is linear since rj" is of the first degree 
iny" (§ 26, Remark). This linear equation can be solved by means 

of two quadratures. (See El. Dif. Eq. § 13). 

Lie has given a most ingenious method for finding a form for 

u"ix, y, J',' y"), without any integration whatever when u and u' are 

known : 

Consider the differential equation 

(64) u 'ix, y, j;') —au ix, y) = ^, 

where « and ^ are constants. Since u and u' are invariants of the 

once-extended group U'f, (64) is invariant under the group Uf; that 

is, its integral curves are interchanged among themselves by the 

transformations of this group. Keeping a. fixed, an invariant family 

of a single infinity of integral curves corresponds to each value of /3. 

Still keeping « fixed and allowing ̂  to take successively all possible 

values, an infinity of such families, constituting a double infinity of 

integral curves, is determined by (64). This larger aggregate is in­

variant undgr the group Uf, since each of the constituent families 

corresponding to the same value of /3 is. It- is evidently the set of 
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integral curves of the differential equation of the second order ob­

tained by differentiating (64), thereby eliminating j8 ; viz. 

du' du' , du' ,, 
,, , du' du du' 'dx dy-^ dy''^ 
(65) —, « ̂ - = °) or - j - = -^— ^ = a. 
^ '̂ dx dx ' du du , du , 

— I — y 
dx dy 

Since its integral curves are interchanged among themselves by 
every transformation (i), it is invariant under the group Uf. Hence, 
^^^^"^ „Jdu' \ , dtP 

U [ a = o whenever — = a. 
du j du 

But a being a constant, U"{ « )= U'\—A ; i.e. it is indepen-
\du I \du I 

dent of a. U" I — | is therefore identically zero ; which is sufficient 
\du J 

du' . . 
to make — an invariant of (54), ([9], § 11). 

du 
Since u' contains y' (§ 18), —^ ^ o, and — must contain j".* 

dy' du 
du' 

Hence, — = const, may be used as the third solution of (63). The 
du 

general solution of (62) may then be written in the form 
(66) /(«,.', |^) = o, or J'= i^(«,«'). 
This is the general form of the differential equation of the second 
order invariant under the group Uf. We have therefore the follow­
ing most important 
Theorem. — If fix, y, y', y") = 0 is a differential equation of the 
second order invariant under the groitp Uf,-\ and if u ix, y) is any 

* An invariant of the extended group U'f which involves.)'" is known as a second 
differential invariant oi xhe group Uf. 

t Attention should be called to the fact that while every differentisl equation of the 
first order is invariant under an indefinite number of groups (see \\ 15, 17) a differen-
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invariant and u'ix, y. y') is any first differential invariant of Uf, the 

introduction of the -new variables 

i^i) x=^uix,y), y=-u'ix,y,y') 

reduces the differential equation to the fortn 

(66') f ^ ^ F i x , y ) , 

which is of the first order. 

In actual practice the introduction of the new variables is usually 

most readily effected by noting that 

^J. j^^J. y'y.^J. f 
dy _ dx dy dy' 
dx 3j: , 3.jr , 

dx dy 

is some function of « = jr, u'^y, and u". W h e n this function is 

obvious upon inspection, u" can be determined in terms of x, y, -y • 

In other cases it may be necessary to solve 

^ N ,, IS dy dx dy dy' 
x = uix,y), y = u'ix,y,y'), ^ = ^^ 

— I — y 
dx dy 

iory,y',y" in terms of x, y, _!., x. Substituting these in the differ­

ential equation, x must disappear, and the resulting equation must 

take the form (66'). 

After having solved (66'), its solution 

(68) <^(«, u', c) — o 

is a differential equation of the first order. But owing to the inva­

riance of u arid 11' (68) is invariant under Uf, so that it may be 

solved by the method of § 12 or that of § 20. 

fial equation of the second (or higher) order is in general not invariant under any 
group. (See Note IV of the Appendix.) On the other hand, a large number of them, 
including most of the known forms, are, and these will be considered in this chapter. 
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28. Illustrations and' Applications. — 

df 
I. Uf = ^. t = o,rj=r. -.rj =o,rj" = 0 i^ 26). Equations 

(63) are tix ̂ d i ̂ cil ̂ d f_ ̂  
0 1 0 0 

. w s . X, u' =y', u" s j " Hence, the general type of differential 

equation of the second order invariant •under Uf^s 3- is fix, y', y") = o 

ory" = Fix,y'). This equation is characterized by the absence of j". 

Note. — The transformation of variables x = x, y = y' (§ 27) re­

duces the differential equation to 

(66') '^=Fix,y). 

This is precisely the usual method for solving an equation of this 

type. (See E l Dif. Eq. § 57). Solving the solution of (66') for y, 

it takes the form ^̂  

in which the variables are separated, as must be the case (I, § ig), 

since this equation is invariant under the same group (§ 27). 

I'. U f = - ^ . It is readily seen that the general type of differen­

tial equation of the second order invariant under this group is 

fiy, y', y") = o, ory" = F{y, y'). This equation is characterized by 

the absence of x. 

Note.—The transformation j:=j', y = y ' (§ 27) reduces the dif­

ferential equation to one of the first order (66'). Its solution 

y =^fix, c), or -A =f{y, c) 

is a differential equation with x absent again, as must be the case 

(I', § 19 and § 27). This is also the usual method for solving an 

equation of this type. (See El. Dif. Eq., § 58.) 
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Remark. — Owing to the simple form of an equation invariant 

under either of the groups ^=^or Uf='^-^, it is frequently 

desirable to introduce canonical variables in case a given differential 
equation of the second order is known to be invariant under some 
group. When the introduction of canonical variables is not prac­
ticable, other changes of variables reducing the group and equation 
to known forms may prove desirable. (Compare § 20.) 

(§ 26). Equations (63) are 

(63') ^-'t- ^y' _ dy" 
iji -y X I +y'^ 2,y'y' 

y xy' 
.-. u = x ^ + f , u'= '- (§ 19). Using the last two members of 

'' Ĵ 
equations (63'), u" = ^ • • Hence the general type of differential 

equation of the second order invariant under Ufs. — y-A-\-xA is 
,f> / ,s -̂  -̂  dx dy 

y J . , .,9 y-xy'\ (x+y^).^-^(,^+J''' ^^yy<)-

Note. — The form of this differential equation is obvious from 
geometrical considerations, since u is the square of the radius vector 
to any point on an integral curve, u' is the tangent of the angle be­
tween the radius vector and the tangent to the curve, while u" is the 
square of the curvature, all of which are left unaltered by the group of 
rotations about the origin. (Compare § 29.) In order to integrate 
such an equation the method of I', Remark, requiring the introduc­
tion of canonical variables (polar coordinates in this case) will usually 
be found desirable. 

^ [„ 1/1/ 1/ i)Cv 
Making use of the fact that and are also first 

V i -t-ŷ  V i -^y" 
differential invariants of the group of rotations (II, Note, § 19) other 
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possible forms of the invariant differential equation of the second 

order are 

III. Uf=y^-l- i = o,rj=y. .rj' =y', rj'=f i% 26). Equa-

tions (63) are 
dx dy 
0 " " 7 " 

1," 

dy' 

~ A 

dy" 
- y" 

y y 
. .u = x, u' = —, u" = * Hence the general type of differen­
tial equation of the second order invariant under Uf=:yA {s 

i-'j'j)=^'^-y"=y^(-'f} 

This equation is characterized by being homogeneous in y, y', y". 

It is evident, at once, that an equation of this type is left unaltered 

3/ 
by the affine group Uf = y ^ , since the finite transformations of the 

extended group are Xi = x,yi = ay, y-l = ay', yA — ay" 

Note. — An interesting equation of this type is the homogeneous 

(or abridged) linear differential equation 

(69) y"-\-Pix)y'+Qix)y = o. 

y' 
The transformation x = x, y = — (§ 27) reduces the equation to 

| + ^ + ^,+ e = o, 

a Riccati equation. (Compare El Dip. Eq. § 73, 6°). 

» The Lie method of ̂  27 gives «" = ^ = ^?!—^Zl^l (iL\ _ and the dif­

ferential equation ^ = (~) + •p(^. y), which is, of course, the same in form as 

that found in the body of the text. 
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^I- ^^-""'Ir+^yfy- ^ = ^^,ri = ny. .•.rj'=in-i)y', 

rj" = in — 2)y". Equations (63) are 

dx_tfy_ dy' _ dy" 

X ny in— r)y' in — 2)y"' 

• u = A- u' = aL " - y" 
x"' x"''-' ^ x"~'̂ ' 

Hence the general type of differential equation of the second order 

invariant under U f ^ x A — y ny A is f i A ^ J — A— 
dx dy \x^ x"~^ a:" 

This equation is characterized by being homogeneous in x, y, y', y" 

when these elements are^iven the weights i, n, n — i, n — 2 respec­

tively. 

Note. — Boole called an equation of this type homogeneous, and 

gave as a method for solving it the transformation jr = log x,y = A_ 

(See Boole, Treatise on Differential Equations, p. 215 ; Forsyth, 

Treatise on Differential Equatiotis, § 55). The new variables in this 

transformation are a set of canonical variables. (Compare I', Remark.) 
df 

HI'. C / s x ^ is a special case of VI. Here n = o, and the 
dx 

invariant differential equation is of the form fiy, xy', x'y") = 0. 
This equation is homogeneous in x, y', y" when these elements 

have the weights i, — i, — 2 respectively; the weight of j'being zero, 
the manner in which this variable enters plays no role. 

III. U f = y A may also be looked upon as a special case of VI, 
dy 

corresponding to the value n = oa. Boole deduced a special method 
for this case (see Boole, p. 220; Forsyth, § 55) which is exactly that 

of § 2 7 for this case. 

IV. Uf=xA--\-y-A is the special case of VI for n = i . The 
dx dy . , 

invariant differential equation is of the fortn flp-, y', xy" \ = o. 
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V. Uf=xA- _j;^ is the special case of VI for « = — i. The 
dx dy 

invariant differential equation is of the form fixy, xPy', xy") = o. 

YII. Uf=<t>ix)^. i = o,rj = <l>ix). .: rj' = 4''ix),rj"=nx). 

It is readily seen that 

u = x, u' = <t>ix)y' — <l>'ix)y, u" = (f>ix)y'' — (f>"ix)y. 

Hence the general type of differential equation of the second order 

invariant under Up^(j>ix)-i-- is fix, <j>y'— <j>'y, <l>y" — <j>"y) — o, or 

^y"-<^"y = Fix,^y'-^'y). 

Note. — A n interesting equation of this t}rpe is the complete linear 

equation 

(70) y" + Pix)y' -y- Qix)y = Xix), 

which is obtained from the general form by letting F be linear in 

u' = <^j' — <̂ 'y. Bearing this fact in mind, it is clear that y = (̂jc) 

satisfies the abridged equation (69), obtained from (70) by replacing 

Xix) by o. Conversely it is readily seen (and will be left as an exercise 

"to prove) that \iy=y„ is a solution of (69), (70) is invariant under the 

group Up=yo-^. The transformation x = x, y = yoA — yo'y i^ 27) 

reduces the equation to the hnear equation of the first order 

(70 ^ + Pix)y=y,ix)Xix). 

This property of the complete linear differentia] equation of the 

second order of reducing to one of the first order by a transforma­

tion that is known when a particular integral of the corresponding 

abridged linear equation is known is not new. (See El. Dif. Eq. 

§ 53, i°.) The transformation employed above yields an equation 
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bearing a more striking resemblance to the original equation than 
the transformation, 

x—x, y = =̂ , 
yo 

usually employed. The new variables in this transformation are a set 
of canonical variables (I', Remark). 

Other groups whose invariant differential equations are readily 
found are the following : 

vin. ./.^)|. <.,f f-f)"-

VIH'. Uf^4>ix)^. /(.>',M<^y' + <^<^W = o. 

X. Uf^<i>ix)(x'£+tiy'£ 

Jy xy' — ny aPy"-\-ir — n)xy' A 
Â " ~^^'^' -xy^^:^y ^-^-^Ax^'yo. 

XIL Uf^a^-^y-b^-^. fibx-ay,y',y") = o. 

In Table II of the Appendix will be found a list of the more com­
monly occurring and readily recognizable classes of equations of 
higher order than the first invariant under known groups. 

Ex. I. xyy" -j- xy" —yy' = o. 
df df 

This equation is invariant under the group IV: Up=x-^-^y-^. 
Introducing the new variables 
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the equation takes the simple form 

dy , y 
_i -(- s- = o. 
dx x 

yA 
Integrating xy — a, or -<̂=— = a. 

X 
Integrating again ax' — f = b. 

Note. — Inspection shows that this equation is also invariant under 

III: Uf=y^,and\\V: Uf = x ^ -
dy dx 

Ex. 2. ix?- -^f)y" 4- 2 (j - xy)ii +y"^ = o. 

This equation is invariant under the group II: 

7-7^ df , df 
dx dy 

Introducing the canonical variables (in this case, polar coordinates) 

x = tan~^=^, y = •\A?~-Ay, 
X 

d'li 
the equation takes the form -—- -\-y=o. 

dx' 
Here the independent variable is absent, but, instead of using the 

method indicated by the general method of § 27, it will be simpler 

to solve this linear equation with constant coefficients by the usual 

method for such an equation. (See El. Dif. Eq. § 45.) 

y = a cos x-\- b sin x. 

To pass back to the original variables, multiply by y, whence 

^ _l_y _ ^^ _j_ îy_ 
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A otc. — This differential equation is also invariant under IV. 

Ex. 3. xryy" — (arj' -j')^ = o. (Invariant under III, IV, . .) 

Ex. 4. .r'j'" -f ixy - y f = o. Ex. 5. x'y = xy - y . 

Other equations invariant under known groups appear in §§39-
and 40. 

29. Further Applications. — Besides being able to recognize a 

group under which a given differential equation is invariant from the 

characteristic properties given in § 28 

and enumerated in Table II of the 

Appendix, it is possible at times, to 

find such a group from the nature of 

the problem giving rise 

to the differential equa­

tion. As examples, the 

following may be noted : 

1° The group of rota­

tions about the origin 

Uf'= — y -̂ -\- X -Ĵ  leaves unaltered 
dx dy 

R s the radius of curvature of a curve at any point, 

p s the radius vector to any point on the curve, 

r s the radius vector to the centre of curvature, 

the distance from the origin to any line (such as the tangent 

or normal) connected with the curve, thus O M and O N , 

P M ^ ^ the polar subtangent, = O N , 

P N ^ the polar subnormal, = O M , 

{(t s the angle between the radius vector and the tangent, 

the remaining angles of the triangle O CP. 

Hence a family of curves defined by a relation between any or all 

of these is unaltered by this group; the differential equation of the 
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family is therefore invariant under it. Passing to polar coordinates 

(the canonical variables) will usually be found desirable in this case. 

2° The simihtudinous group Uf'=x -^ -\-y-f leaves unaltered 
dx dy 

0 = the angle between the initial line and the radius vector, 

T = the angle between the initial line and the tangent to the curve, 

(j> = the angle between the initial line and the radius vector to the 

centre of curvature, 

(jj = the angle between the radius vector and the tangent to the 

curve, 

the ratio of certain lines connected with the curve, such as 

radius vector, radius of curvature, radius vector to the centre of curva­

ture, intercepts of the tangent, normal, or of the curve itself, sub-

tangent, subnormal, length of tangent or normal from a point on the 

curve to one of the axes, and the like. 

Hence this group leaves linaltered the differential equation of a 

family of curves defined by a relation between any of the above in­

variant configurations. Passing to canonical variables, or to polar 

coordinates (thereby reducing the group to HI') may simplify the 

problem of solving the differential equation. 

3° Certain configurations could be enumerated as invariant under 

3/ 3/ 
the groups of translations Uf = -P- and Uf = -A- But as in either 

dx dy 
case one of the variables is absent in the resulting differential equa­
tion, the latter will suggest the group without considering the defini­
tion of the integral curves. 

Ex. Find the family of curves for which the radius vector to any 

point of a curve is perpendicular to the radius vector drawn to the 

centre of curvature of the curve at that point. 

The differential equation of this family must be invariant under 

the group of rotations II and also the similitudinous group IV. 

file://-/-y-f


§§ 29, 3° DIFFERENTIAL EQUATIONS OF HtGltER O R D E R 99 

Noting in Fig. 4 that the triangle POC is right-angled at O, 

OP D P • , 
- ^ = c o s P , or ̂  = sini/'. 

Here p = V^?+7, ^ = (^ +/')'. tan it'=-^'~-'^-^',. Flence the 
y x+yf 

differential equation is 

, 1, (^ + f ) y " -ip +y")iy - xy') = o." 

'' -30. Differential Equation of Order Higher than the Second Invari­

ant under a Given Group. — The method of § 2 7 can be extended 

without change to differential equations of higher order: 

A differential equation of the «th order 

(72) fix, y,y,f,-,/'")= o 

is invariant under the group Uf, if and only if 

(73) U'-'^f= o whenever/= o. 

All the differential equations of the nth order invariant under the 

group are obtained by equating to zero an arbitrary function of « -j- i 

independent solutions of 

(„) ^.y.£|+,|+,.|-i-,",|+ - -^,-#,=0. 

These independent solutions may be obtained from the corre­

sponding system of ordinary equations 

(,.) ^' = f^ = '^=^= ... =^. 
\l5) > ( // (n) 

i rj rj rj' rĵ  ' 
It was seen in § 27 that if uix,y) is an invariant of Uf, and 

du' 
u'ix, y, y') is a first differential invariant, then —r- is a second differ­
ential invariant. Hence, 
/ ̂ N du' r, 
(76) :^-"-" = ^ 
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is an invariant differential equation of the second order for all values 

of the constants « and j3. Its integral curves constitute an invariant 

family of co^ curves. The 00̂ . differential equations of the second 

order obtained by keeping a fixed and giving to /3 all possible values 

have for integral curves 00^ such invariant families of 00^ curves. 

Grouping all these curves into one aggregate of 00* curves, this aggre­

gate is invariant under the group since each of the famihes is. The 

differential equation of this family is, therefore, invariant. It is ob­

tained by differentiating (76), thus eliminating /3, 

/ X Afd^\_a — = O'0r ^-a = o 
dx\d-uj dx ' du' 

£/"Y'^-<.Uo, whenever'̂ '̂ '' 

In order that (77) be invariant, we must have from (73) 

dhî  
du' 

But U"i^-oA^U'"^-
\dir j du' ' 

i.e. it is independent of «. Hence, if (77) is to be invariant, U"^A 

tPu' 
must vanish identically. So that -—- is a solution of (74). Since it 

du 
contains j'" (as may be seen readily), it is independent of u, u', ̂ • 

du 
In the same way it can be shown, step by step, that a set of inde­

pendent solutions of (74) is 
du' d'u' d"-^u' 

u, u 
du' du'' ' du"~'-

Hence the general type of differential equation of order n invariant 

under the group Cf is 

(78) ^AAii.^f(,,,u' '̂'"' '̂'"' '̂ ""'"" 
du"--̂  \ ' ' du •• du'' ' dtf'-' 
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We have then as an extension of the theorem of § 27 the following 

Theorem. — If fix, y, y', y", •••, j<'") = o is invariant -ttnder the 

group Uf, a n d if uix, y) is any invariant, a n d •u'ix,y,y') is any first 

differential invariant of Uf, the introduction of the new variables 

i'l9) X=uix,y), y=u'ix,y,y') 

reduces the differential equation to 

(78') 

which ii 

After 

r of order 

having in 

d'^-^y_ 
«'x"-i 

n — r. 

--pfx. 

itegrated (78'), 

fit'. u', Ci, 

y ^ •• 
'̂ dx' 

d"-
'•• dx' 

its solution 

<̂2, •••• c„ -1)= 

1-2 

0 

is a differential equation, also invariant under Uf, since u and u' are. 

Hence it m a y be solved by the method of § 12 or of § 20. 

M a n y of the arguments of § 28 can be used here, almost without a 

single change. Consequently, the results only will be given, it being 

left as an exercise for the student to fill in the steps. 

I. The general type of differetitial equation of the nth order 

invariant under Uf=^ «/(•«,/>/'» •••;/"')= °> which is charac-
dy 

terized by the absence of j. 
T h e transformation y = y ' , reducing the differential equation to one 

of order n — 1 constitutes the usual method for solving an equation 

of this type. i E L D i f E q . § 57.) 

I'. The general type of differential equation of the nth order 

invariant under U f ^ - A is f i y , y , y " , •••,>•'"')= o, which is charac­

terized by the absence of x. 

T h e transformation x = y , y = y ' , reducing the differential equation 

to one of order n — r constitutes the usual method for solving an 

equation of this type. iEl. Dif. E q . § 58.) - • -
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The remark of I', § 28 with reference to the introduction of 

canonical or other variables when a group is known under which 

a given differential equation is invariant applies equally well here. 

I. The general type of differential equation of the nth order 

invariant under U f = y A is f[ x,A ^A^, ...,y—\ = o, which is 
3j' \ y ' y y ) 

characterized by being homogeneous iny,y,y", •••,J'*"'. 

VI. The general type of differential equation of the nth order 

• , ^ TW df , df . J y y' y" j'"'\ 
mvariant under Uf^LX^i--yry-p isf\ —, ——-, -̂ —-, •••.^— = 0 , 

dx dy yx' x'"^ x'"- x''~''J 
'which is characterized by being homogeneous in x, y, y',y'', •••, J*"', 
when these elements are given the weights i, r, r—i, r — 2 , •••, 
r — n respectively. 

As special cases of this group may be mentioned 

IV: r=i, f(^,y,xy", -,x'^-yA=o, 
\x 

V : r = — I, fixy, xrf, X^y", •••, .«''+V'*')=o, 

III' : r = o , fiy, xy', x'y", •••, a:"j''''')= o, 

III: r^ao . The invariant equation in this case is more readily 

recognized by the other characterization given under III above. 

VII. The general type of differential equation of the nth order 

invariant under 

Uf=<^ix) If is fix, #' - <l>'y, <i>y" - <l>"y, -, #<»' - <^<'"j) = o, 
dy 

or t̂ j''̂  - 0'"'̂  = Fix, <f>y -4>'y, <fei'" -^"y,--, <j>/"-̂ '' — (̂ '"""j'). 

Note. — An interesting equation of this type is the complete linear 

equation 

(So) jW-^/'ij(»-"-|-i',y-2)-l- ... +p„_,y' + i^„_jy + P„_y=.X 
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If j'.=j'o is a particular solution of the abridged equation obtained 

by replacing X by zero, (80) is invariant under Uf ̂ y^-^-

The transformation (79) y=yf,y -y^'y (or j=joy, resulting from 

the introduction of canonical variables) reduces (80) to a linear equa­

tion of order n — i iEl Dif. Eq. § 59), but the resemblance of the 

resulting equation to the original one is not as striking as in the case 

of the Hnear equation of the second order (VII, Note, § 28). 

XII. Tfie general type of differential equation of the nth order 

invariant under Uf=aAi-\-bA- is fibx — ay,y,y", ...,j'»))=o. 
dx dy 



CHAPTER V 

LINEAB PARTIAL DIFFERENTIAL EQUATIONS OF THE 
FIRST ORDER 

31. Complete System.* 

Theorem I. — If <f,ix,y, z) is a solution of the two independent \ 

linear homogeneous equations 

Aif = Piix,y, z)^y-Qiix,y, z) ^£+Riix,y, z) |'=o, 

df ^ , . 3/ „ , 3 / 
•̂  ' ^ ^ - - - ^ ( ^ + Ri(x,y,z)A. Aif = Piix,y,z)-^y-Qiix,y,z) -̂ ŷ-Riix, y, z) f- = o, 

it is also a solution of 

iAiA.i)f = iAyPi - AiPi) g-f iAiQi - AiQi) ^ 

+ iAiRi-AiRi)^£=o, 

where (A-^A^ is the altei'na7it of the operator's A^ and A,, (§ 14). 

For (AiA^<l> ^ A-^{A2<i>) — A2{Ai<f>) = o, since A^^t =0 and A^^^y — o, 

* Only so much of the theory of complete systems and only such methods for their 
solution as seem necessary for our immediate purpose are given here, tor an excel­
lent detailed treatment of this subject the student is referred to Goursat-Bourlet, Inte-
gration des equations aux deriv'eespartlelles du 'premier ordre. 

t r equations of this type in n variables are said to be independent if it is impossible 
to find r functions tri, ffo. ••*, ffr °f ̂ ^ variables such that 

In the case of ?- = 2, this amounts to saying that the equations are independent if 
one of them is not a multiple of the other. 

104 
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If three hnear equations in three variables Ayf=o,A.if=o, 

^ s / = o have a common solution <#>(x, j, z) other than a constant, 

-^, -^, -^ satisfythe three homogeneous linear relations 

^^-Ai^A-i^Ai=. 

„. , , . 3(i 3<i dd> „ , 
Smce diix, y, z) is not a constant, ~ , -P^, -f- cannot all be 

^^ ' •̂' ' dx dy dz 
identically zero. Hence 

P, Qy ^1 
l^= Pi Qi Ri 

P, Q, Ps 

It follows that three functions a-yix, y, z), (Tiix, y, z), asix, y, z) can 

be found * such that 

(81) (TiAif-h o-iAif -i- o-sAsf = o ; 

i.e. the three equations are not independent. Hence follows 

Theorem II. If the three equations in three variables A i f = o, 

A i f ^ o, A ^ = : o have a common solution, other than a constant, 

they are not independent; or stated otherwise, three independent 

linear homogeneous partial differential equations in three variables 

cannot nave a common solution, otner tnan a constant. 

From Theorems I and II, it follows at once that if A i f = o and 

A i f = o have a common solution, 

(82) iAiA.if= piix, y, z)Aif+ piix, y, z)Aif. 

* Thus, for example, one may take for uy, 0-2, 0-3 any three functions proportional 
to the cofactors of the corresponding elements of any column in A. 
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Clebsch gave the name of complete system to a pair of independent 

equations A^f = o and Aif — o, which are connected by the rela­

tion (82). The last statement may therefore be put into the form 

Theorem III. If A i f = o and A f = o have a common solution, 

they form a complete system. 

Conversely, we shall prove the very important 

Theorem IV. If Aff = o and Aif = o farm a complete system, 

they have a common solution. 

In order to do this it is necessary to prove two lemmas. 

Lemma I. If Ayf = o and A.ff = o form a coitiplete system, any^ 

pair of equations formed of independent linear combinations of these, 

also form a complete system. 

The equations 

C8 ^ \ ^^~ ^^^^' •^' ^)"^^-^+ ^'•^^' y' ^)^^= ° 
I A.if= Xiix, y, z)Ayf-\r p-iix, y, z)A.if= o 

are independent if Xijos — Xs/ij ̂  o. Then Ayf and Aif can be found 

as linear functions of Aif and Aifirom (83). 

Since A i f = o and Aif ̂  o are supposed to form a complete system, 

iAiAi)f=iX„jLi — \iiJ.i)iA-yA,df-t-iAiXi — AiXi) Ayf->riA î î — A-iSx-̂ jAJ 

is seen to be a linear function of Aif and Aif, and theretore of 

Ayf and Aif, which proves the lemma. 

Moreover, any common solution of Ayf=^ o and A i f = o must be 

such for >Ji/=o and Aif=o, and vice versa. Hence the two systems 

jire said to be equivalent, or each is said to be equivalent to the othet. 

A system equivalent to the original syslem is obtained if the equa­

tions of the latter are solved for two of th^ three partial derivatives 

-i-, -A' A' This can always be doile, smce all three of the deter-
dx dy dz 
minants in the matrix p n R. 

Pi Qi Ri 
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do not vanish identically, Ayf— o and Af= o being independent 

equations. If, in particular P i Q i — P i Q y = D ^ o , the equations 

may be solved for -A- and -^, thus giving 

ui = —-^', X, = —ii, u,= -i, and A1/J.2 — X,/ii =-^ ^ o, since all 
ri 2? D D D 
functions involved are supposed to De generally analytic. Hence 
equations (83') are independent. This fact is also obvious upon 

inspection, since the first equation is free of g-, while the second 

does not contain -f • Moreover 
dx 

(84) iAiAif^ o. 

For, since Af= o and Af= o form a complete system 

(8 2) i A J i f = p i A f + PiAif 

In the case of equations (83') 

iAiAi)f=iAiRi-AiRi)^I 

df df 
which is free of both ^ and --. Hence pi and pa in (82) must both 

be zero, and the form (84) follows. 

A complete system for which p y ^ p i ^ o is called a facobian* com­

plete system. W e have thus established 

* Originally this term was applied only to a complete system in the special form 
(83'). Lie and other mathematicians, however, used it, as above, to apply to the more 
general class of complete systems; (see Lie, Differentialgletchungen, p. 202; Goursat-
Bourlet, lac. cit.,-p. 347: also Bncyklapadie der Mathematischen Wissensc/iapten, Band 
III. P-315)-
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Lemma II. —- A facobian complete system can always be found 

equivalent to a giveti complete system. 

Remark. — It should be noted that this equivalent Jacobian sys­

tem is not unique, since starting with such a one, the system obtained 

by taking any pair of independent hnear^combinations of these equa­

tions with constant multipliers is another system of the same sort. 

It is easy to show that a Jacobian complete system has a solution. 

Suppose that A f = o and Aif = o form such a system. Then 

(84) iAiAif= AiiAif)-A,iiAif)= o. 

If uix, y, z) and »(«, y, z) are two independent solutions of one of 

the equations, say A y f = o , any function of u and v will equally well 

satisfy this equation. It remains to find such a function of them, 

Fiu, v), that it shall also be a solution of the other equation ̂ 2 / = o; 

that is, 

(85) A-,Fiu, v)= --— AiU -y -— A,v = o. 
du dv 

Replacing / in (84) by u and v successively, 

AiiAiu)—AiiAiu)=o and AiiA.,v)—AiAiv)—o. 

Since AiU = o and AiV = o, it follows that 

AiiAiu)=o and A^Aiv)—o. 

Hence AiU and AiV are functions of u and v, say 4'i", ^) and tpiu, v) 

respectively, and the equation (85) to determine Fiu, v) is 

(85') <^(«,^,)3^+^(^,,^;)|^=0. 
du dv 

The solution of this equation (which is known to exist by the gen­

eral existence theorem) is a solution of the Jacobian system Ayf= o, 

A f = o, and consequently of the equivalent complete system A f — o 

and A f = o. Theorem IV is thus proved. 
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All that has gone before can be extended at once to homogeneous linear equa­
tions in ;/ variables. 

AVithout changing a word in the proof of Theorem I we have: If 
<p(xi, .r-2, •-., Xn) is a solution of tJie two equations 

Alf=Pll(xi,X.l,...,xP)-^y Pyi(Xy,X.,, ---..T,.)-- f- ... 
dxi dXi 

A.lf=Pil(xi, Xi, ..., x„) ̂  y i\.p.xy, X.,, .-., x„) -^i y :• 

'xtr 
4-An(^l, X.2, • • ; Xn) -̂ — = O, 

it is also a solution of (^A\_A-i)f^=^ o. 
As before, if n eqiiatiojis have a eommon sohitio7t̂  other than a co7ista7it̂  the 

equations caniiot be independent. For the determinant of the coefficients 

Pii P12 
P21 P22 

P-n\ P,& 

Pm 

P2n 

must vanish. Hence a relation of the form 

i^iAypy TiAify •-• 
must exist. 

Starting with r independent equations 

- tr« Anf= o 

Ayf=0, A i f = 0 , ••-, ^r/= O (2 < ?-< ») 

with a common solution, all the equations 

(AiAP)f= o, (i, K = I, 2, 3, •-., r), 

•will also have this solution. Some or all of these equations may be independent 
of the original equations. Adjoining these to the latter, the process may be 
repeated as long as independent equations can be found. This process must 
come to an end before the total number of equations reaches n. For it has just 
been seen that there cannot be n independent linear equations in n variables 
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having a common solution, other than a constant. We have thus obtained a 
system of j equations 

^1/= o, Aif= o, •••, A,f-= o (r < J < «) 

such that (AtAP)f=piAify PiAif-\ -|- PsA,f, 

(i, K= I, 2, 3, •--, s). 

Such a system constitutes a comflete system. We have thus shown that if r 
equations liave a common solution, every member of the complete system determined 
by ttiem has that solution. 

It will be left as an exercise for the student to show that starting with any 
complete system an equivalent Jacobian system*-can be found. The method is 
identical with that given above for three variables. 

That a Jacobian complete system' (and, therefore, any complete system) of -
equations in fc variables has n — s independent solutions may be proved in a 
manner entirely analogous to that used above for j = 2, « = 3. To illustrate, the 
case for .f = 3, « = 5 will be given without detail: 

The equation 

Aif= Pyi ̂  y Pyi .^+Py,-§AyFiiM.yPy^M.^o, 
5xi dxi dxs 5̂ 4 dxs 

has four independent solutions iiy, u.>, u:„ ui (El. Dif Eq. § 79). The problem 
is now to show that some function I'\uy, jii, uz, ui) of these will satisfy both 
A i f = o and A % f = o. 

Since u, for i = I, 2, 3, 4 satisfies Ayf = o, it follows on replacing / by 2<i in 
the identity 

(AiAi)f=Ai(A.2f) - A.2(Ayf)so 

that Aotii is also a solution of Ayf= o. Hence Aitti must be some function of 
Uy, Ui, Us, Ui, say (pi(ay, «2, «3, k.i)> for «' = î -> 3> 4- If -^'s any solution of the 
equation involving the four variables u 1, tin, u-j, ui, 

.^2i^=0l|^ + 02 1^-1- 03^ + 04^ = 0, 
3"i 3»2 3«s 3»-i 

it will be a solution of A i f = o and A i f = o, 

* A Jacobian complete system of s equations is one for which 

(A,A„)f=o (i, K = I, 2, 3, ..., s). 
See previous footnote. 
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This equation has three independent solutions vy, v-,, v^. Any f'unction of these 
will be a solution of .-/i/= o and A.,f— o ; and conversely, every solution com­
mon to A y f = o and .-/-i/= o must be a function of vy, v.̂, fj. It remains to 
show that some function, ^(vy, v-i, -v.y), of them will satisfy Asfr=z o. 

As before, it follows on replacing/ by -',- in the identities 

iAi.-l-y)f=.4i(A.,f)- Az(Aif) = o and (.4.iAP)f=Ai(A-if)- A3(Aif)=o, 

thaVA-fi'i is a solution of both Aif= o and A.,p= o. Hence A^vi must be some 
function of I'l, -:'.,, T.y, say ̂ i(vy, j/j, '••:{), for i = I, 2, 3. The function $ may then 
be any solution of the equation 

d-ai dvi d-v-i 

This is known to have two independent solutions. Each of these is therefore a 
solution of the complete system, and there can be no others. 

32. Method of Solution of Complete System. — To actually find 

the solution c o m m o n to the members of a complete system A y f = o 

and A f = o it is not necessary to pass to an equivalent Jacobian 

system. If u and v are two independent solutions of one of the 

equations, A f ^ o, it is known that some function Fiu, v) is a solu­

tion of the other; i.e. 
dF dF 

(85) AiFiu, v) = AiU-^ y-AiV-^= o. 

or 
(86) ^ + ^ 3 F ^ ^ _ 

du AiU dv 

Knowing that some form of Fiu, zi) must satisfy this equation, 

whence •-— and — are also functions of u and v, — ^ must be a 
du dv A,iU 

function of u and v.* H e n c e (86) m a y be written as an equation in 
these two variables only, and the usual method of solution for such 

an equation m a y then be followed. 

* It should be noted that in this case, unlike in the case of a Jacobian complete sys­
tem, AiU and Aiv need not be functions of u and v, although they may be. 
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. ^ df . ^ df df df 
Ex.1. ^ 1 / ^ ^ = 0 , Af^xA.^^yA.^y.zl:=o. 

Since iAiA^f^. Aif these form a complete system. 

Here u^y, z' = z are solutions oi Af^=o. Then AiU:=y = u, 

AiV = z=^v, and equation (85) may be used to determine E; thus 

dF , dF 
K- \-V = 0 . 
du dv 

The general solution of this is any function of— Hence the com-
u 

mon solution of the complete system is any function of -. 
y 

Or starting with « = _, v = -,ikve solutions of ̂ ^ = 0 , and noting 
y z 

that AiU = -, A-iv = -, whence -^ =^ = -, equation (86) is 
y z AiU z u 

dp , V dp 
du u dv 
Its solution is - =-1, giving the common solution of the system 01 

u z 
equations. 
. ^ df df df 

Ex.2. Af^x^^^yj-^-yzA, 

Af^ ix^ +f +yz)^^ + ix?+f- xz)^£+ixz +yz)f^ = o. 

These form a complete system, since i^AiA^f^ Af. 

Here u^-, v^^ are solutions of Af^o. AiU = y^—^ ^, 
z z z 

Ar*^ __^ 'vr^ , . '\r'\) yj 7/ 'Y* 7/ 
Aip = y. .".—̂  = = , and equation (86) is 

z AiU y V 
dF_t^dF^^ 
du V dv 

Its solution is u' -\- il'. Hence the common solution of the com-
yP y. p. 
plete system is any function of —Arp- . 
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Ex.3. ^i/s^|-^|=o,^^^|=o. 

. r df df , ^ df df 
EX.4. Af^x^^ + zA=o, Af=y^^-^zA^o. 

' . r df ,df df , ^ df df df 
Ex.5. Af^a£-^b-A-^-c£=o, Aif^xAy,yf + ,£^o. 

Ex. 6. Af= ix-y + z)^-2y^£-^ix-y + z)^= o, 

Ex. 7. Af= ixz -y)^£ + (y^ -*-)^+(i - ^f = °> 

Aif^i^p-f)% + 2xyf^-yir-z^)'£=o. 

33. Second Method of Solution. — If ct>ix, y, z) is a solution of the 

complete system Af^= o and Af= o, the equations 

Ai^^Pi^+Qi^-^ + Ri^-^ = o, 
dx dy dz 

Ai^^Pi^^+Qi^^ + Ri^^ = o 
dx dy dz 

give ^ : ^ §±^Q^2ii- QiRy : RyPi-RiPi : PiQi-PiQi. 
dx dy dz 

Since the total differential equation which has ^(.r, y, z) = const. 

ior solution is -, . ^ 
-^dx + -^dy + -^dz = o, 

dx dy dz 
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or differs from it by a factor involving x, y, z only, this equation 

may take the form 

(87) ( QiRi - QiRi)dx -^ iRiPi - RiPi)dy + iPy & - PiQi dz = o.* 

The problem of solving a complete system is thus reduced to that 

of solving a total differential equation (87). At times the actual 

work involved in solving (87) turns out to be simpler than that re­

quired by the method of the previous section. 

Besides the usual methods for integrating total differential equations (see 
J£t. Dip. Eq. Chapter VI) the following method due to Dubois-Reymond may be 
mentioned. 

Instead of letting one of the variables, say 2, be a constant temporarily, as is 
usually done, let it be a linear function of the other two, thus 

z^ X y ay 

where a is an arbitrary constant. This relation carries with it 

dz = dxy ady. 

Eliminating z and dz from these two and the total differential equation, there re­
sults an ordinary differential equatibn 

M(x, y, a)dx y N(x, y, a)dy = o f 

whose solution -̂ (x, y, a) = const. 

* Equation (87) may be put in the convenient determinant form 

dx dy dz 

1̂ Qi Ri 
Pi Q-i R-L 

which expresses the condition that the above three homogeneous linear equations in 

3*, 30, 30 are consistent. 
dx dy dz 

t If il happens that this differential equation does not contain a, some other linear 
relation among the three variables containing an arbitrary constant should be tried 
leading to a differential equation in two of the variables only and containing the arbi­
trary constant. 
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gives, on replacing a by its value in terms of x, y, :j, 

0[ .V, r, 1 = const., 
\ ' y I 

which is the solution of the total differential equation. 
This method requires the solution of only one ordinary differential equation 

instead of two, as in the usual method, when an integrating factor is not known. 
But in actual practice, this theoretically simpler method may not prove as de­
sirable as the other. 

Ex. The examples of § 32 should be solved by the methods of 
this section. 

Thus for Ex. i the total differential equation to be solved is 

dx dy dz 

1 0 0 
X y z 

.= zdy — ydz = o. 

Its solution is -2- = const. 

For Ex. 2 dx dy 
y 

dz 

x'yfyyz x'^yy^-xz z(xyy) 

becomes, on multiplying the second row h-y x y y and subtracting from the third 

dx dy dz 
(y y z — x ) X y 

y — X o 

or xzdx y yzdy — (x'̂  yy'')dz = o. 

I 
An obvious integrating factor is 

z(x-iyy'^) 
, and the solution is x' y y'̂  _ = const. 

34. Linear Partial Differential Equation Invariant under a Group. — 
The homogeneous linear partial differential equation of the first order, 

(88) Af^P% + Q%y.Rf = o, 
dx dy dz 
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has two independent solutions 4>iix, y, z) and 4>2ix, y, z). Every 

other solution is some function of these. 

The result of transforming (88) by the transformation 

(89) jci = <̂  ix, y, z), ji = i/r(jc, y, z), Zi = xix, y, z) 

is ([15], § 11) the new equation 

(90) ^<^fi + ^^| + ^x|=o. 

where A<^, Atp, A-^ are to be expressed in terms of Xi, yy, %. If (90) 

is the same equation in the new variables as (88) is in the old ones, 

or differs from it by a factor, the transformation (89) is said to leaye 

the differential equation (88) unaltered. In this case it must trans­

form both <̂ i and <j>i into solutions again; that is, they are either left 

unaltered by (89) or they are transformed into some functions of 

themselves by it. 

Let us find under what condition (88) is left unaltered by every 

transformation of the group 

Uf^^f+^f + if. 
dx dy dz 

We have seen ([7], § 11), 
/ t' 

<t>iixi, yi, Zi)= <i>iix, y, z)+ U4>i - -f- t/2̂ ,- —• -f- •••, 
I 2 ! 

(/= I, 2). 
In order that this be a function of 4>\{x, y, z) and 4>iix, y, z) for all 

transformations of the group, i.e. for all values of /, it is necessary that 

(91) U4>i = -^<(0i, <^2), («'= I, 2). 

It is readily seen that this is also a sufficient condition. For 

U'^, = UU4,, = UF,(</>!, <^2) = ^ C^<^i + ^ U<t,i^^^Fi + ^^Fi, 
d(t>i dfjii dcj>i 3^2 
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which is again a function of <̂ i and (j>i. In the same way it can be 

shown that if C/'̂ ,- is a function of ̂ i and <̂ 2, C/*+'^i is. Hence, 

(91) is the necessary and sufficient condition that the equation* 

whose solutions are <̂ i and <̂ 2 shall be invariant under the group. 

It is desirable to have a condition expressed in terms of the differ­

ential equation itself. The linear equation 

(92) iUA)f=iUP- Ai)^ + iUQ- Ar,)^ +iUR- Aof = 0 
dx dy dz 

has <^i and <j>i for solutions when Af=: o is invariant under Cf. For 

(UA)<^.. = UAi>, -AU<i>i= Uio) - AF,(<^i, .̂ o) = o 

(«=i, 2). 

Since (88) and (92) have the same solutions, they must be the 

same equation, to within a possible factor, by the previous footnote. 

* A unique hnear diflferential equation of the form (88) (to within a possible factor 
involving the variables only) is determined by two independent solutions. For if 
01 and 02 ̂ ^ ̂ ^ solutions of 

Ap^pf^Qf+Rf=o, 
dx dy dz 

then 

whence 

_ „ a 0 301 ,301 

P: Q:R== 

AA. — n 091 , r, OVl , „ 091 
^*i=^-37+^^+^ir = °" 

A4,i^P^ + Q^+R^-p=.o. 
dx dy dz 

301 302 301302. 301 302 301302. 30i 302 30i 302 
dy dz dz dy d" dx dx dz dx dy dy dx 

So that the differential equation having 0i and 02 fo'' solutions may be written in the 
convenient form 

dp dp dp 
dx dy dz 
301 301 301 
dx dy dz 
302 302 302 
dx dy dz 
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Hence wfien Af— o is invariant under Uf 

[31] iUA)f=\ix,y,z)Af 

Conversely, when [31] holds, (88) and (92)* have the same solu­

tions ; then ^jj^)^. = UA<^,- AU<^i = o, (/= i, 2). 

Since A<^i = o, it follows that AiU4,,) = o ; hence Ucj}, is a solution of 

(88), and must be a function of ct>i and ij>,2. 

Therefore [31J is both t/ie necessary a n d sufficient condition that 

U f leave A f = o unaltered.^ 

Thus, the group Uf=x^yy^yz^ leaves Af=^y^+^=o unal-
dx ^ dy dz -̂  dx dy dz 

tered, since (UA)f=-[^ + ^+M\=^Ap 
\dx dy dz j •' 

Similarly the same group leaves Ap=y -f — xfy^'A—Q unaltered, since 
(UA)p^o. ^" ŷ '̂ 

It also follows from this that the group U f ^ y — — x — j ^ ^ ' A leaves the 
3/' df df ^^ ^y ^̂  

equationAp= x A - y y A y z A = o unaltered. 
' dx -̂  dy dz 

Remark. ^Yrora. the form of the condition [31J it is obvious that 
if an equation A f = o is invariant under each of a number of groups 

Uyf, Uif •••, Uf,it is invariant under U f = aiUyf + a.,U.,f-y ••• 

-{- a^UJ, where ai, a.,, •••, a,, are any constants. 

* If \(x,y,z) is identically zero, in other words if (itA)p=oiot all functions /^ 
[31] is still a sufficient condition that C/f leave A p = o unaltered. In this case one 
cannot speak' of the equation (92); but writing the identity {C/A)f=o in the form 
U A f = A U f it follows that AU<j>i = o since UAtpi = C/(o) = o. Hence C/0i is a 
function 0j and 02 as above. 

t Using the method of the previous footnote, it can be shown that a homogeneous 
linear equation in n variables is determined, to within a factor by its n — i independent 
solutions. The argument of this section therefore applies without change to such an 
equation. .Hence [31] is the condition that A f — o, involving n variables, shall be 
invariant -under the group Uf^t,y —-+^2 —-t- •" -|-J„-5it- In 5 is essentially the 

3ĵ i 3ĵ 2 dxn 
same method for the case of two variables was carried out. 
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Ex. Determine which of the equations below are left unaltered 

by each of the following groups : 

, rif- 3/ , 5/ , df 
1. Uf=x-^-\ry^-y-A-

dx dy dz 

2. Uf^y^-^-x^-l. 
dx dy 

3. Uf=^%-^ixy^xz-yz)^{- + i2xy-f)%. 
dx dy dz 

4. Uf^xf-Vy%^z%. 
dx dy dz 

a. Af=xA-y.yf=o, 
dx dy 

b.Af^^%.Vy^^{-xy^I=o. 
dx dy dz 

c. Af^'-L + %+%=o. 
dx dy dz 

d. Af=xyA-^ar-Ay-ixy-y)A=o_ 
dx dy dz 

35. Method of Solution of Linear Partial Differential Equation In­

variant under a Group. — If the equation Af= o is invariant under 

Uf* 

[31] iUA)f=\Af 

i.e. Uf= o and Af=: o form a complete .system. Hence the methods 

of §§ 32 and 33 are available for finding one of the solutions oi Af = o. 

* While Uf=lp(x,y, z)4/'leaves Af= o unaltered for all forms of P(x,y, z), such 
a group is. said to be trivial because it is of no service in solving A f = o. W e shall 
presuppose that the group founder consideration here is not trivial. 
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Having thus found <^(je, j, z), a common solution of Uf=.o and 

Af—o, a second solution of A f = o may be found in the following way : 

Since ^ ix, y, z) is not a constant, it must involve at least one of 

the variables, say z. Replacing z by the new variable 

z=<l>ix,y,z), 

the equation and the group take the forms ([15], § n), 

Af= Pix, y, z)^- + Qix, y, z)^= o, 
dx dy 

Uf^^ix,y,z)^-\-y\ix,y,z)^, 

since A<f) = o and U4> = o. 

' Here P, Q, |, r[ are what P, Q, i, rj respectively become when in 

them z is replaced by its value in terms of x, y, z obtained from 

z = <f>ix,y, z). Here z plays the role of a constant since the coeffi­

cients of — in A f and Uf are both zero. To solve j4/=o we pro-
dz 

ceed to the corresponding ordinary differential equation 

Q dx — P dy = o. 

This is invariant under Uf. Hence the methods of §§ 12 and 20 

may be employed. 

Remark.—^When the usual Lagrange method (see El. Dif. Eq. 

§ 79) is practicable, it will, as a rule, prove simpler than the method 

of this section. As an exercise it may be desirable to solve the 

examples below by both methods. But the Lie method is of inter­

est theoretically and may prove valuable when the other method can­

not be carried out. 

Ex.1. A f = 2 x y ' A i — 2x?y-A-\-if—x^zA. = o_ 
dx dy dz 

The coefficients are homogeneous and of the same degree. Hence 

this equation is left unaltered by the group £ / s x-^-\-y -^-\-z-^ ; 

as a matter of fact, iUA)f^ 2 A f 
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By the method of § 32 or that of § 33, ^ is readily found to be 
zr 

the common solution oi A f = o and Uf= o. 
The transformation z = ^ reduces Af—o and Cfto-

Af^ 2 xy^-=^— 2 a^y A — o and Uf^^x^ -\-y 
dx dy dx dy 

respectively. The corresponding ordinary differential equation is 

2 Dry dx -y 2 xf- dy = o. 

Lie's integrating factor (or the obvious integrating 
2xyix--\-f) \ 

factor —) leads at once to the solution x^-yj^= const. Hence two 
xyj 

independent solutions oi Af^= o are -^ and x^-{-y'. 

Ex. 2. Af=ic^+f^yz)^-^+i:^^f-xz)%-+ixz+yz)%=o. 
dx dy dz 

Ex.3. Af=ix+y)%^ixVy)%--ixy-yy-2z)^-f = o. 
dx dy dz 

Invariant under Uf=ix-\-y)-A--\-ix-\-y)A--\-2z-A-^ as well as 
dx dy dz 

nnder Uf^xfy-y^-l + zf 
dx dy dz 

Ex.*. Af^ixz-y^f^+iy^-x)f^^i^-^f=o. 

Invariant under Uf^ x A +y-A 
dx dy 

36. Jacobi's Identity. — For further development of the theory it 

will be necessary to have available a certain identity first noted by 

Jacobi and known by his name : 

If Aif, Aif, A^f are three homogeneous linear partial differential 

expressions in any number of variables, 

(93) ((^1^2)^3)/+ ((^2^3)^l)/ + ((-^3^l)^2)/= O. 
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This may be verified directly in the case of three special forms, 

and also in the general case for two variables. This is suggested as 

an exercise to the student. 

Probably the simplest way to prove the theorem is the following, 

due to Engel: 

Since (^i^,)/ = AiAif— A i A f , 

iiAiAi)AP)f= AiAiAtf- AsAyAif— AiAiAsf^- A ^ i A f 

iiAiAi)Ay)f= AiAsAf-- A y A i A f - A^AiAfy- AyA^Aif 

iiA^Ai)Ai)f= A^AiA.2f- A i A ^ i f - AiA^Aify- AiAiAf. 

The sum of these is obviously identically zero. Hence the identity 
(93) is estabhshed. 

37. Linear Partial Differential Equation Invariant under Two 

Groups. — If the equation .4/= o is invariant under two distinct* 

groups U f and U f , 

[31'] i U i A ) f ^ X y A f iU2A)f = \iAf 

Jacobi's identity (93) for Uyf, Uif, Af is 

(( Uy Ui)A)f -f (( UiA) Ui)f + H A Ui) U p f = o. 

Using [31'] and obvious properties of alternants (§ 14), this 

becomes iiUyUi)Af ̂  p.Af 

where p. = Uyki — C^\,. Hence the 

Theorem. — If A f = o is itivariant under U f and U f it is also 

invariant under ( Uy Uif.\ 

* Two groups Uyf and Uif are said to be distinct with respect to the equation 
Af= o, provided no relation of the form 
(94) «! ̂ if+ "i Uify p (x, y, z)Af= o 

exists, where ay and Uj a-̂e constants and p is any function of the variables. For it is 
obvious that if Uyf leaves Af=o unaltered, if/, /=; c C/yfy- pAf Will also do so for all 
choices of the constant c and- of the function p(x, y,z). 

t This theorem holds, and is proved iti exactly the same way, (or n variables. 
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If (C^K)/is not of the form 

(95) «i U f -f 3, U.,f -f- p ix, y, z)Af 

where ai and «2 are any constants and p is any function of the vari­

ables, it is said to be distinct from U^f and Uif with respect to the 

equation A f = o. In this case the theorem gives a new group under 

which the equation is invariant. The theorem may then be applied 

to this new group and one of the original ones. And so on. 

Remark. — It is important to note that there always exists a linear 

relation between four homogeneous linear partial differential expres­

sions of the first order in three variables.* For eliminating -J-. -̂ , 

df '̂̂ ' ^ 
-J- from the four identities 

Uif^iy%+^yf+A 
dx dy dz 

U.f^t2'^+r,.2f+^if, 
dx dy dz 

the linear relation 

Tff=t df . 3/ . df 
c'3/= 63-;; r r}2^y^ t3^) 

dx dy dz 

dx dy dz 

Uyf il Vi il 

U f ii -qi î 

U^f is Vs & 

Uif it 174 L 

is obtained. In general the coefficients are functions of the variables. 

* Similarly, there is always a linear relation between n y i such expressions in n 
variables. 



124 T H E O R Y OF DIFFERENTIAL EQUATIONS §§37,38 

As a consequence we always have 

(96) iUiUif = alx, y, z)Uf-V"2ix, y, z)UfP-pix,y,z)Af. 

If it turns out that oci and «2 are constants, this is of the form (95), in 

which case iUfJ^f is not distinct from Uyf and Uif. 

Thus the equation Afs^ y^-\- ^= o is left unaltered by 
dx dy dz 

,Uifs(y- z)^ ^ni Uifsx^^ yx^^A + (2^y ^ pi)M^ 
dy dx dy dz 

since (UiA)fso, (UiA)f= — 2xAf. 

Moreover (UiUi)f= -(x-y)"-^y 2(y - z)(x -y)^ 
dy dz 

also leaves Ap= o unaltered, since ((UiUi)A)p=o. It is readily seen that 

(Uy Ui)pE, - A-A^ Uif- ^Ai^iA Uipy ^^^Aii^iAAp 
y — z X — y X — y 

Again 
(Ui(Uy U-i))P= [A(y- z)(x-y)y (x -yP] ̂ y 2(y-z)(x-2y y z ) ^ 

dy 32 

.[.ix-ynif^]UiPy ^[:-5^ + (:~5j)i -'f 

Lx—y \x—yj J 

also leaves A p = o unaltered, as is readily verified. And so on. 

38. Methods of Solution of Linear Partial Differential Equation 

Invariant under Two Distinct Groups. — Two important cases are to 

be distinguished : 

A. If a relation of the form 

(9 7) Uif= aix, y, z) Uif -h pix, y, z)Af 
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exists,* where a is not a constant, Uif is still considered distinct from 

Uyf. In this case aix, y, z) is a solution of A f = o. For, since 

A f ^ o is invariant under U f , ( UiA)f must be a multiple of Af. But 

(a Ui -I- pA, A)f= «( UiA)f- Aa. Uf- Ap Af 

= ia\i-Ap)Af-AaUif 

Since Uf is supposed to be not trivial, i.e. not a multiple of Af 

(§ 35), the only way in which i U A ) f can be a multiple of A f is by 

having A a = o. Hence a is one of the two independent solutions 

of ̂ / = o to be found, f 

T o find a second solution of A f = : o, several possibiHties may arise 

which will be mentioned in the order of desirabihty : 

I*" Since A f = o is invariant under U f , UiO. is also a solution of 

A f = o [(91), § 34]. If Uicc turns out to be distinct from'a, it may 

be taken as the second solution necessary to give the general solu­

tion of Af=^ o. 

2° If UiU, t is a function of a or a constant other than zero, two 

methods are possible: 

* A linear relation between Ap, Uyp, U-if will show itself by the vanishing of the 
determinant of their coefficients, thus 

A = 
p 
h 
?2 

Q 
VI 
Vi 

R 
h 
h 

Here q.̂  P̂-i - t!Vi _ RJi - Pjj _ PVj - Q^^ 
Qii-RVi Pii-Pii PVi-Qh' 

f Conversely, if a is a solution of Af=o and C/̂ fis a group that leaves the equation 
unaltered, 
[35] Uif=aUifypAf 

will also leave it unaltered no matter what be the form oi p(x, y, 2). For 

(UiA)f=(aUyypA, A)f= (a\i-Ap)Af 

since Au=o. [Compare (35) § 17.] 

J Since Uia^^aUia,-\- pAa = a Ui a, it is sufficient to consider UyU only. 
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(a) The solution common toAf=o and Uf=o (or C^/= 0) 

may be found by either the method of § 32 or that of § 33. Since 

Uin. =7fc o, this common solution will be independent of a. 

ib) Since a must contain at least one of the variables, say z, the 

introduction of the new variable z— a ix, y, z) in place of z reduces 

A f = o to one in two variables, 

• K^,y, z)-~+ Qix,y, z)^=.o, 
dx dy 

z appearing as a constant since the coefficient of -=^ is zero. (Com-
dz 

pare § 35.) But since U a ^ o, the above equation must be inte­
grated, without any further assistance from the groups Uif and Uif 
, 3" If U a = o, the method of § 35 is available ; thus the intro­

duction of the new variable z gives the same differential equation as 

above, but now the transformed group 

|i(*,J',^)|^ + ili(--^,J'>^)^ 

under which it is invariant also leaves z unaltered. Hence the 

methods of §§ 12 and 20 are available for solving the corresponding 

ordinary differential equation 

Q dx — P dy =̂  o. 

B. If no relation of the type (97) exists between Af, Uf, Uf, 

the Telation 

(96) ( U Ui)f= «i ix, y, z)Uf+ ai ix, y, z) U f + p ix, y, z)Af 

which always exists (Remark § 37), will prove of service if «i and aj 

are not both constant's ; for Ui and «2 are solutions of A f = o, as may 

be seen from the foUovtang consideration : * 

* By exactly the same kind of reasoning as that employed here, the following gen­
eral theorem can be established. (It is suggested that the student carry out the proof.) 

fft/ie equation in n -variables 
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By the Theorem of § 37, (^/j K)/leaves 4/"= o unaltered. Hence 

iiUiUP)A)f=p.Af 
But 

(«iUi ̂ a.2Ui-\-pA, A ) f = «,(UiA)f-y «.(U.2A)f- Auy U f 

-Aa.2U.2f-ApAf 

= (aiXi + u.2\i - Ap)Af- Aui Uyf-Aai U f . 

Since no linear relation is supposed to exist between Af, Uyf, U f , 

the only way in which i{UiU.iA)f can be a multiple of A f is by 

having Auy = o and Aoi = o. Hence Wi and a2 are solutions of 

A f = o.* 

1° If tti and «2 are two independent functions of the variables, the 

general solution of ̂ = 0 is known without any further work. 

2° If one of them, say a, is a function of the variables, while the 

other, «2> is either a function of Ki or a constant, use may be made of . 

the fact that Uay and Ĉ ai are also solutions oi A f = o [(91), § 34J. 

If either of these turns out to be a function distinct from «i, it may 

be used as the second solution. 

AfsPidLy.p.^df^ ... _^^__ df^^ 
3a;i 3j;2 dxn 

is invariant under r y l distinct groups Uif, Uif, ..., Ur+yf and if no linear relation 
of the type ^̂  ̂ ^^ ^̂  ̂ ^^^ _ _ _j_ ̂^ ̂ ^^^ p,4/=o 

exists bet-ween Afand r of the Ufs, but 

Ur+yf= ui u j y 0.2 u-ify - y a r u,fy pAf 

then Ui, Ui, ••-. Ur are solutions, of A f = o. 

* The student should have no difficulty in showing that, conversely, if «i and «2 
are soludons of A f = o, and f/i/and Uifaxa two groups that leave the equation unal­
tered, the group 
[35'] '̂ •̂ f= «1 '^t/+ «2'^2/+ M / 
will also leave it unaltered no matter what be the form of p(x,y, z). (Compare [35] 
above.) 

http://-Aa.2U.2f
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3° If both Uai and Uap" are either functions of oii or con­

stants, either of the methods (a) and ib) oi A, 2° may be employed. 

Or, 
ia) ii one of Uiai and Uay is zero, the method of A, 3° is 

available, 

[b) ii neither is zero, the group ?/= U u i U y f — UiOyUf leaves 

A f = o unaltered, and Fay = o ; hence case (a) exists. 

4° If both «! and â  are constants, say «, and 122; the solution com­

mon to A f = o and U i f = o, and that common to A f = o and 

U i f — o may be found by either of the methods of §§ 32 and 33. 

Moreover, these solutions will be independent since there is no 

linear relation connecting^/ U f U f (Theorem II, § 31.) W e 

shall show, by a method due to Lie, that an integrating factor for at 

least one, and sometimes for both, of the total differential equations 

arising in the method of § 33 can be found in this case. (But it is 

possible, at times, to f.nd by inspection, an integrating factor that is 

simpler than the one given by the following method) : 

In ( Ui K ) / = '̂1 U f - p ai Uif -\- pAf either ai and aj are both zero 

or they are not. 

ia) liai = ai = o, iUiUi)f=pAf 

Since Af= o is invariant under Uf, 

iUiA)f=\iAf 

If <^ix, y, z) is the common solution of Af=: o and .Uf^= o, 

Ui U4> = o, since ( U U)<l> = Uy Ui(j> — UiUyfj} = pAfjy = o ; 

AUi4> = o, since ( K ^ ) ^ s UiA^, — A Uicj) = \iA(f> = o. 

These identities can hold only provided Ui(f> is a solution of both 

U f — o and A f = ^ o ; i.e. U24> must be a function of <j>, say Ficf>). 

* In this case (6'iC^2)'''l will also be a function of Ui or a constant, inclilHing zero, 
because of (96). 
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Moreover Fi(j>) ^ o, for, as noted above, A f = o, Uif= o, K / = o 

cannot have a common solution, since they are independent. As 

was done in an analogous case in § 12, <f>, the common solution of 

A f = o and Uyf= o, may be chosen in such a form that Uicf> = i.' It 

must then satisfy the three equations 

A<j> = P ^ -
dx 

e ^ + i?§^ = o, 
dy dz 

Ui4>. ̂ ft|^ + ,i|^ + ^ i ^ = o, 
dx dy dz 

U i ^ ^ i i ^ + r,i'-± + ti^-±=r. 
dx dy dz 

These equations determine -2", ~^. -? ; whence <^ is obtained from 
dx' dy ' dz 

d4>=^dx-\-^idy + ^-idz 
dx dy dz 

by the quadrature 

' A 

dx 

P 

il 

dy 

Q 

Vi 
, where A = 

P 

il 

i2 

Q R 
Vi il 

m & 

In exactly the same way, xp, that form of the common solution of 

Af=: o and Uif ̂ o for which Z7ii/' = — i, may be obtained by the 

quadrature 

'/' = 

J i 

dx 

P 

& 

dy 

Q 

v. 

dz 

R 

L 

The determinant A is thus seen to be an integrating factor for each 

of the total differential equations arising in the method of § 33 for 

finding the two independent solutions of A f = o. 
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ib) Ii only one of ai and ai is zero, let «2 = o- Then 

iUiUifsaiUf+pAf 

In precisely the satne way as before, it is seen that, if 4 i* the 

common solution of A f = o and U f = o, Ui<l) = Fi<(>) ̂  o. Hence 

that form of <̂  for which Ui4> s i is given by the ĉ uadrature 

• J t 

dx dy dz 

P Q R 

Vi 4i 

To find a second solution of A f = o, independent of <̂ , either the 

method of A, 3° may be employed, or the common solution of 

A f — o and U i f — 0 may be found by one of the methods of §§ 32 

and 33. 

(<r) If both ai and ai are different from zero, consider the two 

groups F f = a i U f + aiU2fand U f 

These are obviously distinct and leave Af = o unaltered. More-

°^" iVUi)f=ayVf + aipAf 

We are thus' under case ib) and the method for that case may be 

employed, 
Î ote. — F o r practical purposes it may be worth noting, that the 

choice of the groups U f and Vf=ai U f -\- ai U f also leads to 

case ib). 

Remark i. — A hasty survey of the processes involved in the 

methods to be employed in the various cases considered in this sec­

tion, brings out the fact that when two distinct groups are known 

under which the equation A f = o is invariant, the solution of the 

latter can be obtained by means of quadratures only, except in the case 

of A, 2°, where one ordinary differential equation of the first order 
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must be solved. In certain cases, such as A, 1° and B, 1° and 2°, no 

integration whatever is required. In the above scheme, certain alter­

native methods involving the solution of differential equations have 

also been suggested, for in certain cases these processes may' prove 

simpler of execution than those involved in carrying out quadratures. 

Remark 2. — It is easy to prove the existence of a pair of groups 

U f and U f under which A f = o is invariant, and for which no 

linear relation of the form (97) holds. For A f = o has two indepen­

dent solutions <̂i and <̂ 2- These are independent with respect to 

at least two of the variables, say x and y. Introducing the new 

variables . ̂  .. . / ^ 
X = <l>iix, y, s), y = <i>.2ix, y, z), z = z, 

Af = o takes the form 

A f ^ A x f + A y f ^ A z f = o, 
dx dy dz 

df 
or A- = °-

dz 
By inspection Z7]/= -A and U o f = A - are seen to leave the differ­

ential equation unaltered. Moreover there is obviously no linear 

relation between -A^ A , A-. Passing back to the original varia-
dx dy dz 

bles, A f = o will be invariant under the groups Uyf and U,f into which 
U f and JZ./ are transformed, and no linear relation can exist now. 

Ex. 1. Af=ix+y)^+ix+y)^-ix-yy-y2z)^^=o. 
dx dy dz 

This equation is invariant under 

. . ^ 3/ , s 3/ df ^ 
Uf^ix+y)£ + ix+y)A + 2zA^^^ 

Uif = zix-Py)''f^ + zix+y)'^£+\iixy+2z')ix-yy!) + yxyz]^£, 

as may be verified easily. 
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H ere A =- o, and Uf=iyz -\-zx-P xy) Uf — xyAf, iA). 

yz -\-zx-\- xy is a solution of Af= o. 

Moreover Uyiyz-j-zx-\-xy)^4iyz-\-zx-yxy)-\-ix—y)' is also a 

solution (A, x°). 

Taking account of the first solution, the second one may be 

replaced by x — y. Hence the general solution of Af= o is 

^iyz -\-zx -\- xy, x — y) = o. 

Ex. 2. Af=ixz-y)^ + iyz-x)^-\-ii-z^^ = o. 
dx dy dz 

This equation is invariant under 

Uyf^xf^yfand 
dx dy 

Uf=ix'-yy')^-]-.xy^^-yir -s^^-
^ ^ -^'dx ^ dy ^^ 'dz 

A s 0, and Uif= (x -yyz) Uyf—yAf. 

X -\-yz is a solution of Af =: o. 

Moreover U^x -\-yz) = x -pyz ^ o (A, 2°). 

To find the solution common to Af=o and Uf^=o the method 

of § 33 requires the solution of the total differential equation 

j(i — ^)dx — xii — ^)dy -Piy' — xP)dz= o. 

An obvious integrating factor is , leading to the 
, . (j^ —x-)(i — Z') 

solution -̂̂  •'̂  ' 
log [ y ) = const. 

\x — y 1 — z ) 
X -y yz-\-y -\- xz 
or ^ ^ — A ^ = const. 

x-yyz — iy -\- xz) 
The left-hand member of this is, therefore, a second solution 

oiAf = o. 

file://-/-zx-P
file://-/-zx-/
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Taking account of the first solution, the second one may be 

replaced by j'-|-s.v. Hence the general solution of Af=o is 

'$(.!• -\-yz, y -\- zx) = o. 

Ex 3. Af=ix+y)^y-ix+y)^-ixy-y-^2z)^ = o. 
dx dy dz 

Uf^ ix -H j')f + ix+y)f+2zf. 
dx dy dz 

df 
Uf=ix-y)ix+y+yz)^-

Ex. 4. Af=ix+y)^y-ix + )i)^-ix+y+2z)^ = o. 
dx dy dz 

Uf^ix+y)^J^y-ix-+y)^^-^2zf. 
dx dy dz 

TT.tr 3/ , 3/ , df 
U f = X f--py f- + z At' 

dx dy dz 

Ex. 5. 4/^l^ + f+ f = 0. 
dx dy dz 

Uf=iy-z)f. 
dy 

Uf = x?f+x'^^ + i2xy-f)^-
dx dy dz 

Ex. 6. Af= ixz-y) f^ -f (j2 - ^)|^-f (i - z^^I= o. 
dx dy dz 

Uf^y%^-x%. 
dx dy 

Uf^ix'^f)'l^2xy%-yir-^)%^. 

http://TT.tr


CHAPTER VI 

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND 
ORDER 

39. Differential Equation of the Second Order Invariant under a 

Group. — The differential equation of the second order 

(98) y'=^(^-,j',j'') 

is equivalent to the system of equations of the first order * 

, ^ dx ^y _ <iy' 
^̂ ^̂  ' A ~ ' y ~ F i x , y , y ' ) ' 

If the solutions of the latter are 

(100) u ix, y, y') = a, vix, y, y') = b, 

the solution of (98) may be obtained by eliminating y' from the two 

equations (loo).t 

Instead of solving (99), one may find u and v as two independent 

solutions of the corresponding linear partial differential equation \ 

(loi) Af^ -f- ^-y' ^ + Fi.r, y, y') ^ = o. 
dx dy dy 

The problem of solving (98) is thus reduced to thfit of finding two 

independent solutions of (loi). 

If (98) is invariant under a group Uf, the equivalent system (99), 

involving the three variables x,y,y', is invariant under the extended 

* El. Dif Eq. J 63. 
fTlie equations (loo) are two independent first integrals of (98). (See {52, 

Theorem IV.) t Ĵl- Îif- P-1- h 79-
134 
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group Uf. Thfe effect of Uf on 11 and v is, therefore, to trans-

fortn them into some functions of themselves ; i.e. U'u = 4'î h 'v), 

U'v = ipiu, v). Hence the linear partial differential equation (loi) 

having // and v for solutions is also invariant under £//(§ 34). 

Consequently the method of § 35 may be employed to find u and v. 

Remark. — Since the invariance of (98) under Uf implies the 

invariance of (loi) under the extended group, and conversely, it 

follows from the remark of § 34 that if (98) is invariant under each 

of a number of groups Uyf, U f ••-, U,.f, it is invariant under the 

group U f ̂  a i U f - \ - a i U f - y ••• -\-a,.U,.f, where â , ai, •••, a,, are 

any constants. 

This remark applies without modification to a differential equation 

of any order, because the form of the condition [31], § 34 is inde­

pendent of the number of variables appearing in the linear 'partial 

differential equation A f ^ o. 

Ex. 1. xyy" -f- xy" —yy' = o. 

This equation is invariant under C / s x-A -yny-A for any value 
dx dy 

of n (VI, § 28). In particular it is left unaltered by C / s x -A y-y A.. 
dx dy 

Here ^ / ^ ^ ^ ,,,y ̂ /(.r-^Z) j ^ ^ ̂ . 
dx ' dy xy dy 

Uf^x^l-Py^. {UA)f=-Af 
dx dy 

For the method of § 3 2 * use may be made of the fact that 

u = ^, v = y ' are solutions of U f = o. 
X • 

* The method of § 33 requires the solution of 

dx dy dy' 
y'(y — xp 

xy 
y ° 

The evident integrating factor ? leads to the solutlofl ̂'̂— = const. 
y'(y-xy') X 

(y-xy'A-y-A^y'Atyiy'), 
^ X y 1 
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Au^^-l:^, Av^y'^y-'^y'^ 4?^=-^'=-5^. 
x' xy Au y u 

dF V dF „ vv' 
Equation (86), § 32 is 5 ^ - ^ ^ = o. .F=uv = ^ -

Introducing the new variable 

y' = ^y-, whence y' = —, 
X y 

,, 3/- , xy'df rrr df ^ df 
Af=Ar + ̂ ^ A = ° , Uf^x-P-y-yf--

dx y dy dx dy 
x'y! —f or xyf —f is readily found to be the solution. 

Eliminating j'from ^ = a and xyy' —y'= b gvtes 
x 

an?—j^ = i5 

as the solution of the original equation. 

Compare this method with that of § 27 or of § 28, I', Remark. 

Ex. 2. jj;"-fj'-=i. 

Since x is absent, this equation is invariant under &/s -^ 

(I', § 28). .Here 

Af^'f-y-f'f--yl^^^=o, Uf^f, iUA)f^o. 
dx dy y dy dx 

By either of the methods of §§ 32 and 33, the solution common to 

Af = o and Uf= o is easily found to he yA i — J''"-

Introducing the new variable 

y' =j;Vi —J''', whence y' = ̂ ^ — , 
y 

•̂  dx y dy dx 
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The corresponding ordinary differential equation 

dx^ 
ydy 

Vj'̂  — ̂ ' 

has for solution x — ^ f — y" = const. Passing back to the original 

variables this becomes x —yy' = const. Ehminating j;' from 

j'Vi — y " = a and x —yy' = b, 

gives as the solution of the original equation 

f-- ix - b)'= a'. 

-. Ex. 3. y" =y'^ -I- I. Ex. 4. Jt^j'" -|- ixy' - y ) ' = o. 

Solve examples of § 28 by the method of this section. 

40. Differential Equation of the Second Order Invariant under 

T w o Groups. — Since, if the two groups C ^ a n d C ^ leave 

(98) y" = Pix,y,y') 

unaltered,* the corresponding partial differential equation 

(-^) ^/-| + -''f+^(-'^'^')|=° 

is invariant under the extended groups Uif and Uif, the methods of 

§ 38 may be employed to solve (98). 

Ex. 1. xyy" -\- xy" —yy' = o (Ex. i, § 39). 

This equation is invariant under £^/= x -^ +y4~ ̂ tid Uf^. y 3--

Here ^y,, 9/ , y^/, yCy-^/) 5/^ ,. 
dx dy xy dy' 

*Then (98) is also invariant under Uf=aiUyfy aiUif •{p.&m-^xV., § 39). It is 
pos-sible that Uf may assume simpler forms than Uyf or Uif for certain choices of 
the constants ai and a.2. 
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y'(y-xy') 

140 

r y 

X y 

o y 

xy 
o 

y' 

= 2y'iy— xy')^o. 

iUiUi)f=o. 

Hence the method of B, 4, (a), § 38 apphes. The solution com­

mon to Af— o and U-if= o is 

dx dy dy' 

y'iy - xy') 
xy 

X y o <̂  = 

J 

I y 

J X y y X 

iA 

The solution common to A f = o and U i f = o is 

dx dy dy' 

,/ y'iy-xy') 

^ = 

J 

I y 

o y 
xy 

A 

= log 

iA 

y -,-'-\dx 
y'dy ydy' 

• xy' x) y'iy — xy') y'iy — .vy') 

A » 
xiy — xy') 

The general solution of the original differential equation of the 
yy 

second order is found by ehminating y from ^^ = a and 
X 

-Al—-AA = ,5 to be ax' — ^ = c , where c = ab. 

* The method of § 32 is also available for finding these common solutions. 
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Ex. 2. y" = Pix)y' + Qix)y + Xix). 

If j'=j'i andj'=j'o are particular solutions of the abridged linear 

equation y" = Py' -f Qy, the general linear equation is invariant 

under U f = y i ^ and K/sj-o |^(§ 28, VII, Note). Here 

^^- y^Ty^ y^%" 

^^- y'¥y+ • y'^" 

where j'l' and j-j' stand for -A^ and - ^ respectively. 
dx dx 

A ŝ ij'o' — j'2ji' ̂  o, since the two particular solutions are sup­
posed to be independent. 

iUi'Ui')f^o. Hence method of B, 4°, (a), § 38 applies. 

Since y = yi and y =y.i are solutions of the abridged linear equa-

^'°"' yA = Pyi + Qyi and yA = Pyi + Qi, 

whence j>=yiyA-y.yi^^^ Q^yiyA-y-lyA. 

Introducing these values in the expression for the solution com­

mon to A f = o and U-lf= o, 

dx 

I 

0 

dy 

y' 

' yi 

dy' 

Py'+Qy+X 

yl 

we have 

"Oi'j'A-jiyA'-j/ij 

iyiyi -y-iyA)' 

^ ^ rfa'j'A -yiA^' -yiyiyjyi -yJy-AWx -yj^dy+yy^dy' 

yiX 

yiyi-y^yl 
dx. 
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Noting that -yiyiyi'yi' -yiyJ') = -yiy^'+yiy^', the first quad­
rature is readily effected, thus giving 

X ̂  yiA -yiy. C__yAA ^̂ _ 
yiyi — ytyi -̂  yiyi- yiy I 

Similarly, the solution common to Af = o and K/= o is 

y.X ^ ^ yiA-yjy C y 
yiy-l - yiyi A y.,yi' — yiyi 

-dx. 

The general solution of the original equation is found by eliminat­

ing y' from <)> = Ci and f = Cito be 

y = Ciy'i -I- Ciyi -J'l (—yp^ dx-^yA Ai dx. 

Note. — It is an interesting fact that this form of the solution is 

exactly that obtained by the method of variation of parameters 

iEl. Dif. Eq. § 49) from the complementary function j = Ciyi -y Cjj'z, 

as may be easily verified. 

Ex.3. A'=Py'AQ.y. 
This equation being homogeneous in y, y', y", it is invariant under 

6^/sj—(HI, § 28). Moreover, if j=j'i(x) is a particular solution, 
dy ^, 

the equation is also invariant under K/sji-=^(§ 28, VIII, Note). 
dy 

Here A f = f+y'^-l+iPf y- Q y ) f = o, 
dx dy dy' 

uf^y%+y^„ 
dy dy 

rf<f=.y, dl,^,dl 
'-'if =y\ -̂  ŷ  y\ ̂ r-\ 

dy dy 
A =yy.l -y'y^ ̂  O, ( U^ U^)f= - U f . 

Hence the method of B, 4°, ib), § 38 applies. 
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The solution common to Af=o and U'f^o is given by that 

method in the form 

^^ Ar'j'i' - PyiA - Qyyy)dx-yidy y-yidy 

^ yyi-yii 

Replacing ^j'l by its value yi — Piyi, this quadrature is readily 

effected, giving 

</. = - log(j':vi -yyi')+j'pdx. 

A more convenient form for the solution is 

e-i' = $ =^~-''^*'(j''j'i—jj'i'). 

To find a second solution of Af = o,- introduce the new variable 

f. I , ! \P<tx 
I -\pdx, I i\ -u I y)'\ + ye' 

y' = e ' (j'j'i—JJ'/), whencej''=-i=^^—-^ , 
yi and A f = o takes the form 

. ' !_,.'>*' jl̂ y - d f ^ yyy'-i- y'e' 3 / ^ ^_» 
dx J'l dy 

The corresponding ordinary differential equation 

^.-yly-UA^^o 
dx yi yy 

is linear with the obvious integrating factor — • Its solution is 
J'l 

y --̂ "'̂  
dx=^ const. 

yi ' ' 

* Here y' appears as a constant, (̂  35). 
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The general solution of the original differential equation is found 

by eliminating y' from 

> = a and -̂  — <E» j -
V, J 

jPdx 
$ = a and -̂  — <E» ( -—- dx = b 

yi '̂  yi 

py"'' 
to be y = ayi I —- dx y- byi. 

J yi 
Note. — This is the same form of the solution as is given by the 

usual method iEl Dif. Eq. § 53, 1°). 

Ex. 4. j'j;"-|-j'== I (Ex. 2, § 39). 

This equation is also invariant under U f ̂ x - ^ - y y-i--

Ex.5. y"=y'.y-r. ' 

Since x and y are both absent, two available groups are 

Ex. 6. .«rjj/" — (xj/—j')^ = o (Invariant under VI for all values 

oin; hence under III, III', IV, etc.). 

Ex. 7. ix:' -Py')y" + 2 (J - xy') (i -^y") = o (Ex. 2, § 28). 

Ex. 8. x'y'' -f x'-y" — 2 xy' -\-2 = o. 

This equation is invariant under I and III'.-

41. Other Methods of Solution. — By making use of the properties 

of what Lie calls r-parameter groups of infinitesimal transformations 

(§ 43) the method of solving a differential equation of the second 

order invariant under two groups can be modified so as to be con­

siderably simpler both as to the number of cases to be distinguished 

and as to the actual processes involved in obtaining the solution. 

A brief study of these groups will be made in this chapter, leading 

to the methods of solution in §§ 46 and 47. 
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42. Number of Linearly Independent Infinitesimal Transforma­

tions, that Leave a Differential Equation of the Second Order Unaltered, 

Limited. — Since a differential equation of the first order always has 

an mtegrating factor, in general, iEl. Dif. Eq. § 5) it is left unaltered 

by an indefinite number of infinitesimal transformations, the general 

expression for whose symbols involves two arbitrary functions (§ 15). 

O n the other hand, a differential equation of the second (or higher) 

order is, in general, not left unaltered by any infinitesimal transforma­

tion (see Note IV of the Appendix), although some of them are. 

W e shall prove the 

Theorem. — A differential equation of the second order cannot be 

left unaltered by ttiore than eight linearly independent* infinitesimal 

transformations. 

Suppose that the equation 

(98) y" = Fix,y,y') 

is invariant under the nine linearly independent infinitesimal trans­

formations Uif, Uif, •••, Ugf it is also invariant under 

(102) Uf=aiUif-Ya.2U^+ - •^a,U,f=i^^ + r,^ 
dx dy 

for all possible choices of the constants ai, a,, •••, a^ (Remark, § 39). 
It is a well-known theorem in the Theory of Functions that, in 

general, a unique integral curve of a differential equation of the sec­

ond order and first degree (98) passes through two points, lying 

within a definite region determined- by (98). Suppose that Py, Pi, 

/ j . Pi in Fig. 5 are four points such that each of the six pairs that 

can be formed of them determines a distinct integral curve of (98). 

The nine constants ai, tti, •••, a^ can be so chosen that (102) leaves 

* A. set of infinitesimal transformations Uyp, Uip, ..., UrfiB said to be linearly -in­
dependent if there is no linfar relation, with constant coefificients, connecting their 
symbols; i.e. if it is impossible to find a set of constants Cy, ĉ , •••, Cr such that 

Ci Uif+ Ci Uif+ ••• + Cr Urf=0. 
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each of these four points unaltered. For, if their coordinates are 

respectively (xi, yi, ixi, y^, (xj, jg), («4, y^), the requirement for this 

is the simultaneous satisfaction of the eight equations 

i (Xj, y,) = aiiiix,., yi) -\- a^iXj, y i -\- • 

v(Xi, yi)= aivix,-, y i + ai^Px^, y,) + -

C/'= 1,2,3,4.) 

+ asii(Xi, y,)= o, 

-+ t̂ v̂ip̂ i, y,)= o, 

These equations determine finite values of the ratios of eight of the 

a's to the ninth one (excepting possibly for peculiar choices of the 

four points, which can be avoided) 

because of the linear independence of 

the nine transformations. 

With the a's thus chosen, the trans­

formation (102) leaves the four points 

-Pi, -P2, -Ps, P i unaltered and, therefore, 

also the integral curves determined by 

any two of the points, since integral 

curves are transformed into integral 

curves by a transformation which leaves 

a differential equation unaltered, and the four points were so chosen 

that through any two of them passes a unique integral curve. Thus 

through each one of the points, e.g. through Pi, pass three of these 

invariant integral curves. The point Pi on these being left unaltered 

by (102), their slopes at this point, which may be designated by j'12', 

yA, yA, respectively, are also left unaltered by it. Hence if t] is the 

coefficient of -^ in the extended transformation corresponding to 

(102), it follows that 

(103) ,'^|z+(a3_3iy_3| 
dx \dy dx) dy 

for x = Xi, y = y i , y'=yA, y-ti, yA- Letting a, b, c be the values 
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.^r dri d-n di di • , , , s 
a^' S^^a^' ~ ^ respectively when x = xy, j^ji, (103) gives 

the three relations , l 1 , i--, 
a -\- byyi 4- cy-yi- = o, 

a- + byA + cyiA' = o, 

a + byA + cyA' = o. 

Since the determinant of the coefficients 

Jt'12' J'l '•' 
T V ' 1' " 
-•- J13 J13 
I J'u' J14" 

= (j'13' - y A ) i , y A ~ y A ) i y A - y ^ A ) 

is different from zero, a = b=^ c = o. Hence 1/'s o for every integral 

curve through Pi, whence every integral curve through Pi is invariant* 

under (102). 

In exactly the same way it can be shown that every integral curve 

through each of the other points Pi, P^, P^ is left unaltered by 

(102). 

If P is any fifth point in the region containing Pi, Pi, P̂ , Pi, it 

will lie upon at least two f integral curves each of which passes 

through one of those points. These integral curves being invariant, 

the point P is left unaltered by (102). In this way every point 

of the plane (with, perhaps, exception of certain points determined 

by the differential equation) is found to be left unaltered by (102). 

The latter must therefore be identically zero ; d.e. 

aiUf-{-aiUif-\- ••• -{-a^Uf=o. 

* This follows from the fact that a unique integral curve of a differential equation 
of the second order is, in general, determined by the conditions that it pass through 
a given point (x, y) and have a given slope y' at that point. 

flip does not lie upon any of the Six integral curves determined by the four points 
(which is the general case), this number is four; it is three if P is on one of these 
curves, and two if it is at the intersection of two of them. 
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Hence any nine infinitesimal transformations which leave a differen­

tial equation of the second order unaltered cannot be linearly inde­

pendent. This proves the theorem. 

The differential equation j'" = o is a simple example of an equation 

that is left unaltered by the maximum number of infinitesimal trans­

formations. For, since its integral curves are the straight lines of 

the plane, J = a.T-)-^, it is left unaltered by every projective trans­

formation ^̂  ̂  «̂ a: -f ajy -f- a^ ̂  _ ̂ ^ ̂  ajX + a^yy-a^ _ 

a-ix-[-a^y-\-ai ^ a^x-p â ŷ-y a^ 

In Note VI of the Appendix it will be seen that there are eight 

linearly independent infinitesimal projective transformations. 

Remark. — In the case of a differential equation of higher order 

than the second, the following theorem holds : A differential equation 

of the nth order in > 2) cannot be invariant under more than « -f 4 

linearly independent infinitesimal transformations. A proof of this 

theorem may be found in Lie, Continuierliche Gruppeti, pp. 296-298. 

As in the case where « = 2, a differential equation of order « > 2 

is in general not left unaltered by any infinitesimal transformation. 

O n the other hand the differential' equation j*"' = o, ?? > 2 is 

invariant under each of the n -y y transformations (Examples, § 26) 

3/ 3/ 3/ 3/ 3/ ,3/ „_i3/ ,3/ , . , 3/ 
p--, P-, x f - , y-f, X f-, x-f-, ..., x" -̂̂ . op-J--Pin- j)xy^-
dx dy dx dy dy dy ' dy' dx dy 
43. r-parameter Group of Infinitesimal Transformations. — Start­

ing with a set of infinitesimal transformations Uyf, U f ••-, U,.f, the • 

infinitesimal transformations, whose symbols are obtained from these 

by applying the alternating process to them in pairs, may or may not 

be linearly independent of them. 

Thus, if U y p = % , U.2p=x%, Uv,p=x-^^-, 
' dx -' dy dx 

the transformations (UiUP)f=^-, ( U i U A f = 2 x % , ( U o U P , f = - x ^ ^ 
dy dx ^ " •' dy 

are all independent of them. 
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On the other hand, if 

the transformation 

( U-2L'Plf= x ^ -(x y y ) ̂ f is independent, 
dx ^ ^' dy 

while (UiU-y)f=U.2f, (UiUP)f= Uyf- Usf 

Finally, if Uif^x^-yf^, ^2/..|. :/./..|. 

none of the new transformations are independent of them; for 

(UiUi)f=2Uif (UiUP)f=-2U:f, (UiUP)f=UiP 

The case where none of the new transformations are linearly inde­

pendent of the old ones is of special interest. If r linearly inde­

pendent infinitesimal transformations Uyf, Uif •••, U^f haj'e the 
property 

(104) iU,Uif= a,.iUyf+ a,,iUJ+ - + a„,UJ, (/,/= i, 2, - r), 

where the a's are constants, the aggregate of these and all thfe trans­

formations U f = ayUyf-<r a-iUf-P ••• y- a,U,f where thê 'g a's are 

any constants constitute an r-parameter group of itifinitesinjial trans­
formations.* t 

Remark i. — A n r-parameter group of infinitesimal trawfon-nations 

is determined by any r of its transformations which are lin-.early inde­

pendent, since the symbols of all its transformations can be exp-iressed 

linearly with constant coefficients in terms of any r independent onO=s. 

Moreover it is readily seen that any set of r linearly independent 

transformations of the group have the property (104). 

* In Note VI of the Appendix an V-parameter continuous group containing both 
finite and infinitesimal transformations is defined. The intimate relation between these 
two classes of groups is brought out in Lie's Principal Theorem at the end of the Note. 
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Turning our attention now to the transformations which leave a 

differential equation of the second order unaltered, we shall first prove 

Theorem I. — If a differential equation of the second order is in­

variant under Uyf and Uif, it is invariatit under iUflijf 

For, if U-if and Uif leave 

(98) f = Fix,y,y') 

unaltered, the extended transformations Uf and Uf leave 

(loi) Af=^^^ + yf + Fix,y,y')^ = o 

unaltered. By the theorem of § 37, iUy U-Af or its equal ifJiUi'f 

(see Note V of the Appendix) leaves A f = o unaltered. Hence 

Theorem I foDows.* 

In § 42 it was established that the number of linearly independent 

infiniteSinial transformations that leave any differential equation of 

the secr^nd order unaltered is limited. If in the case of a given 

differential equation this number is r, all the infinitesimal transforma­

tions le3-'ving the differential equation unaltered are linear functions, 

with i_anstaiit coefficients, of any set of r Hnearly independent ones 

Uif U i ^ - , UJ. By Theorem I iU^Upf for i, j ^ i, 2, •••, r, 

must also leV^s the differential equation unaltered. Hence they, too, 

are linear fijtPctions with constant coefficients of the set Uff, K / •••, 

U J . T he letter therefore have the property (104), and w e have thus 

establishF-=ti 

TL'HEOREM II. — The aggregate of all the infinitesimal transforma-

t/dons leaving a given differential equation of the second order unaltered 

constitute an r-parameter group. Here o < ' r < 8 . | 

* This theorem is true for a differential equation of any order, and is proved in the 
same way. 

t The same theorem is true for a differenti.il equation of the w-th order, where « 1> 2. 
In this case o < r < « -|- 4. 

http://differenti.il
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It is possible that a smaller number than r, say s, of linearly inde­

pendent infinitesimal transformations in an r-parameter group deter­

mine a group ; the latter is known as an j-parameter subgroup of the 

larger group. 

The four transformations 

Uif=x^, Uif=y^, UJsax%, Uif=y^ 
dx •' ^ dx ^ dy • dy 

determine a four-parameter group ; for they are linearly independent, and besides 

(UiUi)f=-Uif (UiU-Pif=UJ, (UiUi)f=o, 

( Ui UP)f= Uif- Uyf ( Ui U P f ~ - Uif ( i/3 Ui)f= Uzf 

Of the subgroups of the four-parameter group the following are immediately 
obvious ; 

The two-parameter subgroups Uyf, Uif; Uif, Uaf; Uyf, Uif; Uof, Uif; 
Uzf Uif 
The three-parameter subgroups Uif, Uif, Uif; Uyf, Usp, Uip. 

Uf^.x'if-—y~I-^LUip~ £4y;,also a transformation of the four-parameter 
dx dy 

group, determines with U.2f and Uzp a three-parameter subgroup, since 
( UUi)P= -2U.2f ( UUPiP= 2 Uzf ( Ui UPiP= - Uf 

Remark 2.— Starting with two or more linearly independent infini­

tesimal transformations whicb leave a given differential equation of 

the second (or higher) order unaltered, a group of infinitesimal trans­

formations is determined which is either the r-parameter group of 

Theorem II or a subgroup of it. 

For, let Uyf U f , ••-, U f , (2</^<r) be a set of hnearly inde­

pendent transformations which leave the differential equation of the 

second order unaltered. By Theorem I, iU^U^f, ii,p=.i, 2, •••, k) 

, also leave the differential equation unaltered. Some or all of these 

may be linearly independent of the original ones. Let k' oi them 

be such. W e know that k -\- k'^8. Adding these to the original set, 

combine the larger set in pairs by the alternating process as before. 
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The resulting transformations also leave the differential equation un­

altered. If any of these are independent of the members of the 

larger set, add them to the latter, thus forming a still larger set of 

linearly independent transformations leaving the differential equation 

unaltered. Proceed with this set as before. Obviously this process 

must be a finite one, since the maximum number of members of a 

set is eight. So that, the above process stops when no new trans­

formations independent of the previous ones arise as a result of the 

alternating process. If the number of independent transformations 

finally appearing is r, the r-parameter group determined by them is 

precisely that of Theorem II ; if the number is j < r, the j-parameter 

group determined by them is a subgroup of the other. 

W e shall prove 

Theorem HI. — Every r-para-meter group ir'> 2) contains two-

parameter subgroups.* 

As a matter of fact we shall show that, fixing upon any one of the 

transformations, say U f , a set of r — i constants c,, ĉ , ••-, c, can be 

found such that 

Uif and Uf=CiUfy-c,Uj+ ••• -P c,UJ 

constitute a two-parameter subgroup ; it being understood that the 

r-parameter group is determined by U f , U f , ••• UJ, which are, 

therefore, subject to the conditions 

r 
(104) iU,Ui,f= ^aij^UJ, ii,j= I, 2, •-., r). 

4=1 

In order that this be the case 

(los) iU, CiUfP- c,UJ-P - + c,UJ)= aUyfy- biciUJ-̂  c,UJ 

+ - -F c^UJ). 

* This theorem and its proof hold, without modification, for groups involving n 
variables. 
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Since (̂Uy, X'^Ujy=^elUiUpf=^Cj-^a,,UJ, and since 
j=̂  i=-i j=2 i=i 

U J , U J , •••, U J are linearly independent, (105) can hold only in 

(106) r r 
^Cjayji = a, ^fj-a^i = bc^, (/i = 2, 3, • • •, r). 

Conversely, if ro, ĉ , can be found to satisfy r equations of the 

type (106), where a and b are any constants, and not all of the c's 
r 

zero, the group U f = V(r,t^./will determine with U f a two-param-

eter subgroup ; for in this case 

iUiU)f=aUf+bUf 

That such a set of r's can always be found may be seen as follows : 

T h e last r — 1 equations of (106) are the linear honiogeneous equa­

tions 
•(a,22 — b)Ci-y ay^iCz -I- ••• 4- ai,^,. = o, 
«I23'̂ 2 + («133 — '̂)<̂3 + • • • + «lr3<̂r = O, 

(107) 

'tur'̂ 2 + aiSr<^3+ ••• + i«lrr — )̂'̂ r = O-

These can be solved provided b satisfies the equation 

(108) 

^122 ~ 

«12r '̂ ISr 

This equation necessarily contains b, since the coefficient of b'''̂  is 

(— !) ' • " • ' Using any value of b satisfying it, the c's are determined 

to within a c o m m o n factor (which is not essential), b y solving (107). 

T h e value of a is then determined b y the first equation of (106). 

Thus Theorem III is not only proved, but a method for finding the 

two-parameter subgroup is also given. 
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The transformations 

Uif^^, UiP^f, U J ^ y f y x f 
dx dy dx dy 

determine a three-parameter group, since 

(UiUi)p=o, (UiUi)f=UJ, (UiUP)f=UJ. 

Inspection shows that J/j/and C/2/determine -a. two-parameter subgroup. To 
find another two-parameter subgroup of which t/3/is one of the determining ele­
ments, the method of this section may be employed. The constants ci and cj 
must be so determined that 

(Uz,ciUiyciUiyf=aujyb(ciUifyciU2f), 

i.e. - ciUif-CiUif= aUafy bciUjy bciUf. 

.-. (2 = O, bci y Ci ̂ = O, bci y Ci^^Q. 

In order that the last two equations be consistent, b must satisfy the equation 

b'^-\= o, 

whence br=.yi and — = y\. Hence 
Ci 

dx dy dx dy dx dy dx dy 

are two two-parameter subgroups of the original group. 

44. Classification of Two-parameter Groups. —• If a two-parameter 

group is determined by Uyf and U f 

iUiUi)f=aiUif-PaiUf. 

Either both ai and ai are zero or they are not. In the latter case it 

is alvvays possible to find A pair of transformations to determine the 

two-parameter group for which one of these constants is unity and 

the other zero. For, if fli =?̂  o 

VJ=Uf+'AUif 
«i 

Vf= A u f 
a. 
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are Hnearly independent and 

iFiFif= Ff* 

Moreover, if for any pair of linearly independent- transformations 

U J and U f of a two-parameter group 

iUiUiy=o,f 

this is true for every pair, since 

(^1 Ui -I- Ci Ui, bi Ui -P bi Uif = icibi - Cibi) i Uy UPf = o 

for all choices of constants Ci, c,, bi, bi. Hence every tivo-parameter 

group can be represented by a pair of transformations U f and U f 

such that either , rTT7\j- 1 tt Tr\ j- tt j: 
(UiUi)f s o or (UiUif= UJ. 

These two possibilities are tnutually exclusive ; any group can come 

under one head only. 

A second mode of classification is suggested by the following : 

If a two-parameter group is determined by C ^ a n d £ ^ which are 

connected by a relation of the form 

(109) Uif = pix, y) UJ 

where pix, y) is not a constant,! every pair of distinct transforma­

tions of the group are connected by a relation of the form (109) ; 

* If ^l = o, 32 ^fc o, so that (Ui Ui)p= a<2 Uif, the groups 

Vlf= Uifs.n6. Vif= -^ Uif 
ai 

satisfy the condition ( Vi V.2)f= V-if. 
f It is interesting to note that ( f/j ^i)P^^ o Js the necessary and sufficient condition 
that each transformation of the group generated by Uif be commutative with every 
transformation of the group generated by Uif. For an elementary proof of this fact, 
see Lie, Differentialgleichungen, p. 305. 

J;'While in this case f/i/and f/2/̂ ê distinct transformations, the one-parameter 
continuous groups generated by them have the same path-curves. 
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for if 

FJ=aiUJ+aiUif Ff = biUf + b-iUf, («A-«2^i^°) 

V,j=h±A±vj. 
ai-\- Oip 

Hence all t-wo-para/neter groups may be divided into tvuo classes 

according as their distinct transformations are conriected by a relation 

of the form (109) or not. 

These two modes of classification are independent of each other. 

Hence/(7Zi<r classes of timo-paratneter groups may be distinguished ac-

cording as they are representable by a pair of transformations U J and 

U f such that ,rTTT\f Tt f-̂  t \TT^-
a. iUiUi)f=o, UJ^pix,y)UJ, 
p. iUiU.i)f=o, UJ=pix,y)UJ, 

y. i Uy Ui)f = UJ, U f ̂  p ix, y) Uf, 

S. iUiUi)fsUif Uf^pix,y)Uf. 

Classify the following two-parameter groups; 

Ex.1. (x+j)|^ + (j-x)|^, x|^+jf. 
dx dy dx dy 

Ex. 2. ixy-y)-A-̂  x A . 
dx dx 

Ex. 3. xix->ry)-^-\-yix-\-y)^, xix-y)-Ay.yix-y)-f. 
dx dy dx dy 

Ex. 4. y-A-x-A, •^x'-k-fiy-A-xA. 
dx dy \ dx ay 

-¥+y¥ -^?+(/+^-'')f 
T-, ^ dx dy dx ay 
Ex, S. ^, i. 

x-^y x-y-y 
Ex.6, x^^-^y^^, x'^-Piy'-P2xy)f. 

dx dy dx dy 
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45. Canonical Forms of Two-parameter Groups. — By a proper 

choice of variables the various classes of two-parameter groups can 

be reduced to certain simple forms which Lie called their canonical 

forms. These will now be determined in turn. 

«. iUiUP)f=o, Uf^pix,y)Uf 

By the method of § 9 a set of variables can be determined so that 

U f takes the form 
UJ^f. 

dx 
If the resulting form of UJ is 

uf^if + 4, 
ox dy 

^ = o and ^ = o, since (U U)f= ^A^l + ^JL ^ = o. Hence 
dx dx dx dx dx dy 
i and rj are, at most, functions of j'; i.e. 

UJ^iiy)^{- + r,iy)f, 
dx dy 

where -rjiy) ̂  o, since U J ^ pix, y) Uyf. 

The transformatio 

variables of the type 

The transformation 6]/= -i- remains unaltered by a change of 
dx 

x = x-<l>iy), y = xltiy), 

where 4>iy) ^nd ij/iy) are at our disposal. This change of variables 

causes U J to take the form [(15) § 9] 

Liiy)-viy)'P'{y):if^+viy)i''iy)fy 

Ii (j>= i Siyi dy and i/'(j') = i —A-, Uif assumes the form 
J -rjiy). J yii;y) dy 



156 THEORY OF DIFFERENTIAL EQUATfONS §45 

Hence, by a proper choice of variables, a pair of transformations 

satisfying conditions a can be made to assume the canonical forms 

UJ-^f, UJ^%. 
dx dy 

Having estabhshed the existence of the canonical forms in this 

case, the actual finding of the canonical variables (which reduce the 

transformations to these forms) can be accomphshed by two quadra­

tures. For, starting with a pair of groups 

UJ^ii^-y-tji^l and UJ^ii^^+rjif 
dx dy dx dy 

satisfying conditions a, the new variables x and y will reduce these 

to the forms -,r -,_f 
Uf=f- and UJ=f 

dx dy 

respectively, provided x satisfies 

J. dx , dx /• dx , dx 
CiT- + i7i^=i, f2T- + r72̂ ~- = o, 
dx dy dx dy 

andy satisfies ^1^^ + 171^ = 0, ii^-\-r)i-^= r. 
dx dy dx dy 

Since such new variables must exist, the equations of each pair 

must be consistent. Because UJ ^ p Uyf they can be solved for 

-—, --— and —, •-^ respectively, whence x and y are determined 
dx dy dx dy 
by the two quadratures 

J dx dy J dx by 

The transformations 

^^f--yfx^^%^-'^"-f^^fx^yfy 
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form a pair satisfying conditions «. From 

-yd^yx^=i!indxd£+ydx^^^ 
dx dy dx dy 

S^= -y and dx = -^-, 
dx X- y y- dy x̂  y y-

whence x = C^y^^=jj£ = tan-^ y • 
J x' y ŷ  X 

Similarly, from -7^-|-x^ = oandx^-|-1-^=1, 
dx dy dx dy 

dy- X ^, dy and i^: 
dx 1^ y j'̂  dy x'̂  y ŷ  

whence V =\ ~—J y y — log -dx- yy^. 
J x̂  y ŷ  

These canonical variables are obvious from geometrical considerations, 

/3. iUiUi)f=o, UJ=pix,y)UJ. 

As before, UJ can be reduced to the form 

UJ^f 
dy 

by the choice of canonical variables (§ 10). Then K/assumes the 

form ^^ 
Uif=cjix,y)A-^ 

dy 

where o-(x, y) is what p becomes when the old variables are replaced 

by the new. Since . .^ 

o- is a function of x only. Taking this as the new x, which change 
3/ 
of variables leaves t ^ unaltered, U J assumes the form x p- • Hence, 

dy 
by a proper choice of variables a pair of transformations satisfying 
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conditions /3 can be made to assume the canonical forms 

uj^%, uj^x'L 
dy dy 

The actual finding of the canonical variables in this case requires 

a single quadrature. For, starting with a pair of transformations 

where iUiUi)f = UipUif= o, i.e. Uyp = o, " 

the new variables x and y will reduce these to the forms 

UJ = ^ atid UJ=x^ 
dy dy 

respectively, if ;tr = p ix, y) 

and y satisfies the equation (§ 10), 

tdy^i 3y_ 
dx dy 

Moreover, since Uyp s o, p is a solution of 

t J d f ^ ^ 
dx dy 

Hence, y = Fix, y) is some solution of 

dx _dy dy 

i Tj I 

distinct from p = const., which is also a solution of this system of 

equations. Among the various ways that will suggest themselves 

when i and -̂  are given in any specific case, a possible method is to 

solve pix, y) = c for one of the variables, say x = </)(j', c), whence 

= C '̂y 
^ vi't',y) 
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The transformations 

UiP=.: v^yz v' ^A and U-if^x^ ^ -|- 2 A ^ 
• dx • dy •' dx •' dy 

form a pair satisfying conditions (3. 

Uif=—Uif .-.x^A. 
y y 

y must satisfy .xy— y 2y-~ = i. 
dx dy 

To solve the corresponding system of ordinary equations 

dx _ dy _dy 
xy 2 1'- I 
^3 J.2 
use may be made of the solution — = f or / s: -—. Then 

y ' 
Cdx ^__J_. 
J xr^ 2X^ 2y 

y. ( Ui Ui)f= Uyf UJ^p ix, y) UJ. 

As before, UJ can be put in the form 

UJ^'{-
dy 

by introducing canonical variables. Taking K/in the form 

a/=f(^,r)| + ,(x,j)| 

di ydfi 
we must have Y ~ ° 5v~ ̂ ' ̂ "̂ '̂ ^ 

(CfCf^P^^l^+^Al^Z^^I. 
^ -̂  --̂  dy dx dy dy dy 

Hence, K / m u s t have the form 

UJ^iix)^^+[Xix)+y2fy 
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where iix) ^ o, because UJ^pUf. The introduction of the new 

variables , , , , / \ , 
x=cl>ix), y = fix) -Py 

leaves i7i/s5.Z unchanged in form, but changes 6^ into 
dy 

f/-2/s^(*)<^'(^)g+ liix)rix)+Xix) +j;]g. 

3/ 5/ 
This takes the form U J = x-^ +^i^ 

p dx 
when iix)(l>'ix) = '(̂ (jc), or <f>ix) =ie'Hx) 

,_dx_ n x rP± 
and iix)xl/'ix) + X ( x ) = .//(x), or ̂f̂ ix) = - ^JfW J ^^e^^Hx)dx. 

Hence, by a proper choice of variables a pair of transformations 

satisfying conditions y can be made to assume the canonical forms 

«/4' «/-I+^|' 

The actual finding of the canonical variables in this case requires 

two quadratures. For, starting with a pair of groups 

rr . • df df ^ ^, , ,df df 
C / i / ^ f i ^ + , i ^ a n d t 4 / ^ 4 ^ + , 2 ^ 

satisfying the conditions y, the new variables x and y will reduce 

these to the forms 
UJ=%- and Uj=x^+y^{-

dy dx dy 

respectively, provided x satisfies 

^ ?^4- ^— ^—4- ~ = x 
^ dx d̂y ' 'dx 'dy 
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and y satisfies 

fdy , dy /• dy , dy 
% + ''̂ 3̂ =̂ ' ̂ 4x-^^4^^-

Since such new variables must exist, the equations of each pair must 

be consistent. Because U J ^ p U J they can be solved for —, — 
. dy dy . . ^^ ^y 

and -̂ , -̂ , giving 
dx dy 

/ \ dx — -n, dx il 
(no) — =- 2^Ar, — = - — ^ ^ x , 

d x ^iqi — î-rji d y î-rji — Sitji 
(mi) ^^ = -'^ y I 2? , ^=_Ji y ^2 

d x iiTtji — ii-rii iitJi — iiVi d y ii-rji — ii-rji iiVi — isVi 

Dividing (no) by Jr, ^— and s— are given, whence logjcis 
dx dy 

obtained by a quadrature and the form for x follows. 
Equations (in) may be solved in various ways. The most gen­

eral form for y satisfying them is not needed. As a matter of fact, 
the simpler the form obtainable, the better. One way of proceeding * 
is to assume that x and y are no longer independent, but that y = cx 
where c is a constant. Then 

(XI2) ^=^+,^^ = (x + cp.)y + r+c. 
dx dx dy 

where X, p., v, tt are what the corresponding coefficients in (in) 
become when j/ is replaced by ex. Since (112) is a linear ordinary 
differential equation of the first order, it may be solved by the usual 
method, involving two quadratures iEl Dif. Eq. § 13). A process, 
however, by which a single quadrature alone is involved in solving 
(112) is given by the following: 

* Special methods will firequently be found simpler, however. 
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Inspection of equations (no) and (ni) shows that y = xix, ex), 

which is obtained from xix, y) by replacing y by ex, satisfies the 

equation 

| = (. + ..).. 

Hence the transformation y = vxix, ex) reduces (112) to 

dv _ v-\- ctt 
dx xix, ex)' 

whence v is obtained by a quadrature. Then y follows at once, after 

replacing ^ by -^. 
X 

The transformations 

UiP= x^ and Uif =x^^y (yy xy) M. 
dy dx dy 

form a pair satisfying the conditions 7. From 

^e^ = o and x"-^-Y (yyxy)^ = x 
dy dx dy 

Slogx^ I 3log-r ^ o 
9*- 4!«' dy 

I 
. . log X = , and x — e "• 

X 
From x^=i and .^2M _,_ (-^ _|_ ^^) 3?^ y^ 

dy dx dy 
dy _y y + xy du — l.^ 

dx x^ x^ dy X 

Put'ting;' = £^ -M-M- — !.. 

y 
* These equations can be solved directly. From the second one y=T^y<p{x), 

where <[,(x) is to be determined. Putting this value ofy in the first equation gives 
_l 

^ = -̂ , whence 0 = .4* " 
dx x2 

i — o gives the forth for y obtained ili the text. 
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1 
Using the method given above, put y = ve ». The linear equation then reduces 

1 1 

dx cfi' 
to -— = —'^e" ; whence v = cê . 

.•..=.=S' 

S. {UiUPf^UJ, UJ=pix,y)UJ. 

As before, by the introduction of canonical variables UJ can be 

made to assume the form 

These variables will cause Uif to assume the form 

K/^,(^,j')|. 

Since iUiUijf— UJ, ^= i and 17 = Xix) y-y. So that 

Uf^iXix)+y-]f^. 

The change of variables y = Jr(jc)-f j leaves 5^/unaltered and 

changes U-if to the form U-if ̂ y - ^ - Hence, by a proper choice of 

variables a pair of transformations satisfying conditions § can be 

made to assume the canonical forms 

The actual finding of the canonical variables in this case requires 

the solving of the differential equation of the first order determining 

the path-curves of the group generated by either of the transforma-
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tions. For, starting with the pair of transformations, 

^^f^^x^^y^^^'^'^^^'i^Ax^Ay 

where iUiUi)f=UJ, the new variables x and y will reduce these to 

the forms ^, r.r 
UJ^l^ and UJ^y J 

respectively, if 2/ = p ix, y) * 

and X satisfies the equation 
.dx dx _ 
dx dy 

The solution of this equation is usually obtained by first solving 

dx dy 

the differential equation of the path-curves of UJ. 

The transformations 
TT s— idf .,3/ , J, r—x'^ dp dp 

Uif=zX^P- - y--p and Uip——-p- — y ^ 
dx ^ dy -̂  y dy dy 

form a pair satisfying conditions S. 

UiP=^Uyf .•.y = l-
y y 

The solution of h—=ois —1-- = const. 
x^ y' X y 

xy 

Ex. Determine the canonical variables for the groups at the end 

of § 44. 

* The other requirement of J/, viz. t/I/=i, follows from the given conditions on Uyf 
and Uip, since (Ui, p Uy)P= Uip Uip. 
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46. Differential Equation of the Second Order Invariant under Two 

Groups. — Starting with two non-trivial infinitesimal transformations * 

which leave a differential equation of the second order 

(98) y" = Fix,yy') 

unaltered, an j'-parameter group of infinitesimal transformations, 

leaving (98) unaltered, can be found (Remark 2, § 43), which con­

tains a two-parameter subgroup (Theorem H I , § 43) determined by a 

pair of transformations U J and U J which satisfy one and only one 

of the conditions (§ 44), 

iUiUi)f=o and iUiUi)f= UJ. 

Moreover, these two transformations can be found by direct and 

practicable processes from the original two transformations, and they 

also leave the differential equation (98) unaltered. 

W e shall now suppose that we have found such a pair of infini­

tesimal transformations U J and U J . Passing, as was done in § 39, 

to the corresponding linear partial differential equation 

(loi) Af=^+y^-PFix,y,y')^ = o, 
dx dy dy' 

the latter is invariant under the extended transformations Uyf and 

U J , which are subject to one of the conditions 

iU{Ui)f=o and iU^UAf= UJ, 

since iU-^Ui)f = iUiUi)f isee Note V of the Appendix). Two im­

portant cases are to be distinguished : 

A. A relation of the form 

(97') U J = a U J + pAf 

* As use is to be made of the properties of groups of infinitesimal transformations, 
the one-parameter groups under which (98) is invariant will be replaced by their repre­
sentative infinitesimal transformations in what follows. (Compare Remark, } 6.) 
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exists. In this case U J and UJ- determine distinct path-curves,' 

that is, no relation of the form 

(109) UJ=aix,y)UJ 

can connect them. For, if such a relation did exist, and if 

rr,._, df df ,3/ 

U J would have the form 

TT-f— i df , df f , do- , dd , J. da- , . da- ,idp 
^^A=<riif + a,,i-^^ar,i+r,i~ + .,i-y-ii-y-ii-y-]£ dx dy \ dx dy dx '̂̂ dŷ  jdy' 

A relation of the form (97') implies the vanishing of the determinant 

A s 

I y Fix, y, /) 

il vi '?i' 
/. , , dv , f d<t /. do\ , f. do n 
Tiy ar,, O-TJy y-7Jy-—-\-[r,y- f 1 T^ J' - f 1 ̂ J^' 

dx \ dy dxj dy 

This reduces at once to 

ivi-iiA) vA^+{vA^-iA^)y-ii^y' 
|_ dx \ dy dxj dy 

Since neither t]i — iyf nor both iy and tji can be zero identically, 

A can vanish identically only in case - — s o and ---so simultane-
dx dy 

ously, that is, o- must be a constant. This would make U J and tjf 
one and the same transformation. Hence the relation (109) cannot 

hold when (97') does. Assuming that (97') holds, two cases must still 

be considered : 

1° {UiUPf^o. 
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By means of two quadratures (§ 45, a) canonical variables can be 

found so as to reduce the two transformations to the forms 

Uyf^^, UJ^f 
dx dy 

respectively. Since the differential equation expressed in terms of 

these variables must be left unaltered by these two transformations, it 

must be free of both x and y (I and I', § 28). Hence it has the form 

A' = Fiyi), 

and the corresponding partial differential equation has the form 

,3/ 

dy 
A f ^ ^ l ^ y ' f + F i y ' ) % = o. 

dx dy dy' 

Moreover, 
'̂  dx' -̂  dy 

The relation (97') imphes that 

I V' F(y') 

I o 
O I 

o 
o 

e Fiv') = o. 

Hence when conditions (97') and i" hold, the introduction of canoni­

cal variables for the two-parameter group reduces the differential 

equation to the form |/" = o. 

and the solution is 

2° 

y = ax -p b. 

iUiUi)f= if J. 

By means of two quadratures (§ 45, y) canonical variables can be 

found in this case, reducing the transformations to the forms 

UJ^f,Uj^xf + y%. 
dy dx dy 
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The introduction of these variables reduces the differential equa­

tion to the form (I and IV, § 28) 

fi y ' , x y " ) = o , ' o r y " = ^ . 

The corresponding linear partial differential equation has the form 

dx dy- X dy' 

Moreover, V'f=^-L U ' f = x ^ Z + v^Z 
^ ^ - d y ' ^ ' J - ^ ^ d x ^ ^ d y 

The relation (97') implies that 

,/ lifl 

O I 

X y 

X 
o 

o 

= - Fiy') = o. 

Hence, also, in the case where conditions (97') and 2° ftold, the 

introduction of canonical variables for the two-paratneter group 

reduces the differetitial equation to the form. 

and the solution is 

y" = o 

y = ax -p b. 

B. N o relation of the type (97') exists. That is, 

UJ^aUJ+pAf 

Here the two subcases in A are also to be considered. 

i" iUiUi)f=o. 

Since this carries with it 

iU{Ui)f=o, 
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the conditions of § 38, B, 4°,ia) exist, and the two solutions of the 

corresponding linear partial differential equation are given by the 
two quadratures 

dx dy 

I y 

1̂ Vi 

d/ 

Fix,y,y) 
t 

Vi 

dx 

I 

& 

dy 

y 

V2 

dy' 

Fix,y,y') 

V-2 

where 

= a and I 4 rjo v' = b 

I y Fix, y, y ) I 

^1 571 '/i' 

it. V2 V̂ ' I 

Eliminating J'' from these gives the solution of the original differen­

tial equation. 

2° {UiUi)f^ UJ. 

Since this carries with it 

iUiUA)f=uj, 

the conditions of § 38, B, 4°, ib) exist. Two solutions of the cor­

responding linear partial differential equation are obtained by two 

quadratures, by the method given there. Eliminating y' from these, 

the solution of the original differential equation follows. 

Remark. — It may be noted that in every instance where an 

ordinary differential equation of the second order is known to be 

invariant under two distinct groups, of which neither is trivial, its 

integration can be effected by means of two quadratures. 

47. Second Method of Solution for B.—The method in cases A, 

1° and 2" oi the previous section leaves nothing to be desired. For 

the remaining cases, however, while, theoretically, the reduction of 

the problem to two quadratures seems sufficiently simple, a method 

analogous to that employed for A, even if involving a larger number 
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of quadratures, or possibly the solution of a differential equation of 

the first order, may prove simpler in actual practice. Still under the 

supposition B, viz. 

UJ^aUJ^pAf 

the four possible forms (§ 44) of the two-parameter groups of infini­

tesimal transformations leaving the differential equation unaltered 

will be considered : 

a. iUiUi)f=o, UJmpix,y)UJ. 

By a process involving two quadratures (§ 45, a) canonical varia­

bles X and y can be found, reducing the infinitesimal transformations, 

to the forms 

U J = ^ and U J = ^ . 
^ dx dy 

The differential equation invariant under these has the form 

(I and r, § 28) 
y" = Fiy'). 

An additional quadrature gives 

/ ^ = ' + -
Fiy') 

or, when solved for I/', y' = <l> ix-[- o), 

and a final quadrature gives the solution 

t/= C<f>ixy-a)dx-\-b. 

In this case four quadratures are required. 

^. iUiUi)f=o, UJ=pix,y)UJ. 
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By a process involving one quadrature (§ 45, /3) canonical varia­

bles x and y can be found, reducing the infinitesimal transformations 

to the forms 
U J = ^ and U.J=x^l. 

dy dy 

The differential equation invariant under these has the form 

(I and VII, §28) ^„^^^^^_ 

Two additional quadratures give the solution 

y = r CFix)d:^ -^ax-pb. 

In this case three quadratures are required. 

y. {UiUi)f=UJ, UJ^pix,y)UJ. 

By a process involving two quadratures (§ 45, y) canonical varia­

bles x and y can be found, reducing the infinitesimal transformations 

to the forms . . -,/- -,̂  
UJ^'^ and Uj^x'^+yf. 

dy dx dy 

The differential equation invariant under these has the form (I and 

IV, § 28) 1 
' y"^'-Fiy'). 

X 
As in the case a, two additional quadratures give the solution. 

In this case four quadratures are required. 

S. iUiUi)f=UJ, UJ=pix,y)Uyf 

By a process (§ 45, S) involving the finding of the path-curves de­

termined by either infinitesimal transformation, i.e. the solution of 

the differential equation ^^ ^ 

i\ Vi 
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canonical variables x and y can be found, reducing the transforma­

tions to the forms ^̂ r p,j: 
U J ^ % and U J ^ y f . 

dy dy 
The differential equation invariant under these has the form (I and 

HI, § 28) ,, 
yj=Fix). 

Two quadratures give the solution 

C \F(x)dx, , , 
y = a\e' ' dx-\-b. 

Remark, — The above classification holds equally well for A, for 

which it -is exceedingly simple, cases /8 and 8 never arising (§ 46). 

Hence the method of introducing canonical variables applies to all 

cases where a differential equation of the second order is invariant 

under two groups. The interest in § 46 lies in the fact that it is there 

shown that it is always possible, if desirable, to solve the differential 

equation by two quadratures only. 

While the classification of § 40 is more complicated, it must be 

borne in mind that the two groups employed there need not deter­

mine a two-parameter group. Some of the methods of § 40 are ex­

ceedingly simple; so that they are not to be ignored. O n the other 

hand, it is suggested that the method of this section be applied to the 

examples of § 40. 

Ex. 1. x y f -P x y — yy = o. (Ex. i, § 40). 

This equation is invariant under U J ^ : x ^ -Py A and U J ^ . y A. 
dx dy ' dy 

These determine a two-parameter group of the type a. The canoni­
cal variables are readily found to be jr = log^c, y = log=^. Introduc-

X 
ing these, the differential equation takes the form 
y"+2(y'^ + y) = oor /y' + 2dx = o. 
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Integrating this, one obtains 

1 J'' , / T ..-2JC 
log — 2 — - -p 2 x = c or y' 'i+y' Cie^- 1 Ci-e-'x 

Integrating again, 

2y-\-c = log ici — e~'̂ ) or ĉ 'y = Ci — e~'^. 

Passing back to the original variables, 

CiX̂  — Cif = I. 

Ex. 2. y = py -pQyy. X. (Ex. 2, § 40). 

This equation is invariant under U J ^ y i — and UJ"̂ y-,-̂ -, if 
dy dy 

y i = Pyi -f Qyi and yi' = Pyi -f Qy.2. The transformations Uyf 
and K/determine a two-parameter group of type /3. The canonical 

variables are x=^y^, y = A., To introduce these use should be made 
yi yi 

of the fact that ̂  = ^ ^ = 1^^ where A sj'ij/2'-j'2ĵ i', and that 
dx dx dx J'l" 

yiyi-y^yA^P^- Then 

y=yiy, 

y=y{y + ̂ ^, 
J'l 

j " = j'i"j/ 4- ̂  h «--. 
y'l yi 

Substituting these values in the differential equation gives 

y'A^ „ ,, y i X 
S — - = X or if =J2^, 
yi A 

where the right-hand member must be expressed as a function of x. 

Integrating twice, 
y=jdxy-^dx+ax + b. 
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Passing back to the original variables, 

y=yrjyi\f^^!ii^JyA+ayi + byi. 
-> \yijA iyiyi -y^yi)- \yij 

Note. — It is an interesting fact that this form of the solution 

includes as a special case the form obtained by a well-known method 

in case the coefficients in the linear equation are constants. (See 

E l Dif Eq. § 47.) 

Ex. 3. j " =:i>' -t- Qy. (Ex. 3, § 40.) 
df 

This equation is invariant under U y f ^ y i ^ if j'l is a particular 
dy 

solution of the equation, and also under U J ^ y - A . The trans-
3j 

formations Uyf and Ki/determine a two-parameter group of type S. 
The canonical variables are x^^ x, y^^- This change of variables 

J'l 
is the one usually employed. (See E l Dif. Eq. § 53, i°.) 

file:///yijA


CHAPTER VII 

CONTACT TRANSFORMATIONS 

48. Union of Elements. — The configuration consisting of a 

point and a line * through it is k n o w n as a lineal elemetit. It is 

obviously self-dualistic. Since a lineal element in the plane is deter­

mined by three coordinates,! there are oo ̂  such elements. 

A n y curve in the plane determines co ̂  lineal elements, each one 

consisting of a point of the curve and the tangent line at that point. 

[In particular a straight line determines co ̂  lineal elements, all hav­

ing the same /-coordinate; while a single point (looked upon as a 

line curve of the first class) determines oo ̂  elements all having the 

same x- and j'-coordinates]. Such a single infinity of lineal elements 

is said to form a union of elements,X and successive elements in this 

case are said to be united. In general oo ̂  lineal elements do not 

form a union; it is easy, however, to find the condition that they do : 

T w o relations a m o n g the three coordinates 

(113) ^ix,y,p)=oand^\lix,y,p) = o 

* At times it is convenient to replace the line by its direction in the above definition. 
t W e shall use the nonself-dualistic set (x,y,p) where x and y are the rectangular 

coordinates of the point and.^ is the slope of the line. 
It is almost needless to add that the theory here developed is no more restricted to 

this choice of coordinates than the general theory of Analytic Geometry is confined to 
the use of Cartesian coordinates. 

X In this case the locus of the points of the elements coincides with the envelope 
of the lines of the elements ; and besides, the point of tangency of each line with the 
envelope is the point of the element to which the line belongs. This locus will be re­
ferred to as the curve op the union. 

175 
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determine 00 '• elements.* The locus of the points of the latter 

(114) Q)(a:, 7)==o 

is obtained by ehminating/ between the two relations (113). A 

union exists provided the value oi p, in terms of x and y, obtained 

from either of the two relations is the same as that of the slope of 

the tangent to the curve (114), i.e. 

dx m„ 

where partial differentiation is indicated by a suffix. The condition 

that the lineal elements determined by (113) form a union is therefore 

that 

(115) dy—pdx = o.'^ 

Ex. 1. Starting with the relations 

xy yp = o, y\\ 4-/2) = j, 

the point locus is the circle x''- y y''- = i. Here 

^ = -^=/. 
dx y 

Fig. 6 Hence the elements form a union. (See Fig. 6.) 

» A single relation !j>(x, y)=^o free oip defines 001 unions, each consisting of 
the 00 1 elements having a point of the curve 0 (x, y) = o in common, p being un­
determined. 

Hence, if neither of the relations cj, (x, y) = 0 and \//(x,y) = 0 involves p, they to­
gether determine a finite number of unions, each consisting of the 001 elements hav­
ing in common a point of intersection of the curves (p(x,y) = 0 and \l/(x,y) = o. (See 
Ex. 4, below.) 

t The same condirion obviously holds when the lineal elements are determined 
parametically 
(116) X = Ji(t), y=Y(t),p = P(t). 
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Ex. 2. In the case of 

y y xp = o, X y yp — o 

the point locus is the pair of lines jr- — ̂  = o. 

Here ̂  = - ; while p = — - . Hence there is no 
dx y y 

union. (See Fig. 7.) 

FiG. 8 

dy 
dx 

Ex. 3. In the case of 

y = xp y i, p = a = const. 

the point locus is the line y ̂^ ax y \. Here 

-p. Hence the elements form a union. (See Fig. 8.) 

Ex. 4. In the case of 

x—zy-\-z = o, -^x-y y \ = o 
the point locus is the point x = o,y = i, while / is undetermined. The 
elements form a union. (See Fig. 9.) FiG. 9 

Ex. 5. The elements determined by 

X = cos I, y = sin t, p = tan t 

do not form a union, since the point locus is the 
circle x'^yy^=l, where 

dy _ 
dx 

(See Fig. 10.) 

: = — cos t^p. 
y 

FIG. 10 

Ex. 6. In the case of 

y = xp y 1, y - 1 

the point locus is the line y=\. Along this / = o. 
Hence the elements form a union. (See Fig. n.) 

Fig. II 
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VrV [UiAAVy /y.'̂  

Fig. 12 

Ex. 7. In the case of 

y = xpy\, y = 3 

the point locus is the line y = 3. Along this p = o. 
But the elements along this line determined by the 

first relation have / = ̂- f̂c o. Hence there is 
X 

no union. (See Fig. 12.) 

49. Contact Transformation. — Of the possible transformations 

on the coordinates of a hneal element 

(117) Xi = Xix,y,p), yi=Yix,y,p), pi = Pix,y,p), 

those which transform every union of elements into a union play an 

important role and are known as contact transformations. The 

condition that (117) be a contact transformation is readily seen 

to be 

(118) dyi —pi dxi^pix,y,p) idy — p dx), where p ^ o . 

* 
For, from the condition ( n s ) it follows that if a union is to be 

transformed into a union dyi—pi dxi must vanish whenever d y — p d x 

does; that is, the former must contain the latter as a factor. 

Indicating partial differentiation by a subscript, (118) may be 

written 

( y, - PX,) dx + iY^- PXP) dy -PiY,- PX,P lip = pidy-p dx). 

This is equivalent to 

(119) Y^-PX^ = 

whence 

(120) 

6, Y^-PX, = p, Y^-PX^=o; 

Y 
P =. —^ 
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and 

(121) jr,(F,+/i;)_ i;(x,-f/A,) = o.» 

The two relations (120) and (121) may be put in the compact 
form 
(122) p=Xjt = Y^±ALJAi. 

X^ X^ -Pp Xy 

These relations, which are necessary conditions that (117) be a 

contact transformation, are also sufficient, as m a y be seen as follows: 

T h e y lead at once to 

Y^y-pY,-PiX,^pXi) = o, 

y.-PX.^Y,-PX,^ 
-p I -^-^ 

Equations ( n 9 ) follow at once, and, therefore, condition (118) 

is fulfilled. 

Conditions (120) and (121), or their equivalents (122), m a y thus 

be used instead of (118), w h e n desired.J 

ixvy. 

* Introducing the Poissonian symbol 
I Xp Xx. -yp Xy I 
I Yp Y. -^pYyY 

the relation (121) takes the simple form 
(121) [a:f] = o. 

W h e n two functions X and Y satisfy the condition (121), they are said to be in 
involution. 

t This value of the common ratio p cannot be identically zero, for using (122) it 
may be written 

p -Ap -*g — Xy Xp ̂_ Xx Xy Xff Yx, __ Xx Yp X-p Yx . 
Xp Xx -{-p Xy p Xp 

all three of the numerators cannot vanish simultaneously since X and Y are supposed 
to be independent functions. 
% An element transformation, which is not a contact transformation, transforms pre­

cisely oo2 unions into unions. (See Kasner, American Journal of Matkemalics^ 
Vol. XXXII, p. 393). Thus, X = x, Y = p , P = y, which is obviously not a contact 
transformation, transforms the union defined hy y-{-p ̂  ĉ ê , y — / — ̂ â '"* for any 
pair of values of Ci and ĉ  into a union. 
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Remark i. — Of the three functions X, Y, P in the contact trans­

formation (i 17), either one of X and Y may be selected at pleasure; 

the other one is then determined as a solution of the linear partial 

differential equation (121). With X a n d F selected, T' is determined 

uniquely by (122). 

The extended point transformation (§ 13) is evidently a special 

case of a contact transformation. For if X and yare any functions 

free oi p, (121) holds; while the form for the accompanying trans­

formation of j' or p, given by (21), is exactly (122). 
In what follows we shall exclude extended point transformations 

from consideration, unless specific mention is made to the contrary. 

As an example of a contact transformation may be mentioned the transforma­
tion by reciprocal polars with respect to a conic. The transformation, in case the 
conic is the circle x'- y y'̂  -=\, takes the form 

(A) xi = ̂ t - , yi=—!—, Pi = -^-* 
y — xp y — xp y 

Here dyi— pidxi^: (dy—pdx). 
y(y - xp) 

The transformation by reciprocal polars with respect to the parabola jr̂  = 2^ 
is given by 
(B) Xl =/, yi=xp — y, pi = x. 

Here dyi — py dxi^, — (dy — p dx). 

In the above illustrations a union whose curve is a point is trans­

formed into one whose curve is a straight fine. That in the case of 

every contact transformation (not an extended point transformation) 

a union whose curve is a point'\ must be transformed into one whose 

* These equations may be obtained as follows ; The point (x, y) of an element 
(x,y,p) is transformed into the polar line xxi-{-yyi = i whose slope is ;!)i =—-• The 
line of the element, „ .. 

Y-y=p(X-x) or ̂ ^4-—i—=i, 
y-xp y-xp 

is transformed into the pole 
"̂1 = — ^ ' y i ^ — : • 

y — xp y — xp 
tExcepting possible special points; e.g. the origin in Ex. 3, p. 185. 
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curve is an actual curve may be seen by eliminating / and pi from 

equations (i 17). There results from this elimination a single relation,* 

(123) Fix,y,Xi,yi = o, 

which determines a locus for th'e points (.Xj, j'l) corresponding to a 
fixed point ix, j').f 

Moreover, a contact transformation is determined by a relation of 

the type (123), provided the three equations 

(124) F^o, F,+pF, = o, F,^+PiF,^ = o 

can be solved for x, y, p, and also for Xi, ji, pi. For, solving for 

Xl, yy, pi, there results the transformation of the three variables 

p 
(117) Xi = X i x , y , p ) , y i = Yix,y,p), /i = --^. 

That this is a contact transformation may be seen readily. For 

from „ 

A = - - ^ and/ = --f 

dyi-Pidxi = ^^A'^^±^iJ^, dy-pdx = 'lA^A±^^. 

* If there were two independent relations, 

Pl(x,y, xi,yi)= o, Fi(x,y, xyyp = o, 

they could be solved for xy andyi in terms of x andy, which would imply that (117) 
was an extended point transformation. 

t 'We may say (fixing our attention on the curve of a union) that the effect of the 
contact transformation is to transform any point (a, Ii) into the curve F{a, b, Xi,yp = o; 
while a point transformation transforms a point into a point. 

Moreover, it is not difficult to show that a contact transformation, in general, trans­
forms a union determined by a curve Cinto one whose curve O is the envelope of the 
curves into which it transforms the various points of C, or, using the same form of ex­
pression as above, we shall say that it transforms the curve C into O. (Thus see Lie, 
BerilhrungstransformatLonen, p. 49). If it should happen that the curve C is one of the 
curves F (x, y, K, ̂ ) = o, where tt, and ;3 are any constants, its transform C is the 
point («, ^ ) . 
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Differentiating (123) gives 

F^^ dxi -P Fy^ dyi = — iF,dxy-F,jdy). 

Hence dyi —pi dxi = —pri^y—f dx), 

which proves that (117) is a contact transformation. 

The condition that (124) be solvable for x,y,p and iorXi,yi,pi 

can be expressed very simply analytically : 

In order to be able to solve for/ it is necessary and sufficient that 

Fj^^o when F = o . Similarly, F^ ^ o when i^= o is the condition 

that one be able to .solve for/i-

The condition that the first two equations of (124) can be solved 

for Xl and j/i is the non-vanishing of the functional determinant 

F. 

In the latter the factor 

^...+/^„x, 

^..,+/^». 
or 

ip -p -F F 

F„ F F — F F 
y xy, -̂  x^ yy^ 

.is omitted since it is not zero whenever 

i^= o, because F is supposed to be generally analytic, and besides 

it is not infinite since F y ^ o when F = o, by hypothesis. This de­

terminant can be put in the more symmetrical form 

A s 

o 

P.. F,. 

Py 
F 

F. 
yvi 

Since A contains .^as a factor whenever either F,̂  or F^ does, the 

non-vanishing of A when F — o assures the non-vanishing of F^ and 

F,^. Hence the only condition that ii24) be solvable for Xi, j'l,/i is 

(125) A :?t o when F = o. 

Because of the symmetry of A as to x, y and Xi,yi, (125) is also 

the condition that (124) be solvable for x,y,p. 
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Remark 3. — It is interesting to note that A #= o is the condition 

that Fix, y, Xi, yi) involve x and y as two essential parameters, and 

also that it involve ^1 and j'l in the same way.; when such is the 

case Fia, b, Xi, yi) — o defines 00^ curves for all choices of a and b, 

and Fix,y, a, (3)= o defines 00- curves for all choices of a and ^. 

For if X and y are not essential parameters in Fix,y, Xi,yi), two 

functions of x andy, say xi(-̂ jj') and )(A^x,y), can be found such 

that (see Note VII of the Appendix) 

Xl^. + X2^y = 0-
This carries with it 

Xi^.xi+X2^y., = o and Xi^.y, + X2^,y, = o-

F,. 

F... 

.: A = 

0 F^ F̂  
F E E 
^H ^"i -̂ŷ, F E E 

_ I 
Xl 

° XiF, + X2Fy 

-̂ x, Xl^..i + X2^y., 

Fy, XlFxi. + XiFyy^ 

Conversely, if A = 0 

F, _ F..̂  _ F̂ ŷ  _ F„^ dxi + F,̂ ^ dyi 

F,. F.̂. F.„ F„^ dXy-pF„„ dyi 

^ ^ a x , + '^dy. 
dF„, , dP., 

P., 
, and 

F. ••pix,y), 

where p is a constant as far as Xi and j'l are concerned, but may be a 

function of x and y. 

Hence A = o carries with it a relation of the type 

Fx-pix,y)Fy = o, 

which is the condition that x and y are not essential parameters in 

Fix, y, Xl, J'l). 

In exactly the same way it can be shown that if A = o Xi and ji are 

not essential parameters in F. 



i84 T H E O R Y OF DIFFERENTIAL E Q U A T I O N S §49 

The equations of transformation (A) and (B) in the cases of transformation 
by reciprocal polars given above are readily obtained by the method here given 
when xxiyyyi= I and xxi— y —yi = o, respectively, are selected as the 
relation (123). 

For the transformation by reciprocal polars with respect to the general conic 

ax'^ y 2 hxy y by''- y 2gx y 2fy y c ^^o 

the relation (123) is the equation of the straight line 

axxi y h(xyy yyxy) y byyy y g(x y xy)y f(y -^yy)y c = o, 

(123') 

Here 

(ax y hy yg)xi y(hx y by y f)yi y g x -\-py y c = o. 

o axiy hyiyg hxiybyyyp 
ax y hy y g u h 

hx y by y p h b 

Subtracting xi-times the second row -|- _j'i-times the third row from the first, 
and taking account of (123') 

gxypyyc g f 
ax y hy y g u h 
hx y by yf h b 

_ 
c g f 
g a h 
p h b 

= 

a h g 
h b p 

S f'^ 

i.e. A equals the discriminant of the conic, and is different from zero in case the 
conic is an actual one and not a pair of straight lines. In this case the method 
given above applies. Solving 

I (ax y hy y g)xyy{hx y by yf)yi ygxypyyc = o, 

(a y hp)xi y (h y bp)yi y g y p p ^ o , 

ax yhy y g y (hx y by yp)py = o. 

for Xl, yi, pi, the formulae of transformation are 

F(xp-y)yB-ffp rr\ ^ - G(xp-y)yH-Ap 
(O -^- C(xp-y)yF-Gp' ŷ - C(xp-y)yF-Gp' 

axyhyyg 
Axyhyyf 

where/i, B, C, F, G, //are the respective cofactors in the discriminant of the conic 
The transformations (.4) and (B) are obviously special cases of (C). 
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Another interesting contact transformation is obtained by selecting for (123) 
the equation of the circle, 

(123") (x-xiy^y(y-yiy- = ri^o. 

In this case A =— 8 /--, and the equations of transformation are readily found 
to be 

(D) .ri = .^fe-—^=r, J-i=7T / ,pl=P-
\l.iyp' V H - / ^ 

The effect of (D) i^w transform any curve into a pair of parallel curves, one 
on each side of the original one, and at a distance r from it, as is apparent from 
the nature of (123"). A transformation of this type is referred to as a dilatation. 

Find the contact transformations determined by the following 

relations : 

Ex. 1. ix-XiY-2aiy-yi)=o. ^^ ^ Xy_^yi^^_ 

Ex. 2. i^—^iA+Jy-y^y^^. 

''- Ex. 5. ̂ +J^ = i, 
Xl Jl 

Ex. 3. V 4-J'l" — (a-Xj 4-j'ji) = o. 

50. Group of Contact Transformations. Infinitesimal Contact 

Transformation. — If in the one-parameter group 

(126) Xi = Xix,y,p,a), yi=Yix,y,p,a)_, py = Pix, y,p, a) 

the condition 

(118) dY—PdX=pix,y,p)idy-pdx), 

or its equivalent (122), holds, (126) defines a one-parameter group of 

contact transformations. 

Like any one.-parameter group in three variables (§ 11) the group 

(126) contains an infinitesimal transformation 

(127) Xi=x-\-iix,y,p) 8a,yy=y+-ri ix,y,p) Sa,py=p+-!vix,y,p)&a, 
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whose symbol may be written 

(••«) ^-^-€+'|+-|' 

Thus the dilatations 
(D) xy=xy^-^t . yi = y -!L . 

Piyp^ Vn-/ 

form a group, with the infinitesimal transformation 

J?y-- P df _ _l_^ dP_ 
^lyp-idx Viyp^dy 

Similarly the transformations (Ex. i, § 49) 
ci/>- . , 

xy^=x — ap, yi =: y — .J.̂ , pi=:p 
2 

form a group, with the infinitesimal transformation 
Bp^^pfyp-'P 

dx dy 
Since (127) is also a contact transformation, 
(118') dyi—pidxy = dy—pdx-\-idri — pdi—Trdx)Sa*=pidy—pdx). 

.-. p=i-Pa- ix, y, p) Sa, 
where 
(129) a-ix,y,p)idy—pdx)=dr]—pdi—7rdx=diri—pi) pidp-trdx. 

"Writing with Lie 
(130) t]-pi= - Wix,y,p), 

where i^is known as the characteristic function of the infinitesimal 
contact transforination, the identity (129) may be replaced by 

W/+7r = o-/, -»;=cr, - ]ip + i = o; 

whence, making use of (130) and eliminating o-, 

(131) i^ w^, r, = pw^- w,-^=- lip-pup. 

* Here, as always in the case of infinitesimal transformations, higher powers of ^a 
are neglected. 
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-Moreover, for all choices of the function W, i, r/, it are so de­

termined by (131) that the corresponding infinitesimal transforma-

.Vi = x-\-i Sa, yy=y-\-rj Sa, pi = p -|- -k Sa 

satisfies the condition (118') and is therefore a contact transforma­

tion; hence the 

Theore.m. — Connected with every inpinitesiitial contact transfortna-

tion there is a cliaracteristic fiinctioti \V = — -/y -f- pi, in terms of 

which the transforination is given by means of iiT,\). Conversely, 

starting with any functioti \\\ the relations (131) define an infinitesi­

mal contact transformation. 

In terms of the characteristic function the infinitesimal transforma­

tion takes the form 

(132) Bf^ w^f^P-ipw^- rv)^£-itv^+piv^)^, 

or using the Poissonian symbol (§ 49) 

(132) B f = [ W ] - ^ ^ -

Choosing for fV the form 
lV = Vi yp^ 

gives the infinitesimal transformation 

B f ^ f ^ -i—5/". 
Vl 4-/2 dx -v/i ypidy 

which belongs to the group of dilatations (D). 

The selection w^Ad'fylP-

.gives the infinitesimal transformation 

E p - "'P df _ ^ dl^ 
-Pippp̂ pnp̂  dx -da^f y b-2 dy 

which belongs to the group 

x i - x y — p •' , y i = y — , , , . A=/- (Ex. 2, §49) 
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When W is linear in p, the corresponding transformation is an 
extended point transformation. For, if 

W^<^ix,y)p-^^ix,y), 

i = <l>ix,y), •n = 'Pi^>y)' •^ = 'l'^ + Pi'Py-^A-f4>r 

[(24), §-13] 

Another fact worthy of mention in connection with the character­

istic function is the effect upon it of a change of variables when the 

latter is effected by means of a contact transformation. As was 

noted in § 11, the introduction of the new variables 

[14'] x = Fix,y,p), y = ^ix,y,p), p = ^ix,y,p) 

causes the infinitesimal transformation (128) to take the form 

i.e. I = Bx, r\ = By, it = Bp. 

By the definition of the charactertisic function (130) its form 

after transforination is 

(W = pi,-r\=pBx-By 
(130') \ 

I = iipx^ - yi) -y •qipx,j - yi) + tripx̂  - yp). 

If [14'] is a contact transformation, 

dy — pdx^pidy — p dx), 

or y ^ — p x ^ = - p p , y^—px^ = p, y^-px^ = o; 

whence 

(133) Wix, y, p) = pipi -r,) = pix, y, p) Wix, y, p ) . 

Of course, in the right-hand member, x, r, / must be replaced by 

their values in terms of the new variables given by [14']. 
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The characteristic function for the group of dilatations in the case of rectangu­
lar coordinates was seen to be 

IV = Vi yf. 
Introducing the new variables, 

(B) x = p, y = xp—y, p = x, 
for which dy — p d x ^ — (dy — p dx), 

it is easy to verify that 
W = —VI 4-/-= — Vi yx̂ . 

On the other hand the new variables 

{A) x = -^^^,y = -l-,p = -=i, 
y-xp y-xp y 

for which dy—pdx^ (dy—pdx) 
y(xp-y) 

cause the characteristic function to assume the form 

w = .'^^+f\ = (xp - y) ̂ /WTy'• 
y(xp-y) 

51. Ordinary Differential Equations.—A. differential equation of 
the first order 

(134) fix,y,p)=o 

may be looked upon as a relation among the three coordinates of the 
hneal elements of the plane, with the understanding, however, that 

(.35) /=!-

So that the differential equation defines 00^ hneal elements which 
[because of (135), which is identical with (115), § 48] are arranged 
in 00^ unions. The solutions of the differential equation are the 
equations of the curves of the unions. 

Since all the fines through a point constitute a union, in which 
case the c o m m o n point is the curve of the union, such unions must 
be taken into account when looking for the solutions of a differential 
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equation. Thus if the relation (134) is free of/, say 

(134') fix,y)=o, 

this may still be looked upon as a differential equation in which / is 

arbitrary. Such a differential equation defines, besides the union 

whose curve is fix, y) = o, those unions 

determined by each of the various points 

of the curve. See Fig. 13. Each of 

these points will be considered as an 

„ integral curve of the differential equa­

tion. 

Since every lineal element of the envelope of a family of co ̂  curves 

is an element of some curve of the family (compare E l Dif. Eq. 

§§ 29, 30), the equation of the envelope must also be a solution 

ii.e. the singular solution) of the differential equation of the family of 

curves. In the special case of a differential equation of the type 

(134') the curve _/(«, j') = o m a y b e looked upon as the envelope, 

and its equation is therefore the singular solution. 

The Clairaut equation (El. Dif. Eq. § 27) 
y — xp—p(p)=o, 

when transformed by 
(B) Xy =p, yi = xp —y, pi = x, 
takes the form yy y p(xi) = o, 
which is of the type (134'). It has for integral curves the various points of the 
curve yy y P(xy) = o, wliile the equation of this curve itself is a singular solution. 
Passing back to the original variables, this curve is transformed into some curve 
(p(x, y) =0, and its points are transformed into, the tangents of (f>(x, y)=0. 
Their respective equations are the singular and particular (in the aggregate, 
general) solutions of the original differential equation. 
The special Clairaut equation 

y — xp — rs/i y p"- = o, 

when transformed by the dilatation 

(D) x-=xi ^ — , v=yyV—y- , t> = i>y, 
-PiypP yfiypp 

takes the form yy — xypy = o. 
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This simple differential equation has the obvious general solution yi = cxy, 
which is the equation of the family of straight lines through the origin. The 
envelope of this family is the origin, which determines a union that is obviously 
consistent with the relation defined by the differential equation. Passing back 
to the original variables, the origin goes into the circle x'̂  y y- = r̂ , which equa­
tion is therefore the singular solution of the original differential equation, while 
the hues through the origin go into the tangents to this circle. The equation 
of their family, y = ex — ?-Vi y ĉ  = o,is the general solution. 

52. First or Intermediary Integrals.—The differential equation 

(136) 4,ix,y,p)=a, 

for each value of the arbitrary constant a, has 00^ integral curves. 

Allowing a to take successively all possible values, (136) determines 

CO- 'curves which are the integral curves of the differential equation 

of the second order 

(.37) f . * . + *., + * . | = 0. 

The differential equation of the first order (136) is known as a first 

or intermediary integral of (137). From the above it is seen that a 

first integral of a differential equation of the second order classifies tJte 

00^ integral curves of the latter into 'xi'- families of 00^ curves each. 

This classification is different, of course, for different first integrals, 

of which there is an indefinite number. For 

(138) ,\,ix,y,p)=b 

will also be a first integral of (137), if, and only if, 

is the same as (137), i.e. provided 

•Ax+ •/'»/ "Ap' 
or 
(121) l̂ ^̂ A\ = 

"Ap i'x + ^vP 
= 0. 
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Hence 

Theorem I. The necessary and sufficient condition that 

4'ix, y, /) = ^ ^^^ i'ix, y, /) = ^ 

be first integrals of the satne differential equation of the second order 

is that <f> and ij/ be in involution (§ 49). 

Starting with the function t\,ix, y,p), a second function ^ix,y,p) 

will be in involution with it provided it satisfies the linear partial dif­

ferential equation 

(139) M = 'i>.Tx+Mp^y-{'i'x+P4>)f^=0. 

This linear equation in three independent variables has two inde­

pendent solutions, one of which is 4>ix,y,p). All of its solutions are 

functions of these t\yo. Hence 

Theorem II. Knowing ^ix, y, p ) = a, a first integral of a differ­

ential equation of the second order, all of its first integrals may be 

obtained by solving the linear equatioti (139). Having found a solu­

tion of (139), independent of (j>, all the fir si integrals are given by 

*(<^, ̂ \,) = C 

where $ is an arbitrarily chosen function of <̂  and {ft. 

Since two independent first integrals 

i' ix, y,p) = a and i/'(.r, y, p ) — b 

of a differential equation of the second order define the same set of 

co^ integral curves but classified in distinct manners, for a particular 

but arbitrary choice of a and b, say Aq and /'„, the differential equations 

(140) (^(x, y, /) = a„ and i/'(a;, y, /) = ^0 

will, in general, have an integral curve in common. At each point of 

this curve both equations (140) determine the same value o f / ; 
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hence the equation of the curve 

o) ix, y, ao, bi) = o 

may be obtained by eliminating/ from (140). 

Still keeping a,, fixed but aUowing b to be an arbitrary constant, 

the result of eliminating/ from 4"= a^ and \li = b gives 

ft) ix, y, â , b) = o, 

a solution of <f>ix,y,p) = a^ containing an arbitrary constant which 

is, therefore, its general solution. Hence, 

Theorem III. If a second differential equation 

4'{x,y,p) = b 

involving an arbitrary constant can be foutid such that <p and ip are 

in involution, the general solution of 

4>ix,y,p) = « o 

can be found by eliminating p from the two differential equations. 

This process is frequently of service. (See El. Dif. Eq. §§ 25, 26). 

Ehminating/ from (136) and (138) gives 

<i) ix, y, a, b) = o, 

a solution of (137) involving two, arbitrary constants. It is there­

fore the general solution. Hence, 

Theorem I"V. If two independent first integrals of a differential 

equation of the second order can be found, its general sohition is ob­

tained by eliminating p from the equations of the first integrals. 

Remark. — If ̂  and i/' are in involution, it follows at once from 

the above that the two relations 

4'ix, y, /) = a, and ^ix, y, p) = b, 

determine an element union (§ 48) for all choices of the constants 

a and b. 
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It should be noted, however, that 

(113) 4>ix,y,p) = o, i/'(x,j/,/) = o 

may determine a union without the identical vanishing of [̂ , \f\; 

thus see Ex. 6, § 48. But in every case when the relations (113) de­

termine a union, [i/', ̂ ~\ must equal zero, either identi.cally or because 

of these relations. This follows readily from the fact that whenever 

(113) determine a union, the equation of the curve of the latter is an 

integral curve c o m m o n to the two differential equations <̂  = 0, i/'=o; 

and conversely. 

53. Differential Equation of the First Order Invariant under a 

Group of Contact Transformations. The general type of .differential 

equation of the first order invariant under the group whose infinitesi­

mal transformation is 

(132) i?/^PF,^+(/W;_fF)|_(^^+/fFj| 

is obtained (compare § 18) by equating to zero the general solution* 

of the linear partial differential equation 

('40 ^.f+(/»;-^)f-(^x+/f^y)|=o. 

On the other hand, the condition that the differential equation 

f ix, y, p ) = o be invariant under the group whose infinitesimal 

transformation is ̂ i s obviously ([12], § 11) 

Bf=^ o whenever / = o. 

As was noted in § 51, a differential equation of the first order 

(142) p=mix,y) 

arranges the a^ lineal elements determined by it in 00̂  unions, the 

curves of which are its integral curves. If (142) is left unaltered by 

*l'his solution is obviously the general expression for X'̂ Qfrst differential invariants 
of the group, the name given by Lie to invariant functions of x.y,p. 
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a contact transforination 

(117) .Xi = Xix,y,p), J'i=F(.v,j',/), Pi = Pi.x,y,p), 

the latter interchanges the integral curves of (142) among them­

selves, since it transforms unions into unions. 

As far as the differential equation (142) is concerned, the only 

lineal elements operated upon by (117) are those whose coordi­

nates are (.v, j', / = o)(.r, j')). These elements are transformed into 

ixi, yy, p i = <j>ixi, yy)) by (117), since the latter leaves the differ­

ential equation unaltered. Hence the effect of the contact trans­

formation (117) on the differential equation is the same as that of 

the point transformation 

(143) Xl = Xix, y, mix, y)), yy = Yix, y, o>ix, y)). 

Whence the 

Theorem. — Ip the differential equation 

(142) p = m i x , y ) 

is invariant under tfie contact transformation 

(117) xy = Xix, y, / ) , J'l = F ix, y, / ) , /i = /"(x, y, / ) , 

it is also invariant under tfie point transformation 

(143) .*, = Xix, y, mix, yf), yi = Yix, y, mix, y)). 

Both transformations interchatige the integral curves of (142). 

It follows at once that if the differential equation 

P='"ix,y) 

is invariant under a group of contact transformations whose infinitesi­
mal transformation is 

B f ^ Hx, y , p ) ^ ^ + r,ix, y, p ) f + ^ i x , y, /) f , 
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it is also invariant under the group of point transformations whose 

infinitesimal transformation is 

U f = Hx, y, mix, y))-£ -P r,ix, y, co(x, y))-A. 

Either of the methods of §§ 12 and 20, Chapte'r II, may then be em­

ployed for solving the differential equation. 

Remark.—Since B W — — W y W , it follows that the differential 

equation 

(144) Wix,y,p) = o 

is invariant under the group of contact transformations whose infini­

tesimal transformation has W for characteristic function. 

But the invariance is of a special kind. The effect of this infinitesi­

mal transformation is to carry the point ix, y) of an element ix,y,p) 

into ix-piSa, y + rj Sa) where i = Wp, •rj=plVp— W . The slope 

of the fine joining these points is 

'S. = p — —, =p when W=o. 
i ^ wi ^ 

Hence any element whose coordinates satisfy (144) has its point 

carried in the direction of the line of the element, that is, the ele­

ment and the one into which it is transformed are united (§ 48). 

The infinitesimal transformation, therefore, leaves unaltered each of 

the unions (§ 51) determined by the differential equation (144), and 

the group has this effect on each of the integral curves of (144). 

Such a group is said to be trivial with respect to the differential 

equation (144), (§ 12), and is of no service in solving it. 
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NOTE I 

THE INFINITESIMAL TRANSFORMATION 

In case both -—<^(a;, j", a) and ^—\pix,y, a) vanish identically 
da da 

for the special value oi a = â , or if either of them becomes infinite 
for that value of a, irrespective of the values of x and y that may 

enter, a modification of the process for finding the infinitesimal trans­

formation employed in § 2 must be made. It should be noted that 

they cannot both vanish identically for all values of a, for in that 

case neither of the functions ̂  and i/f could involve a at all ; nor can 

either one of them become infinite for all values of x, y, and a, since 

^ and xji are supposed to be generally analytic, which implies the 

existence of finite derivatives, except perhaps for special values of 

the arguments. 

Let a be a value of the parameter for which — and -p- are finite 
da da 

and at least one of them different from zero. ' The transformation 
To. determined by it has for inverse a definite transformation, T^, of 
the group, corresponding to the value a. oi the parameter, where a is 

a function of a only. Since TjT'a = F„ is the identical transforma­

tion, TaTa-i-Sa is an infinitesimal transformation. If 7j is 

Xl = 4'ix,y, a), J'l = ./'(•«,y, a), 

the infinitesimal transformation T^Ta+sa ™^y be written, when ex-
197 
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panded by Taylor's Theorem 
d 

Xi = 4>ixi, yi, ay-Sa) = x-^-- ̂ («i, ji, a)Sa*-\- ••• 

d 
yi = t̂ixy, J'l, a + Sfl) = J -f — ./'(jCi, j/i, a)Sa -\ , 

du 
since 4>ixi, yy, a) = x, ipixy, yy, a) = y . Owing to the way in which 
« was chosen, neither of the coefficients of Sa is infinite for all values 

of X and y, and one of them, at least, is not identically zero. 

Writing 

9 9 _ _ 
J4{xi,yi, a) = ~4>l4>ix,y, a), xliix,y, a), a]=iix,y, a), 
da aa 
T-^ixi,yi, a) = —ipl4>ix,y,'il), il,ix,y,a), (ti=-qix,y, a), 
vda oa 

(i4S) 

it follows that an itifinitesimal transformation of the group (i) of the 

type (2), § 2, 

(2) Sx = iSa, Sy = 7jSa 

can always be found. 

The forms for i and -t] found- in § 2 are exactly what the above 

become for the special choice a = a = â . 

From the above it is seen that i and -1; in (2) depend upon the 

choice of a. It remains to show how they depend upon the choice 

of the parameter. Let 

Sx = %ix, y)Sa, Sj' = H(a:, y)Sa, 

or Xi = x^'^ix,y)Sa, j'l = j' -f- H(.t, y)Sa 

be some known infinitesimal transformation of the group (i), vvhere 

H and H are not both identically zero, and neither of them is infinite, 

in gener.al. The result of performing successively any transformation 

T^ of the group (i) and the above infinitesimal transformation is 

» Here A-rb (x y a) stands for [-^0 {x,,yi, «)! • 
9a Ida Aa. 
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some transformation of the group whose effect on the variables x 

and y differs from that of T^ by an infinitesimal amount. In other 

words, it is a transformation 7;+^„, where Aa is an infinitesimal which 

is a function oi a and Sa only, because of the group property of (i). 

From the first definition of this transforination 

Xi = Xl + =(.Vi, yy)Sa = <j>ix, y, a) 4- H(<^, i/')8a, 

j2 = ri-fH(.Vi,j'i)8a = ./'(a-,j-, a-) + ni<j,, ij/)Sa, 

while from the second definition 

X2=4'ix,y, ay-Aa) = 4>ix,y, a) + y Aa ̂- —, 
da 

J'2 = '/'(•»> J'. « + A«) = '/'(.'»", J', a)y--A^Aay- ••: 
da 

Hence 

(146) 

a(<^, f)Sa = -^/\ay- •••, 
ba 

H(<^,^)8fls^A«4- ..., 
da 

for all values of x, y, a and 8a, A a being a definite function of a and 

Sa, and an infinitesimal along with Sa. By hypothesis H and H do 

not both vanish identically; suppose, to fix the ideas, that S ̂  o-

It follows that X is not left unaltered by all the transformations of 

the group (i) ; hence <j> must involve a, and --̂  ̂  o. With a proper 
da 

choice oi X, y, a the coefficient of Sa and that of Aa in at least the 
first of the two relations (146) are different from zero. By a theo­
rem in the Theory of Functions, concerning the inversion of power 

series, A a is developable in powers of Sa, the development beginning 

with the first power. Hence 

A a = wia)Sa -\- •••,* 

* Since, as was noted above, Aa is a function of a and Sa only, the coefficients in 
this development mvolve a only and are free of ;k and^. 
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where w(a)^o. Aa is thus of the same order of infinitesimals as 

Sa. Putting this value in (146), dividing by Sa, and passing to the 

limit Sa = o, 

(147) E(<^,^)s7e/(«)^, H(</>,^)s«/(fl)f^; 
da da 

or remembering that x = 4>ixi, J'd «), y = 'pixi, yy, a), 

these may be written 

-^ = ^4>[.4ixi,yi, a), 4iixi,yi, a), a']^—A-Uixi,yi), 
da da w(a) 

-^ = — ^[^ixi,yi, a), 4/ixy,yi, a), a'] = —A-^nixi,yi). 
da da wia) 

Using (145), and replacing Xi and j'l in these identities by x andy, 

we have 

(148) iix,y,a) = -^A^-'B.ix,y), -qix,y, a) = — ^ B . i x , y ) . 
wia) wia) 

The effect, then, of using different values of the parameter in deter­

mining an infinitesimal transformation by the method of the first 

part of this note is to obtain pairs of coefficients of Sa in the two 

formula which are proportional, the factors of proportionality being 

constants. Hence, by Remark i, § 2, all the infinitesimal transfor­

mations so obtained are one and the same. W e have thus arrived 

at the 

Theorem. — Every one-parameter group of transformations 

Xl = 4>ix, y, a), Jl = xj/ix, y, a) 

has one and only one independent infinitesimal transformation 

Sx — i ix, y) Sa, Sy — t] (.v, y) Sa, 
where 

-\ n 
i=^4>\.4>ix, y, a), ̂ ix, r, a), a], •q = —-^{4>ix,y, a), '/'(•v,;', «), «•'], 

da da 
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and It is anv value of the parameter such that at least one of (-^] and 

dJ,\ . ^̂ ''̂ " 
--i j is not identically zero, and tieither of them is infinite for all 
oaj (L 

values of X andy. 
In general â  is a possible value. In § 4 is shown that the trans­

formations of the group can always be put in such form that this is 

true. When for a given group this value cannot be used, this is due 

to the way in which the parameter enters, and is not a peculiarity of 

the group. 

Remark. — This theorem and its proof hold for n variables without 

any but obvious modifications to take account of the number of 

variables. 

NOTE II 

SOLUTION OF THE RICCATI EQUATION 

f=i^ji+if|2]_^y-^fyM§i^). 
dx I 9jr %\dy dxj | dy 

In § 18 the general method for finding the differential equations 

invariant under a given group led to the solution of the Riccati 

equation 

in which y, wherever it occurs, is supposed to have been replaced by 

its value in terms of x and c [say y — <l>ix, c)'] obtained from 

uix, y) = c, the solution of the differential equation 

, X dx dy 
(11) - T = • 

i -q 
It is very easily seen that 

(149) y=i=t'l\"''\] 
i ilx, cj>ix, r)] 
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in which J' is replaced, as above, by <^(x, c), is a particular solution 

of (39). For differentiating (149) 

- = - f^ 4- ̂  ^\ — 1 f^ 4- ̂  ^"\ 
; i\dx dy dxj H\dx dy dxj 

dy__ 
dx 

Remembering that -A- — 1 this becomes 
dx i 

iL = i h + ifh_M\n-i^(v)\ 
dx i dx i\dx dxji i dy\i 

' Whence follows at once that (149) satisfies (39). 

It is a well-known fact that the knowledge of a particular solution 

of a Riccati equation enables one to find a transformation of variables 

which reduces the equation to a linear differential equation of the 

first order, whose solution requires two quadratures (see El. Dif. Eq. 

§ 73, t°). For the sake of simplicity, writing (39) in the form 

^=x,+Xiy+Xiy', 

and its particular solution j/ = Jo'; 

the transformation j/ = - +.>'o' 
z 

changes the differential equation into 

d'f 
f^ + iXi+.2y^Xi)z-pXi = o, 

which is linear. If z= mix, k) is the solution of this equation, 

(150) y = —^ I -nV^' 4>ix, g)l 
mix, k) ilx, <j}ix, c)] _ 

is the solution of (39). Solving (150) for k, and replacing ^(.r, c) 

^yy' tt'ix,y,y)=k 

is the required second solution of (37), § 18. 
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Inll, ^=^^ = ^ U^x'^+y-^^,. ,.y = V7^\ 
— y X I -f-jj/̂  •' -̂  

The Riccati equation (39) is ^ = '+^" . 
^ --\lc-x^ 

The transformation ^' = i 4- . 

reduces this to 1-

•Vc-Jt2 

2X I 
dx c — x'̂  V^ 

Integrating, 2 = " ^ — ^ y k i c - x " ^ ) 

•.-J^^^yky\ 
x' y y' 

Hence ,,; - x^yy"^ 
xy y iy''(x̂  y ŷ ) y' 

and i = -—. ''' ,./̂ , , i.=«'(x,y,y'). 
(x •¥yy')(x' yy') 

Compare this with II, § 19. 

N O T E III 

ISOTHERMAL CURVES 

The condition that two distinct families of curves 

4>ix,y) = const, and ^ix,y) = const. 

divide the plane into infinitesimal squares may be obtained from the 

following considerations : * 

Passing to the new system of coordinates 

(151) x=4>ix,y), y = xpix,y) 

the two families of curves have the simple equations 

X = const, and y = const. 

*A11 this holds, practically without change, for isothermal curves on surfaces. 
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From dx =^-^ dx y--p- dy and dy=J-(ix-y.AL dy, 
dx dy dx dy 

^Adx-^4dy l±dy-^dx 
d-y dy , , dx dx 

d x = . — f - — a n d ^ = -J{4', i') ' Ji4>, >P) 

where _/(<^, ^) ^ ^ 3^_ M^. 
dx dy dy dx 

the Jacobian of <^ and ijt, which is not identically zero, since the two 

families of curves are distinct. (See E l Dif. Eq. Note I of the 

Appendix.) 

The expression for the element of length of arc of any curve in the 
plane, in terms of the new coordinates, is 

d^ = dcip + df= E dx' - 2 E dx dy + G dtp, 

where the coefficients 

^djf? fdjpi d^dl d^dj, fd±\',fd^' 
p — \dxJ \dyt p__dxdx dy dy ^ _ \ d x J \dy 

[Ai4>,^)T ' = [/(</., ^)? ' [Ai4>, f)? 

are to be expressed in terms of x and // by aid of (151). 

A first requirement, that the two families of curves form isothermal 

systems, is that they cut each other orthogonally. The condition for 

'^'''' 9^ djt 
dx dy 

- 9 ^ = 9̂ '°'' ̂ = ° -
dy dx 

Hence a necessary condition is that the expression for the element 

of length of arc assume the form 

ds' = Edx'+G dy'. 
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For a curve of the family x — const, (which will be referred to as an 
jc-curve) 

dŝ  ̂ jGdy, 

while for a y-curve dSy = J e dx. 

If VE — JG at every point in the plane, the curves divide the 

plane into infinitesimal squares, for choosing dx the same as dy, 

d s ^ = ds-ij. 

Moreover, if JE and J G contain a common factor, and each of 

the remaining factors is a function of the corresponding variable 
only, thus 

/ E = Xix, y)aix), V G = Xix, y)/3iy), 

the introduction of the new variables 

X= Caix)dx and F= C/3iy)dy 

gives dS:^=AiX, Y)dX and ds^^AiX, Y)dY, 

where A(X, Y) is what X(j:, y) becomes when x and y are replaced 

by their values in terms of X and Y. The families 

X = : const, and F = const. 

(which are obviously the same as x = const, and y = const.) have the 

desired property. Hence the 

Theorem.— The necessary and sufficient condition that the curves 

4'ix, y) = const, and their orthogonal trajectories t\iix, y) = const. 

divide th^ plane into infinitesimal squares is that the choice of variables 

x=4>(x,y), y = >pix,y) 

reduces the expression for the element of length of arc to the form 

dP = X'ix, y) \ {_aix)dx-f 4- i m d v Y i 

where, in particular, aix) and ̂ iy) tnay each be unity. 
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Thus in the case of a family of concentric circles and their orthogonal trajec­

tories. •— ^2 4-1/2. i; —y-_ x = x̂ yy'', y-
X 

ds^ = JLdx'y ^ d^ = xU-Y + f^T 1-
4x (lyy')^" l\2x) ^{lyiPJJ 

Putting X = log -fx, Y = tan-^y, 
ds^ = e^^(dX^ y dV"). 

For other examples of isothermal systems, see § 24. 

NOTE IV 

DIFFERENTIAL EQUATION OF THE SECOND ORDER NOT 
INVARIANT UNDER ANY GROUP 

If the differential equation be written in the form 

j'"-i^(.a;,j,j;')=o 

the condition that it be left unaltered by the group 

Uf^i'/ + v¥ 
dx dy 

is[(6i),§ 27] 
8 F f) /^ 8 F 
(61') — i - 7]-- r)--j-\-ri" = 0, whenevery" = F i x , y , y ) . 

." = !-/!. C(58),§26], 

9^ /^_9^\ /9^_ ^X 9^^ 
dx?^ \ dxdy dx'jy ^\dy' dxdyjy 9/-'^ 

^fdr, di di ,\ „ 
^\^y~'dx'^Tyy)y-
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Replacing /', wherever it occurs in -q", by Fix,y, j'') the condi­

tion (61') becomes 

h^2^\F-i—- ^_h^ ^ 
dy dxj dx dv d-rdil dt^ 

(152) 

9j' dx dy dop 

+ 
9'' x_^_,M^_('^_M^ 
dx dy dx' dy \dy dxj dy' 

,dF' 
y 

djr dxdy dy dy J dy-
J'̂  = 0 

for all values of x, y, y. 

Since (152) is an identity with respect to x, y, and y, it is equiva­

lent to a number of differential and finite equations in i and ij, the 

exact number depending on the form of P. Fixing one's attention 

o n y alone, (152) is equivalent to at \east four equations, and per­

haps more. In general it is impossible to find functions iix, y) and 

tppc, J') to satisfy all these conditions. 

As an example, consider the differential equation 

y = xy-\- tan y. 

The identity (152) leads to 

%-^^dx)^''y^^^^^~^y~'^~Tx^^''^y' ^"' 

-^^(.j' + tany)y-f^3-gV«^^V+^y^secy+...so, 
'i'dy^^^ ̂ '•'"'" ̂  ' ̂  \dy dxj'' "̂'̂  •' ' dy" 

the dots standing for terms free of tan y and sec y and involving 

second derivatives of i and t]. (See below.) This identity implies 

the following relations: 

ia) 
d-r] 

' d i e - ' ' ' dy 

ib) iy-\--qx=o. 

file:///east
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(̂) 

id) 

{e) 

dr, 
dx 

dj__ 
dy 

dr, 
dy 

dr, 
dy 

= o, 

= o. 

dx 

dx 
From ipp) and («) 

These together with (<r) and id) make it necessary that 

i = const, and r, = const. 

Hence, the omission of terms involving higher derivatives of i and 

r, above. 

Since ib) must hold for all values of x and y 

i = r, = o; 

i.e. there is no infinitesimal transformation and, therefore, no group 

that leaves the differential equation unaltered. 

Remark. — The case of a differential equation of the first order is 

entirely different. The condition that 

y - F ix, y) = o 

T, • • . rr. .df df 
be invariant under Uf=i~-\-7)-p-

dx ' dy 
m a y be put into the form 

t C'S V̂ , fdv 3A di^, ,dF dF 
(36) Tx + ̂ dy-d-xr-Ty^ -^dA-'^Ty^"-

Here one of the functions, say i, may be chosen at random, leav­

ing a partial differential equation in r,, which always has a solution ; as 

a matter of fact it has an indefinite number of them. This is in 

entire accord with the result arrived at in § 15. 
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iU{W)f=iUiVi)'f. 

The symbol of the infinitesimal transformation of the extended 

group corresponding to U f = i ̂ -pr,-fis [(24), § 13] 
dx dy 

^^-^l-4At-'t-'l-^W' 

Introducing the symbol 

BA^f+yf, 
dx dy 

U'f may be written in the form 

and (,BCr)/sBiBf-y.f{x,,,/)M 
dy 

where pix, y, y) s BiBr, -yPi) is some function of x, y, j', whose 

actual form is of no importance in this discussion. Introducing the 
* 

additional symbol 

iBU)f may be written in the form 

i B U ) f = BiBfy- pix, y, y ) Cf 

Also iCU)f=cTix,y,y)Cf 

where aix, y, f) s CiBr, — ySi) is also a function of.«, y, y, whose 

form is of no importance here. The fact to be emphasized is that 

iBU)f and ( C U ) f are linear functions of Bf and Cf, the coefficients 

being functions of x,y,y. 
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Moreover, if Uyf and Uif are any two groups, iBiU{Uj))f and 

iCiU{Ui))f are also linear in Bf and Cf. For from Jacobi's 

identity (§ 36) 

iBiUlUi))f-PiUiiUiB))f-PiUiiBUA))f^o, 

iBi Ui Uj) )f = i iBUi) Ui)f- i iBUi) Ui)f 

= iBiiB + pi C, Ui)f- iBiiB + piC U{)f 

= \_U{iBi.i)-UaBii)-\Bf 

-{-[piBii— piBii+picr3—picri-{- Uipi— Ujpi\Cf; 

and in an analogous manner, 

( Ci U{ Uj) )f = ( Uj^i - Ujai) Cf 

Since iUU^f is of the same type as Uf (§ 14), it may be written 

iUiUi)f^if^^,f^, 

and iUiUi)f=i^-^^-^r,^-l+iBr,-yBi)^. 

Noting that iUiUi)f coincides with iUiUPf'f in the first two 

terms, at least, we may put 

iUiUj)f^i^-ly-\^-l+mix,y,y)^,. 
dx dy dy 

It remains to show that m = Br, — y'Bi. 

The alternant of ̂ a n d iU{U!)fis 

iBiU;Uj))f^Bi^^ + iBr,-m)f+Bm^,. 
dx dy dy 

This being linear in Bf and Cf, as was proved above, 

:.Bi = X, Br,-m = Xy. 

- * l + < - ' - " ) | + - f - | + v f + . | -
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Whence m = Br,— y Bi. 

This, as was noted above, establishes the identity 

iU{Uj)f= iUiU.i)'f 

Remark. — It can also be proved that for the wz-times extended 

groups Z7i<'"'/and W " " / 

(t/i"»)C//™>)/=(C/iC/0«/ 

N O T E VI 

CONTINUOUS GROUPS INVOLVING MORE THAN ONE 
PARAMETER 

r-parameter Group of Transformations. — The aggregate of all the 

transformations * 
\ x i = 4>ix,y, «!, tti, •••, a,.), 

^ ^yi = 4'{x,y, ai, ai, ••-, a,), 

obtained by assigning to the parameters flj, flj, •••, a, all possible 

values constitutes a group, if the transformation resulting from the 

successive performance of any two of them is one of the transforma­

tions of the aggregate. 
As in the case of one-parameter groups (Chapter I), the groups 

here considered are supposed to have their transformations pair off 

into mutually inverse ones. That is, corresponding to any set of 

values of ai, a^, ••,-, a, there must always be another set flj, di, •••, d„ 

* As before, 0 and i^ are supposed to be generally analytic real functions of x,y, fli, 
aj, .... Ur ; and, unless specially stated, it will be understood that x and y are real 
and that the parameters take such values only as render Xi and yi real. Groups of 
transformations involving two variables are considered here. For the theory of those 
involving n variables the student is referred to Lie's works, especially his Transforma-
tionsgruppen,Yo\. I., and his Continuierliche Gr-uppen; also to Campbell's Introduc­
tory Treatise on Lie's Themy. 
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(functions of the former ones) such that 

.y = <j>iXy, Vy, ay, Ti.., •••, ,7,),. 
JS3) 

I .y = <j>ixy, Vy, ay, a.., •••, a J, 
\ j'=i/'(.v„ )•„ (/„ a.,, ••-, a p . 

Another w a y of putting this is: If the equations (153) are solved 

for .V and J', the latter must appear as the s a m e functions, cf> and ij/, 

respectively of ,v, and i', and a set of r functions of «i, a^, •••, a,., as 

indicated by ( T 5 3 ) . 

Thus, consider the translations 

XVll .i-| = X y ay, yy zzy + a.,. 

If one of them be followed by a second one, 

.T.j = .r, yby, y.. — y i y b̂ y, 

the result is .\-., = .>- -|- (-[, y.̂  — y y c.., 

where ci — ay y by, Ci = a., y b-̂ . 

Solving the equations XVII for x and y, 

x — xy — ,/,, y = y i — an. 

Hence ay =;— (/[, ih> = z — a.,. 

Again, consider the displacements 

XVlll .I't = .rcosffi —J'sin(71 -|- a.̂,, yi = .rsin(?i + I'cos^i y ̂ 3. 

A second transformation of this type 

.i-o == .,i-| cos 1̂1 — J'l sin by y b.,, y., = .ri sin bi y vy cos bi y b^, 

results in 
.\-j = .rcos(-| — I'sin ci -f <-.,, y., — .isin.--! yyco^ci y m, 

where 
ci = «i -h l'\, <'-j = I'-i COS by — a;; sin by y /'», r,i = a., sin by -f -j-s cos bi + iSs. 

Solving the equations .Will for .r and r, 

.r = .i-| cos(— rti") —jJisin (— «i) —(«.jcosi?i + rtasin<;i), 

y = .1-1 .sin (— «i)-i-_)'ic'os(— r'l) 4-(ff.jsin <;i — i^icos./O. 

1Icnoe 
<;, = — ay, a.̂  = — (a.̂  cos tii y r̂i sin a,), a;; = n.̂  sin ay — a-.y cos a\. 
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In the case o( the general projective transformations 
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XIX __ayx ̂  a-,y-^ a.i .„ _ g4-r -r a^y - Oj 
^ , > J1 

<2-jr4- . 
aa a-x y asy y Co 

there is no difficulty in seeing that these constitute a group. For if one of the 
above transf:rn:a:i:.ns be followed by 

T.> — ̂ i-̂ i — hyi 
hxi y Pi.-, i 

lÂ^ y., ̂ hxi+Asyi+J§ 
• C'j ' bjxy -{- bgyi y bg' 

there results xo = "'"̂  '̂  '^y + ^3, ,., = £i£±_£5Jl+_£6^ 
'~tX y csy -̂  C3 c-,x y csy y ca 

•"•liere ci = 31*1 y aib-i y a-jd^, 

cs = aJ>i -\- a^-2 y <Z8*3> 

^3 = «3*l -f a^bi y a^, 

Ci = aiii y atbs y a-,b^ 

cs = a.ib.i y a^ba -r a^be, 

Ce = a^bi -h a^b^ -f- 09^5, 

iTg = floAy 4- asis y asbg, 

C3 = "z^ -r a^a y agig. 

Moreover, the result of solving the equations XI.X for x and y is 

^ _ ^iJTi y Ajyi y A- _ AjXi + -^5,i'i y A;. 
Azxi y Aeyi -f- A i A ^ i -t- Asyi -̂  .-/a' 

where ^i, Ai, ••-, ^j are the cofactors of the corresponding elements of the 
determinant 

ai 
a* 
aj 

02 
as 
as 

az 
as 
03 

Since the successive performance of two mutually inverse trans­

formations results in the identical transformation, the latter must 

always be a m e m b e r of the Lie group; hence there must always 
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exist a set of values of the parameters, ai, ai, ••-, ai, such that 

(iS3o) 
\Xi=<l>ix,y, ai, ai, ••-, ai) = x. 

Iji =f(x,J/, ai, ai, •••, ai)=y. 

It is readily seen that for 
XVII, a P - a P = o; 
XVIII, aP = aP = aP = o; 

XIX, ap = a^ = ap = any number (differentfrom zero), 

ap = ap = ap = ap = ap = ap = o. 

W e shall further presuppose that all of the r parameters in (153) 

are essential, that is, that the formulae of transformation cannot be 

replaced by another set involving a smaller number of parameters 

without reducing the number of transformations represented by 

them. 

Thus .ĵi = ;r -1- fli -f as, yi = y y ai 

contains no transformation that is not included in XVII. It involves only two 
essential parameters ; ai y a^ is no more general than ay. 

In XIX, as is well known, there are only eight essential parameters; since 
the expressions are homogeneous and of degree zero in the parameters, it is only 
the ratios of the latter to any one of them that count. 

A group involving r essential parameters is known as an 

r-parameter group. 

It is frequently possible to tell by inspection whether the parameters 

appearing are essential or not. A n analytic criterion is given by the 

theorem of Note VII. 

Show that the following sets of transformations constitute groups. 

Find the respective values of the parameters that give the inverse 

and those that give the identical transformations : 

Ex. 1. Xl = aiX -\- «2, yi = aiy + â . 

EX. 2. Xl = aix -f- aiy -\- â , yi = a^x -f- a^y -\- â . 

Ex.3. Xi = x-Paiy-P ai, y i = y y - a y 
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Ex. 4. a^i = a; 4- a^f 4- <7j, j-i = a^y. 

Ex. 5. xi= iai-\- i)x-p {a^- i)y-ir a-3, j'l = aiX-J-a^-F a^. 

Ex. 6. Xl = ^ , J'l = l̂l . 
a^-^a^y-pi asX-^ a^y-P j 

Infinitesimal Transformation. —The transformation 

Xi==4>{x,y, ai -\- Sai, ai y-Sa^, ••; ap -P Sai), 

yi = H ^ , y, ai -\- Sai, ai -p Sa^, •-, ai -p Sai,, 

where ai, ai, •••, ai determine the identical transformation and 

Sci, Sa^ ••-, Sa,. are infinitesimals, changes x and y by infinitesimal 

amounts, since <̂  and ij/ are supposed to be continuous functions. 

Developing by Taylor's Theorem, 

^i = ;c+gM|^8.,+ ..., 

y^^y+^MA^^^y...., 
da,' 

ji^,^d<l>ix,y,a') ^^j M^Li.^ stand for what 
dai dai 

d<fyix,y,ai,ai,---,aj) ^^^ dtjtix,y, ai, aj, •••,ai) 
da, daj 

respectively become when ai = ai, ai = ai, •••, a,. = ai, and the 

unexpressed terms are of higher degree than the first in Ŝ i, Sa-i, •••, 

8a,. The changes in x and y are then 

.i-.=8;.=2;^^^^^sa,+ -, 
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We shall suppose that at least one member of the pair 

, d<j>ix,y, a") dxpix, y, a") 
^'54) dAi ' dai ' 

for each value of i from i to r, does not vanish identically, and that 

all of them are finite. Calling them i^x, y ) * and r,iix, y ) respec­

tively, the transformation m a y be written 

(155) Sx-=^i,ix,y)Sa,+ •:, Sy = ^r,Ax, y) Sa,-P - . 

In exactly the same way as is done for one-parameter groups in 

N o t e I, it can be shown that infinitesimal transformations of the form 

(155) always exist, even w h e n the parameters enter in such a way that 

for the particular values ai, ai, ••., a i both m e m b e r s of s o m e pair 

d<f)ix, y, a") d\pix,y, a") 
daP ' d^» 

vanish identically, or if s o m e one of them becomes infinite.| 

H e r e Sai, ̂ <̂ 2, •••,̂ '̂ r are any infinitesimal increments of the first 

order. Taking Sa as a standard infinitesimal of the first order, we 

Say = eiSa, Sa2 = CiSa, •••, Sa,. = e,.Sa, 

* Here |j and 7;^ are written as functions of a; and > only, since ai", 0.2", • • •, flr" 
appear as numerical constants. 

t The general expressions for the coefficients in (155) are, in thenotalion of Note I, 

(ISS') 

î{x,y, ay, a.,, ••-, «r) 
9 — — — — — — 

= A~<P['p{x,y, «!, da, •••, a,.), ̂ (x.y, uy,ai, •••,Ur), eci, «->, •••, ô r]. 
diti 

rji(x,y,ay,a.,, •••, a j 
= -:Ayj,[,:j,(x,y,ai, ^2 •••«,•), i/(x,y,ai, u.2,---'aP, Uy aa, .•-,«,]. 

dat Here ai, ̂ 2, •••, a, are any set of values of the parameters for which both {,- and iji 
are finite, and at least one of them is not identically zero. The forms (iss) for ̂,-, iji 
are what the general forms (iss') become for the special choice a^ = «t = "t" 
(k= i,-^,-,r). 
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where <?,, ei, •.., e,. are any finite constants. The general type of an 
infinitesimal transformation may then be written 

(156) \^x = ieiiy + eiii + ... +e,i;)Sa -p ••; 

[ Sr = ieyr]i y- Cirji -P ••• + e,.r,,)Sa + ..-. 

For the sake of brevity we shall write 

(157) Sx = iSay- •-., Sy = r,Say- •-, 

where i = '^ef^ and r, = ^e,rji. Introducing the symbol 

and similarly 

dx dy 
we have 
(158) Uf= eiUyf-P e.iUf+ • - +e,Uf 

It can be proved * that when the r parameters of the group are 

essential U f Uif, ••• U J , (in which 4 1;,, are given by (155') for 

any properly selected set of values of the parameters, in particular 

they may have the special forms (155)), are linearly independent; 

that is, that it is impossible to find a set of constants Cy, <;,, •••, c,. such 

*""* ciUyf-P CiUf+ •••+c,Uf=o, 

which is equivalent to saying that for no set of constants Cy, c.2, •••, c, 

can both the relations > , j. , , • 
'flfl + '^2?2+ ••• -PC,.̂ ^ = 0, 

'^l'?l+ '^2'?2 + • • • + CrVr = O 

* Thus, for example, see Lie, Continuierliche Gruppen, Chapter 6, or his Transforma^ 
iionsgruppen. Chapter 4. Also Campbell, loc. cit., ̂  42. 

The object of this Note is to present as compactly as possible,, consistent with a 
clear understanding of the chain of reasoning, the relations between r-parameter 
groups and their infinitesimal transformations. Consequently when long and tedious, 
the proofs of certain facts are omitted here. These may, however, be obtained from 
the references given. 
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hold simultaneously. Moreover, it can also be proved that if 

Sx = 'B,Sa-\- •••, Sy = U S a + ••; 

is any infinitesimal transformation of the group, H is a linear function 

of il, ii, •••, ir 'vnth constant coefficients, and H is the same function 

of Vl, V2,-; Vr, thus, H _ /̂^̂  + /̂ ^ + ... + /̂ ^̂  

H = A'7l + 4'?2+ ••• A^rVr) 
df df 

where the set Uif=ii-i--\-rjiA (2= ,̂ 2; •••> ̂ ) 
dx dy 

is any linearly independent one. 
The coefficients of Sa in (156) can therefore never both vanish 

identically. Hence at least one of the terms of first order must 
appear. Infinitesimals of higher order than the first may conse­

quently be neglected, and the infinitesimal transformation may be 

written in the form 

(159) Sx = ieyii^eiii-\ f-e,ii) Sa,Sy = (̂iîj -|- d?27;2-|- he,r,i)Sa. 

The change in any function/(jc,;;) produced by (159) is then 

'Sf= UfSa, 
where 
(158) UfEE.eiUy/+e,iUJ+ ••• -P e,UJ, 

as in § 3, is the symbol of the transformation (159) and will be used 

to represent it. 

The above may now be expressed as follows : 

Theorem I. — Every continuous Lie group involving r essential 

parameters contains r linearly independent infinitesimal transforma­

tions Uyf, Uif, •••, UJ, in terms of which every infitiitesitnal trans­

formation, of the group can be expressed linearly witfi constant 

coefficients, thus 

(158) Uf=eiUyf-PeiUif + - + e , U J . 

Moreover, every transformation of the type ii58),for all choices of 

the constants Cy, e.j, ••• e„ belongs to the group. 
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Remark i. —• It follows that in any set of infinitesimal transforma­

tions of the group, only r at most can be hnearly independent. 

Moreover, starting with any r hnearly independent transformations 

^If, i-'-ff, •••, U J , every set 

VJ=ei,UJ+ei,UJ+ ... -Pe,,UJ 

ik=\, 2, ••-, r) 

wQl be hnearly independent provided 

A = 
Cy,, ̂ 22) 

^Ir, ^2r, 

=f=0. 

Any set of r linearly independent infinitesimal transformations, 

Vyf VJ, •••, VJ, may be taken as the r transformations (referred to 

in Theorem I) in terms of which all the infinitesimal transformations 

can be expressed linearly with constant coefficients ; for, since A =7̂  o, 

each of U-yf, U-if, ••-, U J is a linear function of FJ, FJ, •••, F J 

with constant coefficients. 

In the case of XVII hx = 5ai = eî a, iy = Sai = Ciia. 

... U f = e i ^ - y e i ^ -
^ dx dy 

A set of linearly independent transformations is 

Uif= df Uif= df. 
dy 

In the case of XVIII, 

ix = — ySai 4- 5«2 = ( — eiy -f- ei)Sa, Sy = xdai -f das =(eix yea) da. 

Uf=ei[- 9/, 9/ 
dx dy 

df L df 
dx dy 

A set of linearly independent transformations is 

Uif^y^-x^A, UiP^f, t/s/sf. 
dx dy •' dx dy 
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In the case of XIX there are only eight essential parameters. Putting ag = i, 

xi=xysx = i^ + ^'"^'^'' + y^'" + ^''^-
X da-i yy dag y I 

But = I — X daj — y Sa^ y ••; 
X daj yydaa -h I 

where the dots stand for terms of higher degree than the first. 

.. xi= X -h dx = X y xSay y y Sai "H ̂ ag — x'^Saj- xySag y •••, 

"Whence, Sx = (eix y ay y ez — e-ix'- — ê xy) Sa. 

Similarly, Sy = (ciX y e^yy en — ejxy — esy'̂ )Sa. 

. rrr- 9/ , dp , dp . df. 9/ , 9/ f o df , 9/N 
.-. Uf =eixP-y ay-p-y ezP-y CiX-p-yciyP-y es-p- e P x ^ ^ y xy-^\ 

dx ^ dx dx dy dy dy \ dx -̂  dy I 
-A%*''AA 

A set of linearly independent transformations is 

^^/-l' "'f^fy' "^f^^TA ^^f^yfx' ^^f^4y' ^^^^4y 

U.f^x^f^yxyf^, UJ^xyf^yyfy 

Ex. 7. Find the infinitesimal transformations of the groups in 
Ex. I, 2, 3, 4, 5, 6 above. 

Group Generated by Infinitesimal Transformations. — Starting with 
the infinitesimal transformation 

(158) U f = e i U J + e i U J + - P-e,UJ 

= ieiii-ye^i+ - +e,i,)-£-lrieir,i-}reir,i-i- ••• +M,)^, 

in which the constants Ci, Ci, •••, e, are fixed, the finite transforma­
tions of the group generated by it may be obtained either by finding 
those solutions of 

(160) — ^ s — = . — " ^ y ^ - =dt, 
'^eAiixi, yi) %e.qPxy,yi) 
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for which .»! =.» arid j'i= r when / = o (§ 4), or in the form (§5), 

Xi = x + t le,U,x + AL %-%e,e^U,U^-\- •••, 
(161) 

V -

2 ! 

-.y + t%e,U,y-P-^%%e,e,U,U,yy- .... 
2 ! 

In both cases t is the parameter, and / = o gives the identical 

transformation. 

If <?i, ̂-o, ••., (f,. are arbitrary constants and Uyf UJ, •••, U f are 
hnearly independent, the infinitesimal transformation contains r — i 

parameters (viz. the ratios of any r — i of the '̂s to the remaining 

one), and the general expression (161) for the finite transformations 

generated by it contains r parameters. That these parameters are 

essential follows from the hnear independence of U J , U f , •••, UJ. 

A proof of this fact may be found in Lie's Continuierliche Gruppen, 

pp. 186-190. Hence there are of transformations in the set (161). 

If U J , Uif, •••, U J are r hnearly independsnt infinitesimal trans­

formations of an r-parameter group, every transformation of the set 

(158) belongs to the group (Theorem I). All the transformations 

of the one-parameter group generated by any transformation (158) 

belong to the r-parameter group (Lie, Continuierliche Gruppen, 

p. 183). The W transformations (161) therefore belong to the 

group. Moreover, every transformation of the r-parameter group 

(at least all such for which the values of the parameters are suffici­

ently small so that when developed by Taylor's Theorem in powers 

of the parameters, as (161) are, the series are convergent) is in­

cluded in (161) (Lie, Transformationsgrttppen,Yo\. I, Ch. 4, § 18). 

Hence 
Theorem II. If Uyf, Uf---, U J are r linearly independent trans­

formations of an r-parameter group, the latter* is precisely the aggre-

* At least all its transformations corresponding to values of the parameters which 
differ by limited amoimts perhaps (see above) from those which give the identical 
transformation. 
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gate of all the one-parameter groups generated by the oo "•-^ infinitesimal 

transformations rj ,_ tt .f \ rr -c < i „ rr -f 
•' U J = efUJ-P epJJP- ••• -̂  e,Uf 

Remark 2. Since t and the e's appear in (161) in the combina­

tions tcy, te.i, .... /if„_ there will be no loss in suppressing the t and 

writing the finite transformations of the group in the form 

(161') 

Xi = x + 'S,eiUiX-] -25 ê ê  U^U^x + 
2 1 

j'i= y + ^e,U,y-{-A-l^ e,e, U, U,y + 

where the ̂ 's are now r distinct parameters. The identical trans­

formation is given by ̂ 1 = ^3= •.• =<?, = 0, and the inverse trans­

formation by 7j = — Ci (z'= I, 2,..., r). 

In the case of XVII the general type of infinitesimal transformation is 

Up^eifycidf. 
dx dy 

The finite transformations (l6i') are seen at once to be 

Xy =xyey,y-i—yy e... 
In the case of XVIII 

UP^ei(-y^yx^)yeifye,f 
\ dx dy I dx dy 

:. xi = X — eyy y a e{̂ x -\ e,?y H e-̂ x — ... 
2! 3! 4! 

= x cos ey— y sin ey y e-,. 

Similarly yy = x sin cy y y cos ey y ez. 

Remark3. The expressions for Xy and j'l in (i5i') may at times 

become extremely complicated, as for example in the case of the 

group XIX. Also the actual problem of integrating equations (160) 

with the e's arbitrary constants is usually a difficult one. T o over­

come this practical difficulty Lie suggested the following method, 

which was also given independently by Maiirer iMath. Anti.,Vo\. 39) : 
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Having found 

(162) Xi=^,i.x;y,a,), yy = t̂̂ ix,y, a,), 

(/= I, 2, •••, r), 

the finite transformations of the one-parameter groups generated by 

each of the r linearly independent infinitesimal transformations 

UJ, UJ, •••, U J o i an r-parameter group, the result of performing 

successively one transformation (with arbitrarily selected parameter) 

out of each of the r groups (162) is a transformation belonging to 

the r-parameter group and involving the r parameters Oy, ai, •••, a,.. 

That these are essential follows also from the linear independence of 

UJ, UJ, .-., UJ. (See Lie, Continuierliche Gruppen, p. 194.) 

In the case of XVII 
Uif= ~p xi=x yai, yi =y, 

dx 

Uip= % : Xi= Xl, yi = /I 4- ai. 
dy 

The successive performance of these gives 

Xi = x y ai, yi=y y ai. 
In XVIII 
lf,f=—ydLyjc!A • Xl = xcosai — ysinay, yy = xsinay 4->'Cos«i, 

dx dy 
U i f = ^ : Xi=xiy ai, yi = yi, 

dx 

Uzf= %•• xz- Xi, yz=yi-^ az. 
dy 

The successive performance of these gives 

X3=x cos ai— y sin «i 4- ai, yz = xiinay y y cos aiy ag. 

In XIX 
-df. 
'-dx' 

-' dy 
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— dp 
^3/=-^^ : Xz = azXi, yz = yi, 

— df 
UJ=y-^ • x^^xzyaiyz, yi=yz, 

Uzf= xA~ •• Xi=Xi, ys = asXi y yi, 

TT r- dp 
'dj=y p- •• xn = Xl, 76 = aeyi, 

rr r— idf , dp , _ Xz ., 76 
U-jp=x^p- yxy-f x-i = , 77= —^^ , 

dx dy I — a-,xz I — â x̂  
Uzf^xy%yy^%. x, = -^^,yz = ^!^. 

dx dy I — (787r i — azy^ 
The successive performance of these gives 

_ g;;jr+ 047 -I- ayaz 4- «2a4, 
•*8— , ; • > 

a,jr 4-"87-I-ttg 
_ ffla^'sgR-y -^ (gg + aitaiapy -\- aja^, 4- aiazasas -f aiaja^af. 
atx-\- as7 4- reg 
where «,= —(fl3ffl74-a3a-6ao«e)' Ks = — ('^4''^7'f "s'^s-)-''4«5'2e'28)> 
ffg = I — (^11230:7 -|- aiaiii-i y aia^fig -\- ayazaia^a^ y aia^a^a^a 

Find the finite transformations generated by the following : 

Ex. a Uf=ieiX + ei)^-L^ieiy^ei)^^. 
dx dy 

Ex. 9. Uf=ieiAreiX-'rezy)^ + iei+e!?cAeny)-A-
dx dy 

Ex.10. ^=(^ij'-H^2)^ + ^3|^. 
dx dy 

Ex. 11. Uf= ieyf + ei)%-y- ezy%. 
dx dy 

Ex. 12. Uf=ieyP- Ci X -I- czy) fl 4- (^i 4- ^2* + e^f) %-. 
dx dy 

Ex. 13. Uf= icyx -{-Cix'y- Czpcy) -/ -f (^ij -i- e^y + e^y')^. 
dx dy 
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Lie's Principal Theorem. — I t was shown above (Theorem II) 

that if U J , U f , ..., U J are r linearly independent infinitesimal 

transformations of an r-parameter group, the aggregate of the oo"" 

transformations of the to--^ one-parameter groups, each generated 

by an infinitesimal transformation of the set 

(158) uf=eiUJ+eiUJ+ ... P-e,UJ, 

forms an r-parameter group. On the other hand, starting with any 

r hnearly independent infinitesimal transformations U J , U J , •••. 

U J (without knowing whether they form a complete set for some 

group), there is no reason to suppose that the oo' transformations 

generated by the various transformations (158) form a group. 

Thus, starting with 

the transformations generated by 

Uif= 

by 
up= 

•̂ ^ Uf-

df , 

97 

.df 
dy 

1 . I aiai 
are xi^^ x y ay, yi = aiX y y -\—'^-=. 

2 
"While these transformations involve two essential parameters, it is very easily 
seen that they do not form a group. 
A definite answer as to when the oo'' transformations generated by 

the various transformations of the set (158) form a group is given by 

Lie's Principal Theorem : * The necessaty and sufficient conditions 

that the co' transformations generated by the co'"̂  infinitesimal trans­

formations rr j: , tt -t , i tt .c 
eiUJ-P CiUJ-P ... -Pe^UJ, 

* 
* Lie calls this theorem " Der Hauptsatz der Gruppentheorie," and gives a proof 

of it for groups involving two variables in his Continuierliche Gruppen, Ch. 12. In 
his treatment of the general theory of continuous groups, this theorem is the second of 
his "three fundamental theorems." See his Continuierliche Gruppen, Ch. 15, or his 
Transformationsgruppen, Vol. I, Ch. 9; also Campbell, loc. cit., Ch. IV. 

A detailed proof of this theorem would be beyond ihe scope of this Note. A state­
ment of it with illustrative examples will suffice. 

Lie first deduced this theorem in 1874. 
Q 
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where UJ, UJ, •••, UJ are linearly independent and Ci, Ci, •••, e, are 

any constants, constitute a Lie r-parameter group are that 

(163) iU,Ui)f=c,JJJ^c,^iUJ+ - -Pc,^UJ, 

ii,k=i, 2, ..., r), 

where the c's are constants. 

Remark 4. — This theorem is equivalent to the following two : 

1° The infinitesimal transformations of an r-parameter group form 

an r-paratneter group of infinitesimal transformations. (§ 43.) 

2°. Tlie transformations of the groups generated by the transforma­

tions of an r-parameter group of infinitesimal transformations form an 

r-parameter group. 

In the case of XVIII, 

UJ^yf-xf, UiP^^A, UzP^f. 
-̂  dx dy dx dy 

I-Iere (UiUi)P= Uzf (UiUz)f=- Uif (UiUz)f=o. 

In XIX 
(UiUi)f=o, (UiUz)f=UJ, (UiUPf=o, (UiUP,f=Uif 

(UiUPif=2UzfyUJ, (UiUz)f=UJ, (UzUP)f=UJ, (UzUz)f=o, 
and so on. 

Ex. 14. Show that the infinitesimal transformations in Ex. 8 to 

13 satisfy the conditions (163). 

NOTE VII 

CONDITION FOR ESSENTIAL PAEA.METEES 

The r parameters in 

(153) Xi = <l>ix,y, ai, ai, ••-, a,), j'i = i/'(x, j, ai, ai, •••, aj) 

are not essential if (153) can be replaced by 

(164) Xi=^ix,y, «i, Ui, ••., «,_„), J'l = * ( ^ , Ĵ, (Xl, 0:2, •••, ttr-m) 

(i<;«<r). 
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In this case the identities 

(165) ^ = $, ^ = ^ 

for all values of x and y, determine ai, 0^, ..., 'a,_^ as functions of 

«!> a.,, ..., a, • for by saying that (164) replaces (153) is meant that 

as soon as the a's are given a set of the a's is determined (not neces­

sarily uniquely) which will give rise to the same transformation. 

A homogeneous linear partial differential equation of the first order 
in r variables 

(166) Af=^iiai, ai, ..., a,)^+ ... +^^iai, ai, .-., a,)-^ = o 
oai da,. 

is determined -uniquely by r — i independent solutions.* A n equa­

tion of this type can therefore be constructed which shall have for 
solutions 

«i, Ki,--, «.-„, ̂ r-„-n, •••, /8.-1, 

where ^,_„^.i, ••-, /3,_i, any convenient functions of the a's inde­

pendent of the a's, are added to the latter to make up the number 

r — i in case m > i . This equation will have for solution also any 

functions of the a's, in particular * and *, x and y appearing as 

parameters ; or owing to the identities (165), by which the a's are 

defined, <j) and ijt will also be solutions: 

Conversely, if <j) and î  satisfy an equation of the type (166), they 

are functions of some or all of its r — i solutions, 

yi(«i, «2, •••, ai), y-2i«i, a-i, •••, aj), ••-, 7,^1(01, ai, •••, aj) ; 

i.e. the a's enter <j} and ijj in such a way that for all values of x and y 

4>ix,y, ai, ai, •••, a^) = ^ix,y, yi, 73, .••, y,_i), 

iltix,y, ay, ai, •••, a,) = <5fix,y, y,, y.,, •••, y,_,). 

* A proof of this for the case of r = 3 is given in the first footnote of § 34. The 
proof for r any number is exactly the same. 
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Hence the 

Theorem. — The necessary a n d sufficient condition that the rpara­

meters in (153) be essential is the impossibility of finding r functions 

of them ;)(i, -gi, ..., -gj. such that the resulting linear equation (166) 

shall have <̂  a n d iftfor solutions. 

Remark. — There is'nothing in the above to show whether the 

r — I parameters yi, ji, •••, y,_i are essential of not. T h e same test 

must be applied to them also, unless, as is frequently the case, the 

exact state of affairs is obvious on inspection. 

To illustrate, consider the transformation 

Xl = xa^^s^ y b̂ os" y c = (p(x, y, a, b, c), 

71 -ya^oti =i'(x, y, a, b, c). 

If a, b, c are not essential it must be possible to find three functions of them, 
Xi(a, b, c), X2(a, ̂, c), Xzia, b, c), such that the equation 

(166) Af=xMyxMjxM=o 
da do dc 

is satisfied identically (for all values of x and 7) by 0 and ^; that is 

^0 =!2ii(xal°s» 4- '5'°S'')xi -f ^2^(xd^°?.iy fi'>S'-)xi -I- X3=o, 

for all values of .r and;)/. These two identities are equivalent to 

^•''^^(^^Xl + ^X.) =0, 

3'o.'.(i2gixi + '2fx2) + X3=o, 

«'°''»(^^X1+^X2) =0. 
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By inspection, a set of forms for xii X2, Xz are found to be 

Xl = « log a, X 2 = — b log b, xa = °-

Hence the three parameters 3.te'noi essential. 
To express the formulae of transformation in terms of a smaller number, one 

proceeds to solve the equation 

(166') « l o g a ^ - A l o g ^ - ^ = o . 
da di 

Passing to the corresponding system of ordinary differential equations 

da _ db __ dc 
a log a — b log b o 

it is obvious that log a log b and c 

are a set of solutions of (166'). Putting 

log «log /5 = a, whence a^os* = b'^'S" = «", 

the formulae of transformation take the form 

xi = (xyi)e'^y c, 71 = ye^, 

or, more simply still, xi = aix y ai, yi = aiy. 





T A B L E I 

In this table is given a hst of the more readily recognizable forms * 

of differential equations of the first order which are known to be in­

variant under certain groups. T h e same type of equation is some­

times given in various forms, and special cases are also noted when 

this seems desirable. 

In the second column appear the groups under which the equations 

are invariant. T h e numbers are those employed in § 19. For the 

sake of simplicity/"and q are used instead of -A and A respectively. 
dx dy 

T h e corresfionding integrating factors of § 12 are given in the 
third column. 

In the fourth column appear the canonical variables.f 

W h e n variables which are separable in the transformed equation 

(§ 20) can be obtained easily, they are given in the fifth column; 

the form of the group resulting from the introduction of these vari­

ables is given in the last column. 

• Other forms will be found in § 19. 
+ There is a certain degree of freedom in the choice of canonical variables, since 

they are particular solutions of the differential equations (16'), } 10, or of the correspond-
9/ 

ing ones in case the group is to be reduced to the form ̂ . Moreover, the right-hand 
member, i, in one of these equations may be replaced by any convenient constant (see 
Remark i, § 2) ; use of this fact is made when it will simplify the form of the resulting 
variable. 
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ŝ" "^ 
II II 
K a) 

1 
'̂  
1 
-iJ 

X 

tjM 
5̂  H-

5 
1 

'U 
X 
1—t 

•̂  II 

§ + 

f3 

a 
QJ a. 
a 

o 
d 
OJ 
ri 
1) 
.S -Ci 

a. 
?j A-h 
II II 
K H 

J\ M 
t " + 
""S 5s 

hH > 
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T A B L E II 

General types of differential equations of higher order than the 

first, invariant under given groups, are usually complicated and not 

easy to recognize. In this table are given a few which a little ex­

perience will enable one to recognize.* Such characterizations as 

are simple are added. 

Differential Equ.4tion 

P(x,yi,yi', •••,y(.r-))=o 
P(y,A,y",--,y('-^)=o 

p(axyby,y',y", •••,y(r))=o 

1 y> yl> ;,{,-) N 
f\A' y' y'-' y )-° 

'y y y^r)\ ^ 
•̂  \xn' x«-l' ' xn-rj 

fi^^^y,xy<',..., 
xr-ry{.r) \ —q 

p(y, xy', x y , •••,xry(.r))=o 

P(x, <py'-<f>'y, ̂ y"-<f,"y, ..., 
(jjyir) — (l,(r)y) = o 

P[x, xy'-hy, xy'-h(i-i)y, 
••• , xry(.r)-k(k-l)... 

(k-ryi)y-}=o 

Group 

I; ? 
V; p 

XII; b p - aq 

HI; yq 

Yl ; x p y nyq 

IV; xp yyq 

III'; xp 

VII; <t,(x)q 

VII; xkq 

Characterization 

y is absent 
X is absent 

X and y enter in the combi^ 
nation ax y by only 

Homogeneous inj,y, .•.,y{r') 

Homogeneous when \> eights 
of X, y, y', ..., y(r) are T, n, 
n — 1, •••, n — r respectively 

Special case of above, for k=i 

Another special case, for k = o 

A linear function of the vari­
ous elements, except x, gives 
rise to a linear differential 
equation 

A special case, for <f> (x) = xh 

* Other forms will be found in ̂  28. 
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DiFHEEENTIAL EqU.ATION 

/(.r,.ry->',y',y',..., 
yf.r))—o 

A P - - 9 - A A 

A A - ' A -

f(x,yy',yy"yy'-^) = o 

f[l,xy'-y,xy'^ = o 

fixy, xy' yy, xy" y 2y')= 0 

A,. 1... y—A A" \ 
' A '̂  ':r-f-ry' (iyy"p] 

=0, or 

'\ '^' vi+y^' i^+y"fl 
= 0, or 

=0 

Grodp 

VII; xq 

VII'; ysp 

VH'; yp 

VHI; -q 
y 

X; x-p y xyq 

X;/-^i? 

II; - y p y x q 

Characterization 

A more special case, for 
4.(x) = x 

Each of the elements appear­
ing in the differential equa­
tion has a geometrical signifi­
cance, which assures invari­
ance under the group of rota­
tions 





A N S W E R S 

Section 1 

1- a = -; 3o = I; the equilateral hyperbolas xyyi = xy = const, 

2. a = -• rtQ = I ; the parabolas •&- = £-= co>ist. 
a Xl X 

3. a = - ; flQ = I; the semicubical parabolas ̂ ^ = ̂  = const. 
a Xl" x"̂  

4- a =: — a ; oq = 0; -the ellipses xp -f 2_)'i2 = .ar̂  -|- 2/^ = const. 
5. '̂  = — « ; ao = o; the equilateral hyperbolas .;t-i2 — ji^ _ ̂ 2 _ ̂ 2 — ̂ ,̂jjj»_ 

6. a = — a ; tfn = o; the straight lines — = — = const. 
Xl X 

7. a =--; flo= I; the straight lines>'i = J/= fOHj/. 
8. a =— a; ao = o; the spirals log Vxp y yy'^ — tan"* ^ 

Xl 
. y 

= log \x^ y y^ — tan-i — = const. 

Section 2 

I. i = x, •it--y. t _ I I 6. ^ = x\ -rĵ x̂y. 
„ 4. t — - j I — ,. 

2. i = 2x, Ti=y. X 2y 7. ̂  = X y y, 17 = 0. 
3. J = 2X, 7; = 3jj/. 5. i=y, -ri = x. 8. f=;!; —>/, •ii=xyy. 

Section 4 

i. JTi = e'x, yy = f~*j'. 2. .ri = ê jr, /i = ^y. 3. ^x = e^x, yi = ê y. 
4. xi^ = x^ y2t, yP- = y - ̂. .. Xl = -1- -dx^y'2t, yi = y V y - 1 . 
5. -̂ 1 4-/1 = «'(̂ -)->'), -ri-ji =c-'(.:r-;)'). 
.. 2x1 = x(e' y e-')yy(^ — e-'), 2yi = x(e'— e-')yy(e'y e^'), 

or .ari = .ar cosh t y y sinh /, _yi = .a: sinh t y y cosh /. 

6. >̂  = ̂ , ± = '--t. .-. xi=^^,yi = ^ ^ . 
JTl X JTl .r I — x/ I — x/ 

7. Jl =j)/, -Xl -l-.yi = Cpx y y). ' •: xy = e'x yid — i)y, yy = y. 
8. xPyyi^ = e'̂ '(x'y y''-), tan"!-^ = tan"^ ̂ -|-«•. .-. Xi = i;'(xcos i"—/sin/), 

j/i = (^(xsin/-fj/cos/). ^̂  
239 
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Section 5 

I. Xl = e'x, yi = e~'y. -2,. Xi = e^x, yy = d-y. 3. Xy = e^x, yy = ê y. 

4. xi=xy^t-i^Ay3.Ji^2plA-+ ... =yVx'y2t. 
X X' 2\ x° 3 ! x' 41 

>-i=/-X^__xii_^_Ei_.iij.ii_ ... = + v y - ^ . 
2y 4y2! sy 3! i6y4! 

5. Xl = xfi -t--^-f-^-|- --.W ^('^ + -^-1-—-1- ...Wxcosh^H-rsinh^. 
V 2! 4! / V 3! 5! / 
I fi î  \ I fi t̂  \ 

yi — x[t -\ 1 f- •-•|4-ri-l 1 h •-•1 = X sinh ̂ -F V cosh/. 
V 3! 5! y V 2! 4! - y 

6. Xi = x(l-!-Xi'-l-x2/2-f- ...)= -̂  ,yi=y(i y xt y xH'̂ -\- ...) = — I — 
I — tx I — tx 

7. Xl = ^x -f (e' — l)y, yi = y. 
8. 'While the coefficients in the developments can be obtained readily, it is not 

easy to recognize the functions represented by the infinite series. 
Section 6 

I. xy. 2. y-- 3. ^2--. 4. x^-I-2y. 5. x^—y. 6. y.- 7. y. 
X X' X 

8. log-\/x2-f-y — tan-i'^. 
X 

Section 7 
1. xy = .r, p.c.,* x = j ' = o,i.p. 6. / = ex, p. c, x=o,l.i.p. 
2. y-̂  = ex, p. c, x = j = o, i. p. 7. _j/= <:, p. c, X-|-/= o, I. i.p. 
3. y = ex3,p.c., x = j/ = o,i.p. 8. log Vx2 -1- y - tan-1 ̂  = f, p. ̂., 
4. x2-1-2y = <r, p. c. ^ _ ^ _ o ^ i p ^ -̂  
5. x'^—y = i-, p.c, x=_j/ = o, i. p. 

Section 10 f 
i. x=xi/, t/ = logx. 1/2 , 

•J ^ 3- J: = ̂ , Ĵ  = logx. 
X 4. x = x^y2y-, y=y^. 

* The abbreviations here used are: p.c. for path-curve, i.p. for invariant point, 
1. i. p for locus of invariant points. 
t The answers given for the exercises of this s'ection are not unique, since they are 

particular solutions of the differential equations (16'). Besides, the right-hand member 
of the second of these equations may be replaced by any convenient constant (see Re­
mark I, § 2) ; use of this fact has been made in the case of Ex. 3, 4, 6. 
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5- X.= x"--yfi, y = \og(xyy). /-T-7—T ,v 
,, , 8. j: = log -v'x̂  -I- y^ - tan-l i, 

6. x = ^, y = y. ., X 
-v X j; = tan-i •'- • 

7. x=y, y = log(xyy). " 
Section 11 
" ^'^'-'^^A ^ = ''>^ = ^' P-<=-r ^ = 0. l-i-P-; x = x, y=y, z=\ogz, 
c. V. " 

2. J = x ^ _ ^ y y K . ^ y - a x , z = b, p.c; x = / = o, I. i. p.; .r = tan-i-2. 

y = logv .X- -T Y-, z = c, I,. V. ... X = «* cos Jr, J = ^ sin jr, 2 = z. 

3. Uf=x^y-y^yzdl; z-ax=o,z-by = o,^f.^.•, x = y = z = o,\.v..; 
dx dy d: y r , J- . 1 > 

x= tan-1 _"'"^ = tan-1 g —, v = tan^i^. z = logv'x'^-|-y-|- o-i, c. v. 
\ «i--i-«2'̂  V x ^ -fy -̂  

.-. X = ^ cos X cos y, y—e^ cos x sin j/, z = «^ sin j:. 
The introduction of polar coordinates reduces the group to the form of the 

group appearing in Ex. i. 
4. Uf=xA-yy-p-yxy^-;y—ax = o,xy—2z=^b,^.c.; x = r = o, l.i.p. 

dx dy dz 
X = tan-1 ̂ , j , = x_j'—2 3, z = logVx^-t-y, c. v. 

5. Uf=(x-y)dfy(xyy)dfj^^M.^ t^n-'^l-logVl^STy'= a, x^ y y^ 
dx dy dz X 

— fe2 _- o, p. c.; X = J = 2 = o, i. p.; x = uy, y = m , z = log z, c. v. 

Section 12 

2. x^ yy^— cy = o. 3. tan-i-2^ = •dx'' yy^ -f e, spirals [p = 6 y c]. 

4. tan-l-2- = i log-Vx^'+y^-F i-, logarithmic spirals [/) = «^- ]. 
X 

5. x^-l-y — <:x = o. 
Section 21 

3. xy = c^x y c, g. s.,t 4 x^ -1- I = o, ».».,/ = o, p. ». for c = o ; § 25, 5.^ 

* The abbreviations used in the answers of § 7 are also .employed here, with the 
additional one c. v. for canonical variables. 
t The abbreviations used here are g. a. for general solution, a. a. for singular solu­

tion, p. s. for particular solution. 
J'While the methods of ̂^ 12 and 20, especially the latter, may frequently be employed 

in finding the general solution, serious practical difficulties may arise. The references 
here given are to the places in BI. Dif. Eg., where these differential equations appear 
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4. d'-y'^ y 2 ex y c^ = o, g. s., x^ — a'^y = o, s. s., / = o, p. ». for c = o, § 27, 8. 
5. / = c(x - cP, g. s., y(T] y — 4x2) = o, 5. »., also y = 0, p. s. for c = 0; 
§ 26, 4. 
6. y = 2 fx -F f'', g. s., (32 x' -I- 27y) = o, s. s., / = o, p. s. for f = o; § 27, 7. 

7. X -I- cxy y c' = 0, g. s., xy - 4 = o, s. s.; § 28, 3. 

Section 24 

1. The equilateral hyperbolas x''- — /'^ = a 
2. _y° = irx'. .•. J = ex, when b =a ; xy=c, when ^ = — a. 
3. The circles x^ -|-y 4- I = ex. 

Section 26 
I. m-f=^-

dx 

"• ^ ^- a^ ^ ay ^ ay '^ ay' 

3. c^(ny=^|z:_ja/_2y|2: („yi)pnyjL. 
dx dy dy' dp"' 

4. U^Jsax^ y by^y (b - a)y'-Sl y(b- 2a)y"^y ... 
dx dy dy' dy" 

y (b- na)P"'> -^ • 

5. (7<'"/=0^-0y|^-(0"y-H2 0'y')^-(0"'y-i-3 0"y' 
ax dy' dy" 

+ 3 Ay'")^ [0(»y -f ("j'^c-iy + (fj'pc-'y" + -

+( '\V'y"'l-^-
\»-ir Jay"> 

6. ;7("l/=0^-0'-^-0"-^ AW-dA. 
dy dy' dy" dp"' 

7. i/(«)/ s x2 ^ -f ?-x_y ^ 4- [O- -f (?- - 2)x/' ] -S^ -I- [2(r - I'jy 
a-̂  a/ dy' 

y(r-4)xy"'\ ^.y ... -f [»(r- ny l)y"-l) +(r-2»)xy">]-i/l. 
a.r" a/"' 

as exercises. Practicable methods may be found there. But when the methods of 
the text can be carried out, they should be employed, to obtain practice in them. 

However, the method of ̂  21 for finding the singular solution leaves nothing to be 
desired. (Compare SI. Dtf Eq. Chapter V.) 
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Section 28 

243 

3. y=cixe'. 4- y = xlog(^yci\. 5- y = x(cilogx + a). 

Section 29 

<:i(x'2 — y ) — 2xy = a. 

Section 32 

3. x^-fy. 4. 52 5. 3^sJl. 6. x^yy'' + z^-2yz-2zx-2xy. 
z ex — az 

y_ (x-h/)(l4-c)_ 
ix-y)(i - z ) ' 

Section 34 
The group i leaves a and d unaltered. 
The group 2 leaves a unaltered. 
The group 3 leaves c unaltered. 
The group 4 leaves a, b and c unaltered. 

Section 35 
x2 -f y _ 

2. « s J-, v = x — y — z. 
z-

3. u = y — x, v=(x yy)(xyyy4z), ot xyyyzyzx. 
4. u = y ^ y^ '"̂, v=y — X —yz y'xz, or t(=y y xz, v = x y yz. 

y — X — yz y xz 
Section 38 

3. Method A, 3° applies. 4- Method B, 4°, (a) applies. 
5. Method B, 1° applies. u = x — y, v = y — z . 
6. Method B, 3° applies. u^^Aild^, z/s(x'-=-y)(i - ŝ ). 

X4-/2 
Section 39 
3. y = log sec (x -1- a) -f b. 4. y = ax'̂  y bx. 

Section 40 

5. / = logsec(x-|-«)-f ̂. 6. -=ci««. S. ev-= ax'̂  y bx. 
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Section 44 

I. «. 2. S. 3. p. 4. (3. 5. 7. 6. 7. 

Section 45* 

I. AT = tan-1-2, 1/= tau-i •^^-F log Vx2-t-y 
X X 

2. Since (UiUi)f= Uyf- Uif, consider Fi/s UJ- Uif=yAL ^nd F2/ 
a/ X '^•*^ 
= U i f = x J - For these x = V, 2/=—' 

a-*- y 
3. jr = ^^^, jr = ——• 4. jf = Vx2+y, jr = tan-i^ 

X -H/ X y y x 
X 
6. Since (UyUi)f=Uif, consider Vif= Uif Vif=- Uyf For these 
V ' I 
j f = — - — , y = — 

x(xyy) X 
Section 49 
I. Xl = X — ap, yy =y - ^ap', py = p. 
2. X, =x-\- ^ -, v,=vy v^._^ 

Va^p^ y b'̂  -Pdf- y *2 
_p(xp — y) _ y — xp _x y 2yp — xp''-
3- ^l - p-i+i • y' - p-i -1- I ' P' - y-.2.xp-yf 
x'^p •\P- y 
4. Xy— 7, yy = —= -, pl = 

y-xp y —.xp X 
fix — y xfi'^ 
5. ̂ 1= , . yi=y-xp, / i = - — . 

NOTE VI 
— 1 — ai — az n n n — 
I. ai = —, (22= -, az = ; ay" = I, 'ai ^ «.3 = O. 

«! ay ay 
— af, ~ — a^ — aiaR — aza-K — — aA — ay — azai — aya^ 

2. ai=-p, a.2=——-, az= -^-2— £, ai=—-J., ai = -̂ , ^6= ——' 
A A A A A A 

A = aiai — Oiai; ay" = ap = 1, aP = az" = ap = aP = o. 
3. 31= —ai, ai = -aiy ayaz, ^3 = —eg; ai" = «•/= a3''.= o. 
* Since multiplying its symbol by a constant does not affect the infinitesimal trans­
formation of a group (Remark i, ^ 2), the answers in this section arc not unique. Use 
is made of this fact in Ex. i, 3, 4, 6. 
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4. Oi = ^ ai=— ai, 03 = i ; ap = aP = 0, ag" = i. 

5- "'=iiff,' "•^ = }^' az=^=^; ai'> = aP = o, aP = i. 
ay -t- ai ai -f ao ai y an, 

6. ai=—, a2=-23, Sj^-^; aj" = i, 22" = aa" = o. 
'̂1 ai ai 

7. Uif= (eix + ei)^y (eiy + ez)%-
dx ^ ^ ' dy 

UJ= (eix y eiy y ez) ^ -f- (ciX y esy yes)^-

Uzf=(eivye.p,^yez^-
dx dy 

UJ=(ei.f-y-ei)^yezy^-
dx dy 

U J = (eix y eiy y ez) (|̂  + J ) • 

UJ=(eiyeixyezy){xM^+y^y 

The groups generated by the infinitesimal transformations of Ex. 8 to 13 are 
precisely the respective groups of Ex. i to 6. 
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The numbers refer to pages. 

The following abbreviations are used: dif. eq. = differential equation ; gr. = group : 
infl. = infijiitesimal : i. u. = invariant under ; ord. = order ; tr. ~ transformation. 

Affine tr., 3, 54 
Alternant, 44 

of symbols of extended trs., 209 
Asymptotic lines, 80 
Bernoulli equation, 58 
Canonical form, 26, 34, 64, 155 
Canonical variables, 26, 34, 64, 156 
Change of variables, 23, 33, 188 
Characteristic function of inii. contact tr., 

186 
Classification of two-parameter grs., 153 
Commutator, 45 
Complete system, 104, 106, n o 
equivalent, 106 
jacobian, 107, n o 

Contact tr., 178, 181; infi., 185 
Curvature, lines of, 81 
Curve of union of elements, 175, 189 
Differential equation of i. ord., i8g 

i. u. gr., 40, 44, 45, 46, 48, 50, 52,194, 231 
Dif. eq. of 2. ord; i. u. gr., 86, 90, 134, 137, 

148, 165, 236 
not i. u. any gr., 206 

Dif. eq. of n. order i. u. gr., gg, loi, 236 
Differential invariant, 51, 88, ig4 
Dilatations, 185, 186 
Displacements, 212 
Distinct grs., 122, 123, 125 
Distinct infi. trs., 7 
Elements, lineal, it's 

union of, 175, 194 
Equivalent complete systems, 106 
Essential parameters, 214 

condition for, 226 

Extended gr., 42, 84 
Extended point tr., 41, 83, 180 
First differential invariant, 51, ig4 
First integral, igi 
General expression for gr. leaving dif. eq. 

of I. ord. unaltered, 49 
Group, I, 28, 211 

distinct, 122, 123, 125 
extended, 42, 84 
generated by inii. tr., 10, 12, 14, 30, 220 
involving one parameter, x, 28 
involving r parameters, 211 
of contact trs., 185 
of infl. trs., 146 
property, -2 
trivial, 3g, iig, 196 

Homogeneous dif. eq. (Boole), 93 
Identical tr., 4 
Independent linear partial dif. eqs., 104 
Infinitesimal contact tr., 185 
characteristic function of, 186 
symbol of, 186 

Infinitesimal tr., 6, 29, 197, 215, 218 
distinct, 7 
gr. generated by, 10, 12, 14, 30, 220 
linearly independent, 143, 217 
r-parameter gr. of, 146 
symbol of, 8, 42, 84, 85, 218 

Integrating factor, 37, 47, 69, 76 
common lo two dif. eqs., 72 
two, for the same dif. eq., 48 

Intermediary integral, 191 
Invariant, 16, 31 

curve, 17, 18, 31, 32 

247 
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Invariant 
differential, 51, 88, 194 
dif. eq., see Dif, eq. 
equation, 18, 32 
family of curves, 20, 22 
linear partial dif. eq., 115, 118,119, 122, 

124 
point, 17, ig, 31 
surface, 31, 32 

Inverse tr., 3, 29, 211 
Involute, 70 
of a circle, 70 

Involution, functions in, 179 
Isothermal curves, 72,'79, 203 
Jacobian complete system, 107, no 
Jacobi's identity, 121 
Lie gr., 3 
Lie's, principal theorem, 225 
Lineal element, 175 
Linear ordinary dif. eq. ot i. ord., 56, 57 
of 2. ord., 92, 94, 139, 140, 173, 174 
of n. ord., 102 

Linear partial dif. eq. i. u. a gr., 115, 118, 
119 

i. u. two grs,, 122, 124 
Linearly independent infl, trs., 143, 217 
number of, leaving dif. eq. of ord. n y 2. 
unaltered limited, 143, 146 

Lines of curvature, 81 
Method of solution of 

complete system, in, 113 
dif. eq, of i, ord., 38, 49, 63, 66, 193 
of 2. ord., 88, 134, 137, 165, 169, 193 
of 71. ord., loi 

linear partial dif. eq., 119, 124 
Minimal lines, 78 
w-times-exlended gr,, 84; tr., 83 
Once-extended gr., 42; tr„ 41 
Parallel curves, 70 
Path-curve, 4, 10, 11, 17, 18, 19, 31, 67 
Perspective tr., 3 
Point tn, 40 
extended, 41, 83, 180 

Poissonian symbol, 179 Product of trs,, -^ Projective tr., general, 213 

Reciprocal polars, tr. by, 180, 184 
Riccati equation, 52, 59, 201 
Rotations, -^ 
r-parameter gr, of infl, trs., 146 
of trs,, 211, 214 

Spcond differentia! invariant, 88 
Separation of variables, 63 
Similitudinous tr., 3 
Singular solution, 66 
Subgroup, 149 
Symbol of extended infl. tr., 42, 84, 85 
of infi, contact tr,, 186 
of infi. tr,, 8, 218 

System, complete, see Complete system 
Transform of a tr., 24 
Transformation 

affine, 3, 54 
by reciprocal polars, 180, 184 
contact, 178, 181 
extended, 41, 83 
generg.1 projective, 213 
gr. of, I, 28, 211 
identical, 4 
infl., 6, 29, 185, 197, 215, 218 
inverse, 3, 29, 211 
perspective, 3 
point, 40 
product of, 2 
similitudinous, 3 

Translation, 2, 53, 212 
Trivial gr,, 39, 119, 196 
Twice-extended gr., 84; tr., 83 
Two-paiameter grs., classification of, 152 
Two-parameter subgroups always exist, 

ISO 
Types of dif. eqs. of i. ord. i. u. given grs., 

52, 231 
of 2. ord. i. Li. given grs., 90, 236 
of >i, ord. i. u. given grs., 101, 236 

Union of elements, 175, 176, 194 
curve of, 175^,189 

United elements, 175 
Variables 

canonical, 26, 34, 64, 156 change of, 23, 33, 188 separation of, 63 










