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Abstract

Preventing catastrophic forgetting while continually learning new tasks is an

essential problem in continual learning. Structural regularization (SR) refers

to a family of algorithms that mitigate catastrophic forgetting by penalizing

the network for changing its “critical parameters" from previous tasks while

learning a new one. The penalty is often induced via a quadratic regularizer

defined by an importance matrix, e.g., the (empirical) Fisher information ma-

trix in the Elastic Weight Consolidation framework. In practice and due to

computational constraints, most SR methods crudely approximate the impor-

tance matrix by its diagonal. In this paper, we propose Sketched Structural

Regularization (Sketched SR) as an alternative approach to compress the im-

portance matrices used for regularizing in SR methods. Specifically, we ap-

ply linear sketching methods to better approximate the importance matrices

in SR algorithms. We show that sketched SR: (i) is computationally efficient

and straightforward to implement, (ii) provides an approximation error that

is justified in theory, and (iii) is method oblivious by construction and can be

adapted to any method that belongs to the structural regularization class. We

show that our proposed approach consistently improves various SR algorithms’

performance on both synthetic experiments and benchmark continual learning

tasks, including permuted-MNIST and CIFAR-100.
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Chapter 1

Introduction

Continual learning, also referred to as lifelong learning or incremental learning,

is the ability to continuously learn in a varying environment through integrating

the newly acquired knowledge while preserving the previously learned experi-

ences (Parisi et al., 2019). A key issue that prevents the state-of-the-art machine

learning models (e.g. deep neural networks) from achieving continual learning is

catastrophic forgetting, i.e. learning a new task may severely modify the model

parameters, including those that are critical to the previous tasks (Parisi et al.,

2019).

Structural regularization (SR), or selective synaptic plasticity, is a general

and widely-adopted framework to alleviate catastrophic forgetting in continual

learning (Kolouri et al., 2020; Aljundi et al., 2018; Kirkpatrick et al., 2017;

Chaudhry et al., 2018; Zenke, Poole, and Ganguli, 2017). From a geometric

perspective (Kolouri et al., 2020; Chaudhry et al., 2018), SR methods con-

struct an (positive semi-definite) importance matrix (IM) that measures the

relative importance of the model parameters to the old tasks (which are aimed

be preserved in continual learning), and add a quadratic regularizer defined

1



by the importance matrix when training on new tasks. The intuition behind

structural regularization is clear: the quadratic regularizer adaptively penalizes

parameters from changing according to their criticality measured by the impor-

tance matrix. As a result, structural regularization encourages the model to

learn the new task using non-important parameters, so that it is able to main-

tain the important information from old tasks. For example, Kirkpatrick et al.

(2017) choose the (diagonal) empirical Fisher information matrix1 (empirical

Fisher, EF) as the importance matrix in their seminal algorithm, Elastic Weight

Consolidation (EWC) (Kirkpatrick et al., 2017; Kolouri et al., 2020; Chaudhry

et al., 2018). However, a full IM (e.g. empirical Fisher) scales as O(m2) for

a model with m parameters and can be prohibitively big to use for modern

neural networks. Often in practice, the diagonal, which scales as O(m), is used

as a crude approximation to the full IM (Kirkpatrick et al., 2017; Kolouri et

al., 2020; Aljundi et al., 2018). We refer to structural regularization with a

diagonal-approximated importance matrix as diagonal SR.

While developing new and effective importance matrices has been a hot di-

rection for structural regularization (Kolouri et al., 2020; Aljundi et al., 2018;

Kirkpatrick et al., 2017; Chaudhry et al., 2018; Zenke, Poole, and Ganguli,

2017), little effort has been spent on examining the effectiveness of the crude

diagonal approximation (a few exceptions, e.g. (Liu et al., 2018; Ritter, Botev,

and Barber, 2018), are discussed later in Chapter 2). Intuitively speaking, a
1In their original paper (Kirkpatrick et al., 2017) (and follow-up papers, e.g., (Kolouri et

al., 2020)), the importance matrix in EWC is termed as the “Fisher information matrix”, but
precisely, it should be called the “empirical Fisher” — the two terms are often interchangeably
used in the community, though they are not identical. See (Kunstner, Balles, and Hennig,
2019) for a detailed clarification.
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Figure 1.1: Illustration of the (sketched) empirical Fisher on a synthetic 2D
binary classification task, and the approximation error of each methods to the
full empirical Fisher.

diagonal IM assumes independence between parameters, which is far from re-

ality (Liu et al., 2018; Ritter, Botev, and Barber, 2018). In mathematics, a

positive semi-definite matrix can rarely be well-approximated by its diagonal

— the only non-trivial exception to our knowledge is when the matrix is diag-

onally dominant (Horn and Johnson, 2012). Unfortunately, for the importance

matrices considered in SR methods this is not likely to be the case, especially

when training using neural networks. As an illustration, we examine the em-

pirical Fisher as the importance matrix (Kirkpatrick et al., 2017) of a synthetic

experiment adopted from Pan et al. (2020); the full empirical Fisher is shown in

Figure 1.1(a). The plot shows that the full empirical Fisher is far from diagonal;

in fact the diagonal only contributes to less than 5.3% of the Frobenius norm

of the empirical Fisher matrix (see table in Figure 1.1). Hence, approximating

importance matrix with its diagonal might be problematic. A natural question

then is:

Is there a computational and memory efficient method to approximate the

importance matrix without losing critical information in the matrix?
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In this report, we answer the above question by providing a linear sketching

method (Charikar, Chen, and Farach-Colton, 2002) as a provable, ubiquitous,

efficient and effective approach to approximate the importance matrix in SR

methods. Specifically, in one pass of the data (which is also required for di-

agonal approximation), a O(tm) size sketched matrix can be produced that

approximately recovers the quadratic regularizer defined by the O(m2) size im-

portance matrix. Here, t≪ m is a tuneable hyperparameter that balances the

computation cost and matrix size with the quality of approximation, and can

be chosen as a small number in practice. Our method, called sketched SR, has

the following notable advantages:

1. Has a theoretically guaranteed small approximation error, providing that

the importance matrix has a well-behaved spectrum, e.g. has low effec-

tive rank. Fortunately, for deep neural network and commonly used SR

methods, the importance matrix (e.g. empirical Fisher) does indeed have

low (effective) rank (Sagun et al., 2017; Chaudhari and Soatto, 2018), but

is not diagonal (see Figure 1.1).

2. Is algorithm oblivious by construction, i.e. for any algorithm that be-

longs to the structural regularization paradigm (defined in Section 3.1), a

sketched version can be readily established without additional, algorithm

specific considerations.

3. Is computationally efficient and easy to implement. Both sketched SR and

diagonal SR make only one pass of the data (of the old task) to obtain the

approximation. Though sketched SR saves O(tm) parameters, which is

slightly larger than the O(m) parameters in diagonal SR. This additional
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cost is easily affordable as setting t ≤ 50 is sufficient for sketched SR to

outperform diagonal SR in our experiments.

4. Consistently outperforms its diagonal counterpart on overcoming catas-

trophic forgetting, in both synthetic experiments and benchmark continual-

learning tasks, including permuted-MNIST and CIFAR-100.

The remaining part of this report is organized as follows: the related litera-

ture is reviewed in Chapter 2; in Chapter 3, we formally introduce our sketched

structural regularization, and also present its practical implementation and the-

oretical properties; then in Chapter 4, we experimentally compare our methods

with the diagonal counterparts, which verifies the effectiveness of our methods;

finally, we draw the conclusion of this report in Chapter 5.
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Chapter 2

Related Work

In this chapter, we present a review of literature related to our sketched struc-

tural regularization algorithm.

Functional Regularization. Apart from structural regularization, an-

other widely-used category of approaches to overcome catastrophic forgetting

is functional regularization (Jung et al., 2016; Li and Hoiem, 2017; Rannen

et al., 2017; Shin et al., 2017; Hu et al., 2018; Rozantsev, Salzmann, and Fua,

2018; Wu et al., 2018; Li et al., 2019). Similar to structural regularization,

functional regularization also adds a regularizer (when training new tasks) as

penalty to mitigate the forgetting of useful old knowledge; however, functional

regularization may use very general (hence, functional) regularizers, in addition

to quadratic ones. For example, Jung et al. (2016) and Li and Hoiem (2017)

snapshot a teacher model that learned from old tasks, and use it to regularize

a student model that fits new tasks. Moreover, generative models are applied

to generate pseudo-data (memory) of old tasks, and the pseudo-data is mixed

to the new data distribution as a regularization (replay) for learning new tasks

(Rannen et al., 2017; Rostami, Kolouri, and Pilly, 2019; Shin et al., 2017; Wu
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et al., 2018; Hu et al., 2018). This is also known as memory replay. Finally,

we remark that functional regularization can be used together with structural

regularization (Shin et al., 2017; Rozantsev, Salzmann, and Fua, 2018). Our

focus of this report is to use linear sketching methods to improve SR meth-

ods; an interesting future work is to apply similar ideas (e.g., coresets (Feldman

and Langberg, 2011; Har-Peled and Mazumdar, 2004)) to improve functional

regularization methods, especially for those based on memory replay.

Non-Diagonal Importance Matrix. Diagonal approximation is a crude,

but de facto approach to compress the full IM in most existing SR algorithms

(Kolouri et al., 2020; Aljundi et al., 2018; Kirkpatrick et al., 2017; Chaudhry et

al., 2018; Zenke, Poole, and Ganguli, 2017). Before this work, there exists a few

studies that investigate structural regularization with non-diagonal IM (Liu et

al., 2018; Ritter, Botev, and Barber, 2018), which we discuss in sequence. Ritter,

Botev, and Barber (2018) adopt the layer-wise block-diagonal approximation as

a better replacement to the commonly used diagonal version for the importance

matrix: even so, the cross-layer weight dependence is being ignored; moreover,

block-diagonal empirical Fisher is not a good approximation to empirical Fisher

matrix either (see Figure 1.1). Liu et al. (2018) propose layer-wise rotation of

the empirical Fisher such that the new matrix can be more diagonal-alike; this

procedure not only assumes cross-layer independence (of weights), but even

further assumes the independence between layer inputs and layer gradients (see

Eq. (7) in (Liu et al., 2018)). In comparison, the sketching methods adopted

in this report only require a very weak assumption, i.e., the importance matrix

has a low effective rank.
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Linear Sketching. Linear sketching is a widely studied technique for di-

mensionality reduction. We rely on the popular sketching method CountS-

ketch (Charikar, Chen, and Farach-Colton, 2002) that has its roots in the

Johnson-Lindenstrauss transform. Randomized linear sketching methods, such

as CountSketch, draw a random matrix S ∈ Rt×m and embed the columns of

the input matrix W ∈ Rn×m into a smaller dimension t ≪ n by outputting

SW . By carefully constructing the random distribution, it can be shown that

the sketch SW preserves the norms of the vectors in the subspace spanned by

the columns of W up to some error. Such sketching techniques are known as

oblivious subspace embeddings (OSEs). This property of OSEs makes them a

natural tool for approximating the quadratic regularizer in SR methods.

Sparse OSE methods (Nelson and Nguyên, 2013; Cohen, 2016) such as

CountSketch have a two-wise advantage: i) they’re oblivious, which means that

the random distribution is defined independent of the input matrix W and ii)

the sketch SW can be computed in time that is linear in the input size (e.g.

proportional to the number of non-zero entries in W ). These methods have

been widely used, giving fast algorithms for various problems such as low-rank

approximation, linear regression (Sarlos, 2006; Clarkson and Woodruff, 2017;

Meng and Mahoney, 2013), k-means clustering (Cohen et al., 2015), leverage

score estimation (Drineas et al., 2012) and numerous other problems (Lee, Song,

and Zhang, 2019; Ahle et al., 2020; Brand et al., 2021).
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Chapter 3

Methodology

In this chapter, we formally introduce the details and theoretical properties of

our sketched structural regularization algorithm.

3.1 Preliminaries

We use (x, y) ∈ Rs × Rk to denote a feature-label pair, and θ ∈ Rm to denote

the model parameter. A parametric model is denoted by ϕ(· ; θ) : Rs → R
k.

Given a distance measure of two distributions, d(·, ·), the individual loss over

data point (x, y) can be formulated as

ℓ(x, y; θ) := d(ϕ(x; θ), y).

For example, in deep neural networks, ϕ(· ; θ) is the network output, and d(·, ·)

is usually chosen to be the cross entropy loss (Goodfellow et al., 2016).

3.1.1 Structural Regularization

Let task A with data distribution (x, y) ∼ DA be an already well-learned task

on network ϕ with learnt parameters θ∗
A. In order to overcome catastrophic

forgetting when learning a new task B, with data distribution (x, y) ∼ DB,
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structural regularization algorithms apply an extra regularizer R(θ) to the main

loss and optimize the following total loss:

arg min
θ
E(x,y)∼DB

[ℓ(x, y; θ)] + λ · R(θ).

Here, the expectation should be understood as the empirical expectation over

the training set. As for the regularization term, λ is a hyper-parameter, and

R(θ) is a quadratic regularizer that penalizes the weight for being deviated from

θ∗
A, the learnt weight from the previous task A:

R(θ) := 1
2(θ − θ∗

A)⊤Ω(θ − θ∗
A),

where Ω ∈ Rm×m is an importance matrix and is positive semi-definite (PSD).

As we will see shortly, the PSD matrix Ω usually has a natural decomposition

as (Kirkpatrick et al., 2017; Aljundi et al., 2018):

Ω = 1
n

W ⊤W, (3.1)

where each row of W ∈ Rn×m is a Jacobian matrix of a certain individual loss

(which might not be the one used for the main loss) of data x from task A, and

n is the number of training data in task A. Then, the structural regularizer

R(θ) can be written as

R(θ) = 1
2n
∥W · (θ − θ∗

A)∥2
2, W ∈ Rn×m. (3.2)

Two Examples. Table 3.1 summarizes two examples for the importance

matrices in: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and

Memory Aware Synapses (MAS) (Aljundi et al., 2018). It is worth noting that

the importance matrix used in EWC is the empirical Fisher evaluated at the

optimal weight for task A.
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Table 3.1: The construction and factorization of the importance matrices in
EWC and MAS.

Matrix Ω Row-Vector (W )x

EWC E(x,y)∼DA
∇θℓ(x, y; θ∗

A) · ∇θℓ(x, y; θ∗
A)⊤ ∇θℓ(x, y; θ∗

A)
MAS Ex∼DA

(︂
∇θ ∥ϕ(x; θ∗

A)∥2
2

)︂
·
(︂
∇θ ∥ϕ(x; θ∗

A)∥2
2

)︂⊤
∇θ ∥ϕ(x; θ∗

A)∥2
2

3.1.2 Diagonal Approximation

Unfortunately, both matrices Ω and W have m2 and mn entries respectively,

which makes them prohibitively large to compute and store for big models like

deep neural networks. As a compromise, practitioners often take the diagonal

of Ω as an approximation. This leads to the presented version of EWC (Kirk-

patrick et al., 2017) and MAS (Aljundi et al., 2018) in their original paper.

These are called diagonal EWC and diagonal MAS respectively in this report

to be distinguishing with our variants. However, as we have discussed and

demonstrated in Figure 1.1, such a treatment ignores the dependence between

weights and exacerbates performance degeneration for overcoming catastrophic

forgetting. In the following we present our sketched version of the above al-

gorithms, which can make use of the off-diagonal entries of Ω to improve the

diagonal approximated version.

3.2 Sketched Structural Regularization

In this section we propose our framework of sketching the regularizer from

(3.2) and describe the specific sketch construction along with some theoretical

guarantees. We describe our construction in terms of the general framework

of structural regularization for continual learning from Section 3.1. Then we

11



contrast our approximation method with other compression methods like PCA.

Finally we describe how we go from the two-task settings to an online version

of the algorithm in a way that is standard in works on structural regularization

(Kolouri et al., 2020; Chaudhry et al., 2018; Schwarz et al., 2018).

3.2.1 Algorithm

We propose a method to sketch the matrix Ω from (3.1) by reducing the di-

mensionality of each of the matrix W from n dimensions to t dimensions for a

t ≪ min{n, m}. Specifically, we draw a random matrix S ∈ Rt×n from a care-

fully chosen distribution and approximate the regularizer (3.2) in SR methods

with

˜︂R(θ) = 1
2n
∥˜︂W · (θ − θ∗

A)∥2
2,

˜︂W := SW ∈ Rt×m. (3.3)

We use CountSketch (Charikar, Chen, and Farach-Colton, 2002) to construct

the sketched matrix ˜︂W = SW , which is formally presented in Algorithm 1.

CountSketch reduces the number of rows (aka, the dimension of the columns)

of W by the following: first the rows of W are randomly partitioned into t

groups (Algorithm 1, line 5), then rows in each group are randomly, linearly

combined (with random signs as weights) into a single new row (Algorithm 1,

line 7).

Two remarks are in order for the practical implementation of Algorithm 1:

(i) note that Algorithm 1 only makes one pass of the data from task A, which

is as required for computing diagonal approximation; (ii) note that Algorithm

1 requires O(t) times auto-differentiation, but since t is small and the sketch

construction only needs to done once per new task, the cost is affordable in

12



Algorithm 1 Sketch Construction in Sketched SR
1: Input: Data from task A and optimized neural network ϕ(· ; θ∗

A) for task A

2: Parameters: Size of sketch t ∈ N+

3: Initialize 2-wise and 4-wise independent hash functions h : [n] → [t] and
σ : [n]→ {−1, 1} respectively

4: for k = 1, . . . , t do
5: Group data Gk := {x ∈ A : h(x) = k}
6: Compute ∑︁x∈Gk

σ(x)(W )x as per Table 3.1 by auto-differentiation
7: Set (˜︂W )k ←

∑︁
x∈Gk

σ(x)(W )x

8: end for
9: return ˜︂W ∈ Rt×m

practice (see more in Chapter 4).

Comparison with Low-Rank Approximation Methods. The main

advantage of using CountSketch over more complicated low-rank approximation

methods (e.g. PCA) to compress the importance matrix in SR methods, is that

it can be computed with only a small amount of additional computation and only

a modest blow-up in memory compared to the diagonal approximation. However

PCA is usually computational intractable for big models such as deep neural

networks. Moreover, in below, we show CountSketch achieves provable small

approximation error (for matrix with low stable-rank), as can be guaranteed by

PCA.

3.2.2 Theoretical Properties

The following theorem from Cohen, Nelson, and Woodruff (2016) builds on sev-

eral results on CountSketch matrices, giving theoretical guarantees for sketching

quadratic forms of matrices.

Theorem 1 (Theorem 6, Cohen, Nelson, and Woodruff (2016)). Let W ∈ Rn×m

13



be a matrix, k ∈ N+ be a parameter and let ϵ, δ > 0 be constants. There exists

a constant C > 0 such that a CountSketch matrix S ∈ Rt×n with t = Ck2

ϵ2δ
has

the property that for all θ ∈ Rm,

⃓⃓⃓
∥SWθ∥2

2 − ∥Wθ∥2
2

⃓⃓⃓
≤ ϵ∥θ∥2

2

(︄
∥W∥2

2 + ∥W∥
2
F

k

)︄
(3.4)

with probability at least 1 − δ and where the probability is taken over the ran-

domness of the CountSketch matrix S.

This theorem is re-phrased for our purposes as in Corollary 1.1, showing the

quality of approximation by the sketch in preserving ℓ2-norms of vectors in the

subspace spanned by the columns of W , the matrix that is being sketched. There

is a trade-off in the quality of approximation by the sketch and its size, given

by the dimension of the columns t. In particular, the error in preserving the

ℓ2-norm of any Wθ depends on the spectrum of W ; when t ≥ ∥W∥4
F /(ϵ2∥W∥4

2)

the error is additive and scales with ϵ∥W∥2
2∥θ∥2

2, which we detail in the following

theorem.

Corollary 1.1. For a matrix W ∈ Rn×m with stable rank1 r, a CountSketch

matrix S ∈ Rt×n with t = O(r2/ϵ2) has the property that with probability at

least 0.99, ⃓⃓⃓
∥SWθ∥2

2 − ∥Wθ∥2
2

⃓⃓⃓
≤ ϵ · ∥W∥2

2 · ∥θ∥2
2

for all vectors θ ∈ Rm.

Corollary 1.1 directly follows Theorem 1 by noting that when t ≥ ∥W∥4
F /

(ϵ2∥W∥4
2), the error scales with ϵ∥W∥2

2∥θ∥2
2.

1The stable rank of a matrix W is ∥W∥2
F /∥W∥2

2.
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Figure 3.1: The spectrum of the empirical Fisher studied in Figure 1.1.

Notice that stable rank never exceeds the usual rank, and can be significantly

smaller when the matrix has a decaying spectrum. The importance matrix

considered in SR methods usually have fast decaying spectrum (see Figure 3.1),

i.e. small stable rank, making it effective to use CountSketch to approximate

quadratic forms with the matrices. For instance, in the synthetic experiment we

considered, the stable rank of the empirical Fisher shown in Figure 1.1(a) is 1.26

with standard deviation 0.13, measured over 5 trials. Note that the empirical

Fisher is 8, 770× 8, 770.

3.2.3 Online Extension of Sketched SR

Continual learning often requires learning more than two tasks sequentially.

One method of extending the Sketched SR method to learn on multiple tasks

to maintain separate sketches for each task and compute the regularizer ˜︂R(θ)

in (3.3) from each of the previous tasks when learning the current one. This

approach would cause the memory requirement to grow linearly in the number

of tasks and can become a bottleneck in scaling the method. A standard way to

tackle this is in works on structural regularization is to apply the moving average

method to aggregate the histories (Chaudhry et al., 2018; Schwarz et al., 2018).

Specifically, let ˜︁Ωτ−1 be the importance matrix maintained after training on the

15



(τ − 1)-th task, then, given the (approximate) importance matrix ˜︁Ω outputted

on the data from task τ , the histories are updated as

˜︁Ωτ ← α˜︁Ω + (1− α)˜︁Ωτ−1 (3.5)

where α ∈ (0, 1] is a hyperparameter.

Since the matrix ˜︁Ω is a diagonal matrix for each task in the aforementioned

methods, computing the sum from (3.5) is straightforward. Sketched SR, how-

ever, doesn’t explicitly compute the matrix ˜︁Ω = ˜︂W ⊤˜︂W , hence we cannot hope

to compute the matrix ˜︁Ωτ defined by the sum in (3.5). We propose the following

method: let ˜︂Wτ−1 be the maintained sketch after training on the (τ−1)-th task,

then, given the weight θ∗ and the sketch ˜︂W outputted on the data from task τ ,

we update the importance matrix as

˜︂Wτ ←
√

α˜︂W +
√

1− α˜︂Wτ−1. (3.6)

When learning on task τ + 1 we use the regularizer

˜︂Rτ (θ) := 1
2n
∥˜︂Wτ (θ − θ∗)∥2

2. (3.7)

A priori, it is not clear why the regularizer from (3.7) is a good approximation

to that induced by the importance matrix from (3.5). We give a theorem along

with its proof, that implies that for any fixed θ ∈ Rm the regularizer given by

(3.7) is close to that induced by the importance matrix ˜︁Ωτ from (3.5).

Theorem 2. Let W1, . . . , Wτ ∈ Rn×m be a sequence of matrices, α1, . . . , ατ ≥ 0

be a sequence of weights , and S1, . . . , Sτ ∈ Rt×n be a sequence of independent

CountSketch matrices with sketch size t ∈ N+. There exists a constant C > 0
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such that for any fixed θ ∈ Rm,⃓⃓⃓⃓
⃓⃓
⃦⃦⃦⃦
⃦
(︄

τ∑︂
i=1

√
αiSiWi

)︄
θ

⃦⃦⃦⃦
⃦

2

2
−

τ∑︂
i=1

αi∥Wiθ∥2
2

⃓⃓⃓⃓
⃓⃓ ≤ C√

t
·

τ∑︂
i=1

αi∥Wiθ∥2
2

with probability at least 0.99.

Proof of Theorem 2. Throughout this proof, we let (a)i denote the i-th

entry of a vector a ∈ Rm and let (A)j denote the j-th row of a matrix A ∈ Rn×m.

We start with a lemma on the properties of matrix S which we use in our

proof of the theorem.

Lemma 3. The CountSketch matrix S ∈ Rt×n with sketch size t ∈ N+ has the

property that for any vector y ∈ Rn and index i ∈ [t] and j ̸= i, i) E(Sy)i = 0,

ii) E[(Sy)i(Sy)j] = 0, and iii) E(Sy)2
i = ∥y∥2/t where the expectation is taken

over the randomness of the CountSketch matrix.

Proof. Let S ∈ Rt×n be the CountSketch matrix with sketch size t resulting from

the 2-wise independent hash function h : [n] → [t] and the 4-wise independent

hash function σ : [n] × {1,−1} (see Algorithm 1 for descriptions of h and σ).

Let y ∈ Rn be a vector and let i, j ∈ [t] be indices such that i ̸= j.

To prove i), notice that E [(Sy)i] = ∑︁n
k=1P (h(k) = i) · E [σ(k)] · (y)i = 0

since E [σ(k)] = 0.

To prove ii), we notice that by the definition of h, the random variable

1 [h(k) = i]1 [h(k) = j] = 0 for any i ̸= j. Then we can expand E(Sy)i(Sy)j as

follows:

E [(Sy)i(Sy)j] = 2
n∑︂

k=2

k−1∑︂
l=1
E [1 [h(k) = i]1 [h(l) = j] · σ(k)σ(l) · (y)i(y)j]

= 2
n∑︂

k=2

k−1∑︂
l=1
E [σ(k)σ(l)] · E [1 [h(k) = i]1 [h(l) = j] (y)i(y)j] = 0

17



where the last equality follows from the fact that σ is a 4-wise independent hash

function and i ̸= j.

Finally, we show property iii) as follows:

E(Sy)2
i =

n∑︂
k=1

E

[︂
1 [h(k) = i] (y)2

i

]︂

+ 2
n∑︂

k=2

k−1∑︂
l=1
E [σ(k)σ(l)]E

[︂
1 [h(k) = i]1 [h(l) = i] (y)2

i

]︂

=
n∑︂

k=1
E

[︂
1 [h(k) = i] (y)2

i

]︂
+ 0 =

n∑︂
k=1

P (1 [h(k) = i]) (y)2
i

=
n∑︂

k=1

1
t
· (y)2

i = ∥y∥
2
2

t
.

In the second equality we used the fact that σ is a 4-wise independent hash

function.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Fix an arbitrary θ ∈ Rm and let y1, . . . , yτ ∈ Rn be the

vectors such that yi = √αiWiθ. We then have that:

E

⎡⎣⃦⃦⃦⃦⃦
τ∑︂

k=1
Skyk

⃦⃦⃦⃦
⃦

2

−
(︄

τ∑︂
k=1
∥Skyk∥2

)︄⎤⎦ = E

⎡⎣2
τ∑︂

k=2

∑︂
k<l

t∑︂
i=1

(Slyl)i(Skyk)i

⎤⎦

= 2
∑︂
k<l

t∑︂
i=1
E(Slyl)iE(Skyk)i = 0.

In the second equality we use the fact that Sk and Sl are independent random

matrices for l ̸= k and property i) from Lemma 3. Next, we bound the variance:

Var
⎡⎣⃦⃦⃦⃦⃦

τ∑︂
k=1

Skyk

⃦⃦⃦⃦
⃦

2

−
(︄

τ∑︂
k=1
∥Skyk∥2

)︄⎤⎦ = E

⎡⎢⎣
⎛⎝⃦⃦⃦⃦⃦

τ∑︂
k=1

Skyk

⃦⃦⃦⃦
⃦

2

−
(︄

τ∑︂
k=1
∥Skyk∥2

)︄⎞⎠2
⎤⎥⎦
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= E

⎡⎢⎣
⎛⎝2

τ∑︂
k=2

∑︂
l<k

t∑︂
i=1

(Skyk)i(Slyl)i

⎞⎠2
⎤⎥⎦

= 4E
⎡⎣∑︂

k<l

∑︂
i

(Skyk)2
i (Slyl)2

i

⎤⎦
⏞ ⏟⏟ ⏞

z1

+4E
⎡⎣∑︂

k<l

∑︂
i ̸=j

(Skyk)i(Skyk)j(Slyl)i(Slyl)j

⎤⎦
⏞ ⏟⏟ ⏞

z2

+ 4E

⎡⎢⎢⎢⎣ ∑︂
k<l,r<s

s.t. {k ̸=r or l ̸=s}

∑︂
i,j

(Skyk)i(Slyl)i(Sryr)j(Ssys)j

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

z3

.

We first argue that z3 = 0; since either k ̸= r or l ̸= s, without loss of

generality let k < r. As a result, k < l and k < r < s. We then have

that E[(Skyk)i(Slyl)i(Sryr)j(Ssys)j] = E[(Skyk)i] · E[(Slyl)i(Sryr)j(Ssys)j] = 0

since E[(Skyk)i] = 0 using property i) from Lemma 3. Next we argue that

z2 = 0; since E[(Skyk)i(Skyk)j] = 0 using property ii) from Lemma 3, for

any k ∈ [τ ] and any i ̸= j we have that E[(Skyk)i(Skyk)j(Slyl)i(Slyl)j] =

E[(Skyk)i(Skyk)j] · E[(Slyl)i(Slyl)j] = 0.

Finally, we can bound z1 and hence the variance:

z1 = 4
∑︂
k<l

∑︂
i

E(Skyk)2
iE(Slyl)2

i = 4
∑︂
k<l

t
∥yk∥2

t
· ∥yl∥2

t

= 4
t

∑︂
k<l

∥yk∥2 · ∥yl∥2 ≤ 2
t

(︄
τ∑︂

k=1
∥yk∥2

)︄2

.

In the second equality we use the property iii) from Lemma 3 for E(Skyk)2
i and

E(Slyl)2
i .

The theorem follows by applying Chebyshev’s inequality on ∥∑︁τ
k=1 Skyk∥2

2−∑︁τ
k=1 ∥Skyk∥2

2 and the definition of y1, . . . , yτ .
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As a corollary to Theorem 2, we show the approximation error of the regu-

larizer from (3.7).

Corollary 3.1. For any fixed θ ∈ Rm, the regularizer ˜︂Rτ(θ) given by (3.7) has

the property that

˜︂Rτ(θ) =
(︄

1±O
(︄

1√
t

)︄)︄
· (θ − θ∗)⊤ ˜︁Ωτ (θ − θ∗)

with probability 0.99 and where ˜︁Ωτ is the matrix given by the recurrence in (3.5)

with ˜︁Ω = ˜︂W ⊤˜︂W .

Remark. Note that Corollary 1.1 enjoys a stronger guarantee than that

of Theorem 2, i.e., while the approximation guarantee in Theorem 2 holds for

any fixed vector θ ∈ Rm, the guarantee in Corollary 1.1 holds for all θ ∈ Rm

simultaneously. We expect that the stronger guarantee of Corollary 1.1 can be

achieved in the setting of Theorem 2 by computingO (log(t)) independent copies

of the aggregated sketch ˜︂Wτ from (3.6). The regularizer used when learning on

task τ +1 is simply the average of the regularizer ˜︂Rτ (θ) from (3.7) outputted by

each copy of ˜︂Wτ . We leave it to future work to analyze this extension of Sketched

SR in order to obtain the stronger guarantee for the setting in Theorem 2.
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Chapter 4

Experiments

In this chapter, we present empirical evidence that verifies the effectiveness

of our proposed Sketched SR methods. The experiments are conducted with

variants of two representative SR algorithms, EWC (Kirkpatrick et al., 2017)

and MAS (Aljundi et al., 2018). All the reported numerical results are averaged

over 5 runs with different random seeds.

4.1 Synthetic Experiments

We start with a series of synthetic experiments.

Setup. We first consider a synthetic 2D binary classification task from Pan

et al. (2020). The experiment consists of 5 classification tasks learnt sequentially

using the regularization induced by each of EWC and MAS with a small multi-

layer perceptron. The network has 8, 770 parameters. For the regularization

matrix induced by EWC and MAS, we compare the performance of various

approaches to approximating the matrix including:

(i) a diagonal approximation;

(ii) a block-diagonal approximation, with a sequence of 50×50 non-zero blocks
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along the diagonal;

(iii) sketched SR with sketch size t = 50;

(iv) a rank-50 SVD;

(v) and the full importance matrix.

We use a small multi-layer perceptron with the architecture 2→ 128→ 64→ 2

and with ReLU activation function. For all algorithms, we use ADAM as the

optimizer with learning rate 10−3. The minibatch size is 100, and we use the

importance parameter λ = 103 and the online learning parameter α = 0.5 for

all experiments. We repeat all toy example experiments 5 times with different

fixed seeds, and report the average accuracy on all tasks. These toy example

experiments are conducted on one RTX2080Ti GPU.

Online Learning in Synthetic Experiments. For non-sketched ap-

proaches, the regularizer (3.2) in SR methods is approximated by

˜︂R(θ) := 1
2(θ − θ∗

A)⊤ ˜︁Ω(θ − θ∗
A) (4.1)

where ˜︁Ω approximates the importance matrix Ω. The online extension of

Sketched SR (see Section 3.2) applies moving average on the sketch ˜︂W , and

cannot be directly applied on the regularizer in Equation 4.1. To ensure faithful

comparison, moving average is applied on the importance matrix ˜︁Ω in synthetic

experiments according to Equation (3.5).

Approximation vs Full Matrix Comparison. We first plot the empiri-

cal Fisher (the importance matrix in EWC methods) and the sketched empirical

Fisher in Figure 1.1. The empirical Fisher is obtained with the optimal weight

that fits the first four tasks and the sketched empirical Fisher uses sketch size
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(a) Diagonal (b) Block-Diag. (c) Sketched (d) Low-Rank (e) Full EWC

Acc. Diagonal Block-Diag. Sketched Low-Rank Full IM

EWC 88.0± 7.4% 79.3± 9.8% 92.1± 6.8% 93.9± 3.9% 95.7± 5.4%
MAS 83.1± 5.6% 76.6± 12.0% 85.9± 9.6% 84.2± 9.8% 89.9± 7.2%

Figure 4.1: Variants of EWC and MAS on a synthetic 2D binary classification
task.

t = 50. From the figure we observe that the empirical Fisher cannot be well-

approximated by its diagonal or block-diagonal; moreover, the sketched empiri-

cal Fisher can utilize the off-diagonal entries to generate a better approximation.

This is further supported by the numerical approximation error shown in the

table within Figure 1.1. Note that while the low-rank method can offer a better

approximation, it is not computationally efficient in practice.

Performance of the Compared Algorithms. We then compare the

performance of each algorithms in Figures 4.1. The plots consistently indicate

that sketched SR methods are more effective than diagonal SR methods for

overcoming catastrophic forgetting. Additionally, while low-rank SR and full

SR perform better than sketched SR, they are not computationally feasible in

practical settings with large models.
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4.2 Permuted-MNIST

Next we demonstrate the effectiveness of our methods with experiments on

permuted-MNIST.

Setup. In this benchmark experiment for continual learning (Kirkpatrick

et al., 2017; Zenke, Poole, and Ganguli, 2017; Rostami, Kolouri, and Pilly, 2019;

Ritter, Botev, and Barber, 2018; Ramasesh, Dyer, and Raghu, 2021), there are

10 sequential tasks, each of them is a 10-classes classification task based on a

permuted MNIST dataset, where the pixels in each figure are permuted accord-

ing to certain rule (to be more specific, the permutation rule is same within

a task but random across different tasks). We use a multi-layer perceptron

with the architecture 784 → 1024 → 512 → 256 → 10 with ReLU activation

function and no bias to learn this classification task. We use ADAM as the

optimizer with learning rate 10−4 and the online learning parameter α = 0.25

for all algorithms. The minibatch size is 100. For each algorithm, a grid search

on the regularization coefficient λ ∈ {10i | i = 2, 3, . . . , 6} is used to determine

the optimal hyperparameter for the reported results. We uses 50 sketches in

Sketched SR to approximate the full importance matrix. All permuted-MNIST

experiments are repeated 5 times with different fixed seeds, and we report av-

erage accuracy on all tasks. We run permuted-MNIST experiments on a Tesla

K80.

Performance of the Compared Algorithms. Figure 4.2 shows the aver-

age accuracy across previously learned tasks after each epoch of training for the

compared methods. Table 4.1 reports the averaged accuracy (across all tasks)

of the compared algorithms. From the figures and the table, we consistently
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Figure 4.2: The average accuracy across previously learned tasks after each
epoch of training for both diagonal and sketched methods on permuted-MNIST.
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Figure 4.3: The accuracy of each task
(after training on all tasks) of sketched
methods vs. diagonal methods on
permuted-MNIST.
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Figure 4.4: Effect of the sketch
size (t) on the average accuracy
of sketched methods for learning
permuted-MNIST tasks.

see that sketched SR methods outperform their diagonal counterparts, in both

EWC and MAS regimes, in terms of overcoming catastrophic forgetting. This

is explored deeper in Figure 4.3, where we show the accuracy on each task after

training on all the tasks for the compared algorithms. According to Figure 4.3,

sketched SR methods forget less about the early tasks, which directly demon-

strate its advantage for overcoming catastrophic forgetting. This is consistent

to our finding from the synthetic experiments.

Effects of the Sketch Size. We then study the effects of the size of the

sketch, i.e. t in (3.3), on the performance of sketched SR. The results are shown
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(a) Sketched EWC
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(b) Sketched MAS

Figure 4.5: Effect of the sketch size (t) on task accuracy of sketched methods
for learning 10 permuted-MNIST tasks.

in Figure 4.4. From the plot we see a clear trade-off between the size of the

sketch and the average accuracy, where the average accuracy generally grows

as the size of sketches increases — however using more sketches costs more

computation resources. Fortunately, even with a very small sketch size, e.g.

t ≥ 30, which is easily affordable in practice, sketched SR methods already

significantly outperform diagonal SR methods. This demonstrates the practical

effectiveness of the proposed sketched SR framework.

Effects of the Sketch Size per Task. We further study the effects of the

size of the sketch t (See Equation 3.3) on the performance of sketched SR on

each task. The results are shown in Figure 4.5. From the plot we see a clear

trade-off between the size of the sketch and the accuracy on later tasks, where

the accuracy consistently increases as the size of sketches grows. This directly

shows that increasing of the size of sketches improves learning capability for

new tasks (known in the literature as intransigence) with only little trade-off in

catastrophic forgetting, with the expense of more computation resources.
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Figure 4.6: Sample images with 5 random augmentations for Task 1 and Task
2 in our CIFAR-100 experiment.

4.3 CIFAR-100

Finally, we provide further verification for the effectiveness of our methods with

CIFAR-100 experiments.

Setup. For our CIFAR-100 experiment, we follow the 2-task CIFAR-100

Distribution Shift dataset introduced in Ramasesh, Dyer, and Raghu, 2021.

The main difference from the split CIFAR experiment commonly used in the

literature (see, e.g., (Zenke, Poole, and Ganguli, 2017)) is that the CIFAR-

100 Distribution Shift does not require task-specific neural network heads for

classifying classes of each task. Such a setting is consistent with our previous

experiments, in which the same network is used to learn all tasks. In our

experiment, similar to Ramasesh, Dyer, and Raghu, 2021, both tasks are 5-

class classification problems where each class is one of the 20 superclasses of

the CIFAR-100 dataset. For instance, we take the five superclasses aquatic

mammals, fruits and vegetables, household electrical devices, trees, and vehicles-

1. The corresponding subclasses for Task 1 are (1) dolphin, (2) apple, (3) lamp,
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Figure 4.7: The average accuracy (over both tasks) of sketched SR and diagonal
SR methods on CIFAR-100.

(4) maple tree, and (5) bicycle, while for Task 2, they are (1) whale, (2) orange,

(3) television, (4) willow, and (5) motorcycle. Figure 4.6 shows sample images

and five random augmentations for the classes in both tasks.

In all experiments, we used a Wide-ResNet (Zagoruyko and Komodakis,

2016) as our backbone. The network has 16 layers, a widening factor of 4,

and a dropout rate of 0.2. We leveraged random flip, translation, and cutout

(DeVries and Taylor, 2017) as augmentation. We use ADAM as our optimizer

for all experiments, with learning rate 10−3 and momentum 0.9. The importance

parameter λ for each algorithm is: 105 for EWC, 102 for Sketched EWC, 105 for

MAS, and 103 for Sketched MAS. The minibatch size is 64. The online learning

parameter is α = 0.25 for all experiments. In Sketched SR algorithms, we uses

50 sketches to approximate the full importance matrix. All reported results are

averaged over 10 runs with different random seeds.

Performance of the Compared Algorithms. Figure 4.7 shows the per-

formance comparison between the sketched and diagonal variations of EWC

and MAS methods. The plots suggest that sketched variants are significantly

more effective than the diagonal versions in terms of overcoming catastrophic
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forgetting. The results are consistent with those in synthetic experiments and

permuted-MNIST experiments.

Table 4.1: The average accuracy (over all tasks) of sketched SR and diagonal
SR methods on Permuted-MNIST and CIFAR-100.

Dataset Regime Diagonal Sketched

Permuted-
MNIST

EWC 88.3±0.8% 89.8±0.9%
MAS 86.7±1.2% 90.4±0.8%

CIFAR-100 EWC 90.8±1.5% 93.6±0.4%
MAS 89.9±1.2% 93.2±0.6%
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Chapter 5

Conclusion

In this report we present sketched structural regularization as a general frame-

work for overcoming catastrophic forgetting in continual learning. Compared

with the widely-used diagonal version of structural regularization approaches,

our methods achieve better performance for overcoming catastrophic forgetting,

since an improved approximation to the large importance matrix is adopted. In

contrast to the inefficient low-rank approximation methods (e.g., PCA), the pro-

posed sketched structural regularization is computational affordable for practi-

cal continual learning models. Finally, the effectiveness of the proposed methods

are verified in multiple benchmark continual learning tasks.

30



References

Li, Haoran, Aditya Krishnan, Jingfeng Wu, Soheil Kolouri, Praveen K Pilly, and
Vladimir Braverman (2021). “Lifelong Learning with Sketched Structural
Regularization”. In: arXiv preprint arXiv:2104.08604.

Parisi, German I, Ronald Kemker, Jose L Part, Christopher Kanan, and Ste-
fan Wermter (2019). “Continual lifelong learning with neural networks: A
review”. In: Neural Networks 113, pp. 54–71.

Kolouri, Soheil, Nicholas A. Ketz, Andrea Soltoggio, and Praveen K. Pilly
(2020). “Sliced Cramer Synaptic Consolidation for Preserving Deeply
Learned Representations”. In: International Conference on Learning Rep-
resentations. url: https://openreview.net/forum?id=BJge3TNKwH.

Aljundi, Rahaf, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach,
and Tinne Tuytelaars (2018). “Memory aware synapses: Learning what (not)
to forget”. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 139–154.

Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. (2017). “Overcoming catastrophic forget-
ting in neural networks”. In: Proceedings of the national academy of sciences
114.13, pp. 3521–3526.

Chaudhry, Arslan, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip
HS Torr (2018). “Riemannian walk for incremental learning: Understanding
forgetting and intransigence”. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 532–547.

Zenke, Friedemann, Ben Poole, and Surya Ganguli (2017). “Continual learn-
ing through synaptic intelligence”. In: International Conference on Machine
Learning. PMLR, pp. 3987–3995.

Kunstner, Frederik, Lukas Balles, and Philipp Hennig (2019). “Limitations of
the empirical fisher approximation for natural gradient descent”. In: arXiv
preprint arXiv:1905.12558.

31

https://openreview.net/forum?id=BJge3TNKwH


Liu, Xialei, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez,
and Andrew D Bagdanov (2018). “Rotate your networks: Better weight con-
solidation and less catastrophic forgetting”. In: 2018 24th International Con-
ference on Pattern Recognition (ICPR). IEEE, pp. 2262–2268.

Ritter, Hippolyt, Aleksandar Botev, and David Barber (2018). “Online struc-
tured laplace approximations for overcoming catastrophic forgetting”. In:
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 3742–3752.

Horn, Roger A and Charles R Johnson (2012). Matrix analysis. Cambridge
university press.

Pan, Pingbo, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen,
Richard E Turner, and Mohammad Emtiyaz Khan (2020). “Continual deep
learning by functional regularisation of memorable past”. In: arXiv preprint
arXiv:2004.14070.

Charikar, Moses, Kevin Chen, and Martin Farach-Colton (2002). “Finding fre-
quent items in data streams”. In: International Colloquium on Automata,
Languages, and Programming. Springer, pp. 693–703.

Sagun, Levent, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou
(2017). “Empirical analysis of the hessian of over-parametrized neural net-
works”. In: arXiv preprint arXiv:1706.04454.

Chaudhari, Pratik and Stefano Soatto (2018). “Stochastic gradient descent per-
forms variational inference, converges to limit cycles for deep networks”. In:
2018 Information Theory and Applications Workshop (ITA). IEEE, pp. 1–
10.

Jung, Heechul, Jeongwoo Ju, Minju Jung, and Junmo Kim (2016).
“Less-forgetting learning in deep neural networks”. In: arXiv preprint
arXiv:1607.00122.

Li, Zhizhong and Derek Hoiem (2017). “Learning without forgetting”. In: IEEE
transactions on pattern analysis and machine intelligence 40.12, pp. 2935–
2947.

Rannen, Amal, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars
(2017). “Encoder based lifelong learning”. In: Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 1320–1328.

Shin, Hanul, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim (2017). “Continual
learning with deep generative replay”. In: arXiv preprint arXiv:1705.08690.

Hu, Wenpeng, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma,
Dongyan Zhao, and Rui Yan (2018). “Overcoming catastrophic forgetting
for continual learning via model adaptation”. In: International Conference
on Learning Representations.

32



Rozantsev, Artem, Mathieu Salzmann, and Pascal Fua (2018). “Beyond shar-
ing weights for deep domain adaptation”. In: IEEE transactions on pattern
analysis and machine intelligence 41.4, pp. 801–814.

Wu, Chenshen, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Radu-
canu, et al. (2018). “Memory replay gans: Learning to generate new cate-
gories without forgetting”. In: Advances in Neural Information Processing
Systems 31, pp. 5962–5972.

Li, Xilai, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong (2019).
“Learn to grow: A continual structure learning framework for overcoming
catastrophic forgetting”. In: International Conference on Machine Learning.
PMLR, pp. 3925–3934.

Rostami, Mohammad, Soheil Kolouri, and Praveen K Pilly (2019). “Comple-
mentary learning for overcoming catastrophic forgetting using experience
replay”. In: arXiv preprint arXiv:1903.04566.

Feldman, Dan and Michael Langberg (2011). “A Unified Framework for Approx-
imating and Clustering Data”. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing. STOC ’11. San Jose, California,
USA: Association for Computing Machinery, 569–578. isbn: 9781450306911.
doi: 10 . 1145 / 1993636 . 1993712. url: https : / / doi . org / 10 . 1145 /
1993636.1993712.

Har-Peled, Sariel and Soham Mazumdar (2004). “On Coresets for K-Means
and k-Median Clustering”. In: Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing. STOC ’04. Chicago, IL, USA: Associ-
ation for Computing Machinery, 291–300. isbn: 1581138520. doi: 10.1145/
1007352.1007400. url: https://doi.org/10.1145/1007352.1007400.

Nelson, Jelani and Huy L Nguyên (2013). “OSNAP: Faster numerical linear
algebra algorithms via sparser subspace embeddings”. In: 2013 ieee 54th
annual symposium on foundations of computer science. IEEE, pp. 117–126.

Cohen, Michael B (2016). “Simpler and tighter analysis of sparse oblivious sub-
space embeddings”. In: Proceedings of the 27th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), to appear.

Sarlos, Tamas (2006). “Improved approximation algorithms for large matrices
via random projections”. In: 2006 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’06). IEEE, pp. 143–152.

Clarkson, Kenneth L and David P Woodruff (2017). “Low-rank approximation
and regression in input sparsity time”. In: Journal of the ACM (JACM) 63.6,
pp. 1–45.

Meng, Xiangrui and Michael W Mahoney (2013). “Low-distortion subspace em-
beddings in input-sparsity time and applications to robust linear regression”.

33

https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007400


In: Proceedings of the forty-fifth annual ACM symposium on Theory of com-
puting, pp. 91–100.

Cohen, Michael B, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu (2015). “Dimensionality reduction for k-means clustering
and low rank approximation”. In: Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 163–172.

Drineas, Petros, Malik Magdon-Ismail, Michael W Mahoney, and David P
Woodruff (2012). “Fast approximation of matrix coherence and statistical
leverage”. In: The Journal of Machine Learning Research 13.1, pp. 3475–
3506.

Lee, Yin Tat, Zhao Song, and Qiuyi Zhang (2019). “Solving empirical risk
minimization in the current matrix multiplication time”. In: Conference on
Learning Theory. PMLR, pp. 2140–2157.

Ahle, Thomas D, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya
Velingker, David P Woodruff, and Amir Zandieh (2020). “Oblivious sketch-
ing of high-degree polynomial kernels”. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 141–
160.

Brand, Jan van den, Binghui Peng, Zhao Song, and Omri Weinstein (2021).
“Training (Overparametrized) Neural Networks in Near-Linear Time”. In:
12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Ed. by James R. Lee. Vol. 185. Leibniz International Proceedings in In-
formatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 63:1–63:15. isbn: 978-3-95977-177-1. url: https://drops.
dagstuhl.de/opus/volltexte/2021/13602.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (2016).
Deep learning. Vol. 1. MIT press Cambridge.

Schwarz, Jonathan, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell (2018).
“Progress & compress: A scalable framework for continual learning”. In:
International Conference on Machine Learning. PMLR, pp. 4528–4537.

Cohen, Michael B., Jelani Nelson, and David P. Woodruff (2016). “Optimal Ap-
proximate Matrix Product in Terms of Stable Rank”. In: 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016). Ed.
by Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Da-
vide Sangiorgi. Vol. 55. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 11:1–11:14. isbn: 978-3-95977-013-2. doi: 10.4230/LIPIcs.ICALP.
2016.11. url: http://drops.dagstuhl.de/opus/volltexte/2016/6278.

34

https://drops.dagstuhl.de/opus/volltexte/2021/13602
https://drops.dagstuhl.de/opus/volltexte/2021/13602
https://doi.org/10.4230/LIPIcs.ICALP.2016.11
https://doi.org/10.4230/LIPIcs.ICALP.2016.11
http://drops.dagstuhl.de/opus/volltexte/2016/6278


Ramasesh, Vinay Venkatesh, Ethan Dyer, and Maithra Raghu (2021).
“Anatomy of Catastrophic Forgetting: Hidden Representations and Task
Semantics”. In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=LhY8QdUGSuw.

Zagoruyko, Sergey and Nikos Komodakis (2016). “Wide Residual Networks”.
In: British Machine Vision Conference 2016. British Machine Vision Asso-
ciation.

DeVries, Terrance and Graham W Taylor (2017). “Improved regulariza-
tion of convolutional neural networks with cutout”. In: arXiv preprint
arXiv:1708.04552.

35

https://openreview.net/forum?id=LhY8QdUGSuw


Haoran Li 
DOB: 07 May 2001 Phone: 410-949-6154 E-mail: hli143@jhu.edu 

Education                                                     
Johns Hopkins University, Baltimore, MD 2019 – Present 
 M.S.E. in Computer Science, GPA: 3.76/4.0 
 Courses: Combinatorics and Graph Theory (A+), Randomized Algorithms (A), High-Dimen-

sional Approximation & Statistical Learning, Probabilistic Models of the Visual Cortex (A); 
Machine Learning, Computer Vision, Object-Oriented Software Engineering, Causal Inference 

Tsinghua University, Beijing, China 2015 – 2019 
 B.Eng. in Automation, GPA: 3.52/4.0 
 Courses: Calculus (A-), Linear Algebra (A), Probability & Statistics (A-), Applied Stochastic 

Processes, Optimization Algorithms, Operation Research; Artificial Intelligence, Digital Image 
Processing, Pattern Recognition 

Publication                                                    
Li, H., Krishnan, A., Wu, J., Kolouri, S., Pilly, P. K., & Braverman, V. (2021). Lifelong Learning 
with Sketched Structural Regularization. arXiv preprint arXiv:2104.08604. pdf arxiv 
Li, H., & Xu, H. (2019). Video-Based Sentiment Analysis with hvnLBP-TOP Feature and bi-LSTM. 
In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 9963-9964). pdf doi 

Selected Research Experience                                    
Lifelong Learning via Sketched Structural Regularization | RA 2020.9 – Present 
Advisor: Prof. Vladimir Braverman, Associate Professor of Computer Science, JHU 
Perform lifelong learning on multiple continuous tasks with different data distributions. Paper sub-
mitted to ICML. 
 Conducted lifelong learning by adding a structural regularization (SR) penalty, which is the 

quadratic form of the diagonal approximation to a huge (~106 × 106) matrix. 
 Proposed Sketched Structural Regularization (Sketched SR), which efficiently compresses and 

better approximates the matrix than diagonal approximation with theoretical guarantee. 
 Applied the algorithm on SR methods (EWC, MAS). Sketched SR outperforms diagonal ap-

proximation on all methods in multiple benchmark datasets.  
Neural Network Pruning via Coreset | RA 2020.9 – 2020.12 
Advisor: Prof. Vladimir Braverman, Associate Professor of Computer Science, JHU 
Compress deep neural network by neural pruning, providing a theoretical bound of error. 
 Conduct data-independent compression on general deep networks including MLP, CNN. 
 Proposed a new neural pruning algorithm, providing the first provable approximation error of 

data-independent neural pruning algorithm for multi-layer neural network. 
 

36



AlexNet Neuron Geometry | RA 2020.6 – 2020.8 
Advisor: Prof. Ed Connor, Professor of Neuroscience, JHU 
Analyze the geometric structure of AlexNet convolutional layer responses on computer-graphics 
generated stimuli. 
 Applied genetic algorithms to generate stimuli images with high response on each neuron of 

Alexnet. 
 Performed Laplacian embedding on samples of responses on different AlexNet layers, finding 

low-dimensional structure (protruding lines) of high-response samples out of low-response 
sample pool. 

Lung Histopathological Image Analysis | RA 2018.10 – 2019.6 
Advisor: Prof. Rui Jiang, Associate Professor in Bioinformatics, Tsinghua University 
Extract medical information of lung slice images based on cell features and cell location graph. 
 Dealt with whole-slide pathological images from lung cancer patients and healthy individuals. 
 Introduced attributed graph representation of pathological images based on cell features and 

locations, which consists of geometric information of cells, thus achieving better biomedical 
interpretability. 

 Applied GNN on attributed graph of lung images tiles for cancer classification, which outper-
forms all feature-based methods. 

Sentiment Analysis on Video and Multimodal Data | RA 2017.12 – 2018.9 
Advisor: Prof. Hua Xu, Associate Professor of Computer Science, Tsinghua University 
Evaluate the emotional status of people based on their facial expression features, and conduct mul-
timodal sentiment analysis with visual, audio and textual features. Paper accepted by AAAI 2019. 
 Dealt with multiple video and multimodal datasets with sentimental labels. 
 Organized multimodal sentiment dataset, which was extracted from product reviews collected 

from Chinese video site bilibili.com; Different accents of Mandarin, Cantonese and Szech-
uanese were included.  

 Proposed a novel feature extraction method for video-based sentiment analysis that outper-
forms the state-of-the-art video sentiment classification model. 

Scholarships & Awards                                         
Academic Excellence Scholarship (24/146) 2016 
2nd Prize  National Collegiate Physics Competition 2016 
2nd Prize  National Mathematics Olympiad(Beijing Division) 2013 

Skills                                                         
 Programming Languages: Python, MATLAB, C/C++ 

– Python packages: pytorch, tensorflow, numpy, scipy, sklearn 

37


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Related Work
	Methodology
	Preliminaries
	Structural Regularization
	Diagonal Approximation

	Sketched Structural Regularization
	Algorithm
	Theoretical Properties
	Online Extension of Sketched SR


	Experiments
	Synthetic Experiments
	Permuted-MNIST
	CIFAR-100

	Conclusion
	References
	Curriculum Vitae

