A Large-Scale Evaluation of Acoustic and Subjective Music Similarity Measures

Show simple item record

dc.contributor.author Adam Berenzweig en_US
dc.contributor.author Beth Logan en_US
dc.contributor.author Daniel Ellis en_US
dc.contributor.author Brian Whitman en_US
dc.contributor.editor Holger H. Hoos en_US
dc.contributor.editor David Bainbridge en_US
dc.date.accessioned 2004-10-21T04:26:24Z
dc.date.available 2004-10-21T04:26:24Z
dc.date.issued 2003-10-26 en_US
dc.identifier.isbn 0-9746194-0-X en_US
dc.identifier.uri http://jhir.library.jhu.edu/handle/1774.2/16
dc.description.abstract Subjective similarity between musical pieces and artists is an elusive concept, but one that music be pursued in support of applications to provide automatic organization of large music collections. In this paper, we examine both acoustic and subjective approaches for calculating similarity between artists, comapring their performance on a common database of 400 popular artists. Specifically, we evaluate acoustic techniques based on Mel-frequency cepstral coefficients and an intermediate `anchor space' of genre classification, and subjective techniques which use data from The All Music Guide, from a survey, from playlists and personal collections, and from web-text mining. We find the following: (1) Acoustic-base measures can acheive agreement with ground truth data that is at least comparable to the internal agreement between different subjective sources. However, we observe significant differences between suerficially similar distribution modeling and comparison techniques. (2) Subjective measures from diverse sources show reasonable agreement, with the measure derived from co-occurrence in personal music collections being the most reliable overall. (3) Our methodology for large-scale cross-site music similarity evaluations is practical and convenient, yielding directly comparable numbers for different approaches. In particular, we hope that for out information-retrieval-based approach to scoring similarity measures, our paradigm of sharing common feature representations, and even our particular dataset of features for 400 artists, will be useful to other researchers. en_US
dc.description.provenance Made available in DSpace on 2004-10-21T04:26:24Z (GMT). No. of bitstreams: 1 paper.pdf: 100066 bytes, checksum: 8cc1329c2c19a5354587ddfda5f80a57 (MD5) Previous issue date: 2003-10-26 en
dc.format.extent 100066 bytes
dc.format.mimetype application/pdf
dc.language en en_US
dc.language.iso en_US
dc.publisher Johns Hopkins University en_US
dc.title A Large-Scale Evaluation of Acoustic and Subjective Music Similarity Measures en_US
dc.type article en_US

Files in this item

Files Size Format Download
paper.pdf 100.0Kb application/pdf Download

This item appears in the following Collection(s)

Show simple item record