Show simple item record

dc.contributor.authorClarke, D.J.
dc.contributor.authorTretiakov, O.A.
dc.contributor.authorChern, G.-W.
dc.contributor.authorBazaliy, Ya.B.
dc.contributor.authorTchernyshyov, O.
dc.date.accessioned2009-12-29T14:58:55Z
dc.date.available2009-12-29T14:58:55Z
dc.date.issued2008-10-01
dc.identifier.citationPhysical Review B (Condensed Matter and Materials Physics) 1 Oct. 2008, vol.78, no.13, 134412 (18 pp.)en_US
dc.identifier.urihttp://jhir.library.jhu.edu/handle/1774.2/33729
dc.description.abstractThe motion of a vortex domain wall in a ferromagnetic strip of submicron width under the influence of an external magnetic field exhibits three distinct dynamical regimes. In a viscous regime at low fields the wall moves rigidly with a velocity proportional to the field. Above a critical field the viscous motion breaks down, giving way to oscillations accompanied by a slow drift of the wall. At still higher fields the drift velocity starts rising with the field again but with a much lower mobility dv/dH than in the viscous regime. To describe the dynamics of the wall, we use the method of collective coordinates that focuses on soft modes of the system. By retaining two soft modes, parametrized by the coordinates of the vortex core, we obtain a simple description of the wall dynamics at low and intermediate applied fields that applies to both the viscous and oscillatory regimes below and above the breakdown. The calculated dynamics agrees well with micromagnetic simulations at low and intermediate values of the driving field. In higher fields, additional modes become soft and the two-mode approximation is no longer sufficient. We explain some of the significant features of vortex-domain-wall motion in high fields through the inclusion of additional modes associated with the half antivortices on the strip edge.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectferromagnetic materialsen_US
dc.subjectvortex domain wallen_US
dc.subjectmagnetic nanostripen_US
dc.subjectferromagnetic stripen_US
dc.subjectmicromagnetic simulationsen_US
dc.subjectinclusionen_US
dc.titleDynamics of a vortex domain wall in a magnetic nanostrip: application of the collective-coordinate approachen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record