Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer silimar to channel proteins

Embargo until
Date
1991-04-05
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Biochemistry and Molecular Biology
Abstract
A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.
Description
Keywords
Membrane Proteins/chemistry, Erythrocyte Membrane/chemistry, Blood Proteins/chemistry
Citation
J Biol Chem. 1991 Apr 5;266(10):6407-15. http://www.jbc.org/content/266/10/6407.long
Collections