• Login
    View Item 
    •   JScholarship Home
    • Nobel Prize Winners
    • Peter Agre
    • View Item
    •   JScholarship Home
    • Nobel Prize Winners
    • Peter Agre
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heterotetrameric composition of aquaporin-4 water channels.

    Thumbnail
    View/Open
    AgreBiochemistry1999.pdf (18.58Kb)
    Date
    1999-08-24
    Author
    Agre, Peter
    Nielsen, S
    Christensen, B. M.
    Neely, JD
    Metadata
    Show full item record
    Abstract
    Aquaporin (AQP) water channel proteins are tetrameric assemblies of individually active approximately 30 kDa subunits. AQP4 is the predominant water channel protein in brain, but immunoblotting of native tissues has previously yielded multiple poorly resolved bands. AQP4 is known to encode two distinct mRNAs with different translation initiating methionines, M1 or M23. Using SDS-PAGE urea gels and immunoblotting with anti-peptide antibodies, four polypeptides were identified in brain and multiple other rat tissues with the following levels of expression: 32 kDa > 34 kDa > 36 kDa > 38 kDa. The 34 and 38 kDa polypeptides react with an antibody specific for the N-terminus of the M1 isoform, and 32 and 36 kDa correspond to the shorter M23 isoform. Immunogold electron microscopic studies with rat cerebellum cryosections demonstrated that the 34 kDa polypeptide colocalizes in perivascular astrocyte endfeet where the 32 kDa polypeptide is abundantly expressed. Velocity sedimentation, cross-linking, and immunoprecipitation analyses of detergent-solubilized rat brain revealed that the 32 and 34 kDa polypeptides reside within heterotetramers. Immunoprecipitation of AQP4 expressed in Xenopus laevis oocytes demonstrated that heterotetramer formation reflects the relative expression levels of the 32 and 34 kDa polypeptides; however, tetramers containing different compositions of the two polypeptides exhibit similar water permeabilities. These studies demonstrate that AQP4 heterotetramers are formed from two overlapping polypeptides and indicate that the 22-amino acid sequence at the N-terminus of the 34 kDa polypeptide does not influence water permeability but may contribute to membrane trafficking or assembly of arrays.
    URI
    http://jhir.library.jhu.edu/handle/1774.2/34108
    Collections
    • Peter Agre

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of JScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV