Graph Inference and Graph Matching
Abstract
Graphs are widely used in many fields of research, ranging from natural sciences to computer and mathematical sciences. Graph inference is an area of intense research. In this dissertation, we propose several methodologies in graph inference. We focus on statistical inference using graph invariants, vertex nomination, and a divideandconquer graph matching technique.
We present a comparative power analysis of various graph invariants for testing the hypothesis that the graph has a subgraph with higher edge probability. Given a graph drawn from a kidneyegg random graph model, the null hypothesis is that all edge probabilities are equal. The alternative hypothesis is that there exists a subset of vertices which are more likely to be adjacenct to each other than the rest of the graph. Using Monte Carlo simulations, we estimate the power of several graph invariants acting as test statistics. We discovered that for many choices of parameters in the random graph model, the scan statistic and clustering coefficient often dominate other graph invariants. However, our results indicates that none of the graph invariants considered is uniformly most powerful.
Given a graph drawn from a stochastic block model where one block is of particular interest, vertex nomination is the task of creating a list of vertices such that there are an abundance of vertices from the block of interest at the top of the list. Vertex nomination is useful in situations where only a limited number of vertices can be examined and have their block membership checked. We propose several vertex nomination schemes, derive theoretical results for performance, and compare the schemes on simulated and real data.
Given two graphs, graph matching is to create a mapping from one set of vertices to the other, such that the edge structure of the graphs is preserved as best as possible. We develop a new method for scaling graph matching algorithms, and prove performance guarantees. Any graph matching algorithm can be scaled using our divideandconquer technique. The performance of this technique is demonstrated on large simulated graphs and human brain graphs.
Collections
Related items
Showing items related by title, author, creator and subject.

Pattern Recognition on Random Graphs
Chen, Li (Johns Hopkins University, 20150317)The field of pattern recognition developed significantly in the 1960s, and the field of random graph inference has enjoyed much recent progress in both theory and application. This dissertation focuses on pattern recognition ... 
Interval Digraphs
Reiland, Elizabeth Honda (Johns Hopkins UniversityUSA, 20190204)We say that a simple, undirected graph interval graph if there exists a function mapping the vertices of the graph to intervals such that each pair of vertices is adjacent if and only if the corresponding intervals have a ... 
GRAPH MATCHING AND VERTEX NOMINATION
Patsolic, Heather G; 0000000180055455 (Johns Hopkins UniversityUSA, 20200320)When given a collection of graphs on overlapping, but possibly nonidentical, vertex sets, many inference tasks involve learning the acrossnetwork alignment. Often, this task is difficult due to the enormity of the graphs, ...