• Login
    View Item 
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A minimally invasive surgical system for 3D ultrasound guided robotic retrieval of foreign bodies from a beating heart

    Thumbnail
    View/Open
    THIENPHRAPA-DISSERTATION-2014.pdf (8.545Mb)
    ncctrack-fb05.mp4 (1.953Mb)
    readjust_0848.mp4 (2.308Mb)
    Heart Snake Cartoon.mp4 (179.3Kb)
    pault_thesis-136.zip (22.96Mb)
    Date
    2014-03-05
    Author
    Thienphrapa, Paul
    Metadata
    Show full item record
    Abstract
    The result of various medical conditions and trauma, foreign bodies in the heart pose a serious health risk as they may interfere with cardiovascular function. Particles such as thrombi, bullet fragments, and shrapnel can become trapped in a person's heart after migrating through the venous system, or by direct penetration. The severity of disruption can range from benign to fatal, with associated symptoms including anxiety, fever, cardiac tamponade, hemorrhage, infection, embolism, arrhythmia, and valve dysfunction. Injuries of this nature are common in both civilian and military populations. For symptomatic cases, conventional treatment is removal of the foreign body through open surgery via a median sternotomy, the use of cardiopulmonary bypass, and a wide incision in the heart muscle; these methods incur pronounced perioperative risks and long recovery periods. In order to improve upon the standard of care, we propose an image guided robotic system and a corresponding minimally invasive surgical approach. The system employs a dexterous robotic capture device that can maneuver inside the heart through a small incision. Visualization and guidance within the otherwise occluded internal regions are provided by 3D transesophageal echocardiography (TEE), an emerging form of intraoperative medical imaging used in interventions such as mitral valve repair and device implantation. A robotic approach, as opposed to a manual procedure using rigid instruments, is motivated by the various challenges inherent in minimally invasive surgery, which arise from attempts to perform skilled surgical tasks through small incisions without direct vision. Challenges include reduced dexterity, constrained workspace, limited visualization, and difficult hand-eye coordination, which ultimately lead to poor manipulability. A dexterous robotic end effector with real-time image guidance can help overcome these challenges and potentially improve surgical performance. However promising, such a system and approach require that several technical hurdles be resolved. The foreign body must be automatically tracked as it travels about the dynamic environment of the heart. The erratically moving particle must then be captured using a dexterous robot that moves much more slowly in comparison. Furthermore, retrieval must be performed under 3D ultrasound guidance, amidst the uncertainties presented by both the turbulent flow and by the imaging modality itself. In addressing such barriers, this thesis explores the development of a prototype system capable of retrieving a foreign body from a beating heart, culminating in a set of demonstrative in vitro experiments.
    URI
    http://jhir.library.jhu.edu/handle/1774.2/37924
    Collections
    • ETD -- Doctoral Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of JScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV