dc.contributor.advisor Shiffman, Bernard en_US dc.contributor.author Karami, Arash en_US dc.date.accessioned 2015-09-16T03:37:21Z dc.date.available 2015-09-16T03:37:21Z dc.date.created 2014-08 en_US dc.date.issued 2014-07-01 en_US dc.date.submitted August 2014 en_US dc.identifier.uri http://jhir.library.jhu.edu/handle/1774.2/37945 dc.description.abstract For a strictly pseudoconvex Reinhardt domain Ω with smooth boundary in C en_US m+1 and a positive smooth measure µ on the boundary of Ω , we consider the ensemble PN of polynomials of degree N with the Gaussian probability measure γN which is induced by L 2 (∂Ω, dµ). Our aim is to compute the scaling limit distribution function and scaling limit pair correlation function for zeros near a point z ∈ ∂Ω. First, we apply the stationary phase method to the Boutet de Monvel-Sj¨ostrand Theorem to get the asymptotic for the scaling limit partial Szeg¨o kernel around z ∈ ∂Ω. Then by using the Kac-Rice formula, we compute the scaling limit distribution and pair correlation functions. dc.format.mimetype application/pdf en_US dc.language en dc.publisher Johns Hopkins University dc.subject Reinhardt domain en_US dc.subject Szeg¨o kernel en_US dc.title Zeros of Random Reinhardt Polynomials en_US dc.type Thesis en_US thesis.degree.discipline Mathematics en_US thesis.degree.grantor Johns Hopkins University en_US thesis.degree.grantor Krieger School of Arts and Sciences en_US thesis.degree.level Doctoral en_US thesis.degree.name Ph.D. en_US dc.type.material text en_US thesis.degree.department Mathematics en_US dc.contributor.committeeMember Spruck, Joel en_US dc.contributor.committeeMember Pingali, Vamsi en_US dc.contributor.committeeMember Khan, M. Ali en_US dc.contributor.committeeMember Yarkony, David R. en_US
﻿