Synthesis of Mn-Zn ferrite from Na2O-B2O3 flux under CO-CO2 ambients
View/ Open
Date
1982-03Author
Plaskett, T. S.
Shivashankar, S. A.
Gilbert, B. L.
Olson, B. L.
Chien, C.-L.
Herman, D.A. Jr.
Metadata
Show full item recordAbstract
Synthesis was carried out by dissolving MnO, ZnO, and Fe2O3 in the molar ratio 0.42:0.44:1.07 in fluxes of Na2O:xB2O3 at 900 °C and slow cooling under ambients of CO-CO2 mixtures; x varied from 1.34 to 2.0 and Co-Co2 from 0.06 to 1.0% CO. The composition and oxidation state of the precipitated ferrite were dependent on both CO content and x. The composition of the ferrite ranged between Mn0.44Zn0.40Fe2.16O4 and Mn0.09Zn0.06Fe2.85O4 and the Fe2+ between 0.16 and 0.85 moles/formula unit. By using reactive gas mixtures, the cation oxidation states were maintained constant during cooling. Mössbauer spectroscopy and coulometric analysis were used to establish that Mn3+ was unstable in the flux in the presence of Fe2+. The results obtained by these experiments establish the optimum conditions necessary to grow Mn-Zn ferrite films by liquid phase epitaxy (LPE). The saturation magnetization of the synthesized material was between 4700 and 5200 G; the Curie temperature increased with Fe2+ from 180 to 490 °C. These properties agree with measurements previously made on LPE films of this material.