• Login
    View Item 
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Community Detection using Locality Statistics

    Thumbnail
    View/Open
    WANG-DISSERTATION-2016.pdf (4.701Mb)
    thesis_submission_HengWang.zip (16.43Mb)
    Date
    2015-12-16
    Author
    Wang, Heng
    Metadata
    Show full item record
    Abstract
    The goal of community detection is to identify clusters and groups of vertices that share common properties or play similar roles in a graph, using only the information encoded in the graph. Our work analyzes two methods of identifying an anomalous community in temporal graphs and another method of identifying active communities in a static massive graph. All methods are based on locality statistics. In [50], an anomalous community is detected that shows growing connectivities in a time series of graphs. We formulate the task as a hypothesis-testing problem in stochastic block model time series. We derive the limiting properties and power characteristics of two competing test statistics built on distinct underlying locality statistics. In addition, we provide applicable implementations of two competing test statistics and detailed experimental results for a neural imaging application in [36]. In [51], active communities are detected in a static massive graph on which many community detection algorithms scale poorly. We propose a novel framework for detecting active communities that consist of the most active vertices. Our framework utilizes a parallelizable trimming algorithm based on a locality statistic to filter out inactive vertices, and then clusters the remaining active vertices via spectral decomposition of their similarity matrix. The framework is applicable to graphs consisting of billions of vertices and hundreds of billions of edges. In summary, this work provides developments in community detection, in both temporal graphs and static massive graphs, by employing locality statistics.
    URI
    http://jhir.library.jhu.edu/handle/1774.2/39658
    Collections
    • ETD -- Doctoral Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of JScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV