• Login
    View Item 
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    •   JScholarship Home
    • Theses and Dissertations, Electronic (ETDs)
    • ETD -- Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ENABLING EFFICIENT AND STREAMLINED ACCESS TO LARGE SCALE GENOMIC EXPRESSION AND SPLICING DATA

    Thumbnail
    View/Open
    WILKS-DISSERTATION-2020.pdf (4.927Mb)
    Date
    2020-10-14
    Author
    Wilks, Christopher Nathan
    Metadata
    Show full item record
    Abstract
    As more and larger genomics studies appear, there is a growing need for comprehensive and queryable cross-study summaries. We focus primarily on nearly 20,000 RNA-sequencing studies in human and mouse, consisting of more than 750,000 sequencing runs, and the coverage summaries derived from their alignment to their respective gnomes. In addition to the summarized RNA-seq derived data itself we present tools (Snaptron, Monorail, Megadepth, and recount3) that can be used by downstream researchers both to process their own data into comparable summaries as well as access and query our processed, publicly available data. Additionally we present a related study of errors in the splicing of long read transcriptomic alignments, including comparison to the existing splicing summaries from short reads already described (LongTron).
    URI
    http://jhir.library.jhu.edu/handle/1774.2/66892
    Collections
    • ETD -- Doctoral Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of JScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Policies | Contact Us | Send Feedback
    Theme by 
    Atmire NV