Automatic Segmentation, Learning and Retrieval of Melodies Using A Self-Organizing Neural Network

Embargo until
Journal Title
Journal ISSN
Volume Title
Johns Hopkins University
We introduce a neural network, known as SONNET-MAP, capable of automatic segmentation, learning and retrieval of melodies. SONNET-MAP is a synthesis of Nigrin’s SONNET (Self-Organizing Neural NETwork) architecture and an associative map derived from Carpenter, Grossberg and Reynolds’ ARTMAP. SONNET-MAP automatically segments a melody based on pitch and rhythmic grouping cues. Separate SONNET modules represent the pitch and rhythm dimensions of each segmented phrase independently, with two associative maps fusing these representations at the phrase level. Further SONNET modules aggregate these phrases forming a hierarchical memory structure that encompasses the entire melody. In addition, melodic queries may be used to retrieve any encoded melody. As far as we are aware, SONNET-MAP is the first self-organizing neural network architecture capable of automatically segmenting and retrieving melodies based on both pitch and rhythm.
IR Systems and Algorithms, Perception and Cognition