MEASUREMENT AND MITIGATION OF MICROBIAL CONTAMINATION ON VARIOUS PERSONAL PROTECTIVE EQUIPMENT

dc.contributor.advisorMac Gabhann, Feilim
dc.contributor.advisorDonohue, Marc
dc.contributor.advisorKarunasena, Enusha
dc.contributor.committeeMemberSofou, Stavroula
dc.contributor.committeeMemberJeong, Sang Moo
dc.contributor.committeeMemberSchulman, Rebecca
dc.contributor.committeeMemberDoloff, Joshua
dc.creatorLee, Sang Hyuk
dc.creator.orcid0000-0003-0947-1338
dc.date.accessioned2023-09-22T16:01:42Z
dc.date.created2023-08
dc.date.issued2023-07-20
dc.date.submittedAugust 2023
dc.date.updated2023-09-22T16:01:42Z
dc.description.abstractRecent global health crisis has called for methods to measure and mitigate microbial contamination on various personal protective equipment. Particularly, this document focu sed on: the implementation of modified AATCCAATCC-100 with qRT qRT-PCR assisted absolute and relative quantification for quantifiable tracing of both antimicrobial and microbial behavioral properties; the comparison of pipette tip repurposing efficiencies among lab detergent, ozone, and CAP; and the prospective application of vapor hydrogen peroxide, ozone, and CAP for mask repurposing. Log reductions from modified AATCC - 100 were compared to identify time dependent antimicrobial were compared to identify time dependent antimicrobial properties from silver ion containi containing wound dressing samples. A ntimicrobial properties of wound dressing samples diminished as incubation days are increased for both PCR and cell viability assay, while d ata from qRT qRT- PCR generally produced lower standard deviation than that of culture method s, hence shown to be more precise. Complementary parallel analysis of samples using both methods better characterized antimicrobial properties of the tested samples. A p arallel analysis using classical methods alongside the application of relative quantifi cation displayed changes in expression of virulence related genes. Although molecular assays targeting specific virulence activities are needed to verify the change in activities, relative quantification efficiently provided insight into changechanges specific t o virulence in model organisms. A c ontamination evaluation protocol were outlined t o evaluate the efficacies of the following repurposing methods: washing wit h a common laboratory detergent, exposure of ozone vapor, and CAP. Efficacy was determined by turn over ratio and log reduction in detectable genomic material of the contaminated products via re real -time quantitative PCR (qPCR). Ozone at 14400 PPM * minute is fully optimized while CAP shows promising potential post optimization. The application of ozone, hydrogen peroxide, and CAP is further explored for mask repurposing. Although further experimentation with BFE is needed, minimal change in physical properties of post post-repurposed masks showed promising potential as non non-destructive repurposing methods.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://jhir.library.jhu.edu/handle/1774.2/68960
dc.language.isoen_US
dc.publisherJohns Hopkins University
dc.publisher.countryUSA
dc.subjectAntimicrobial, Decontamination, PCR, Ozone, Cold Atmospheric Plasma, Regulatory Science
dc.titleMEASUREMENT AND MITIGATION OF MICROBIAL CONTAMINATION ON VARIOUS PERSONAL PROTECTIVE EQUIPMENT
dc.typeThesis
dc.type.materialtext
local.embargo.lift2025-08-01
local.embargo.terms2025-08-01
thesis.degree.departmentChemical and Biomolecular Engineering
thesis.degree.disciplineChemical & Biomolecular Engineering
thesis.degree.grantorJohns Hopkins University
thesis.degree.grantorWhiting School of Engineering
thesis.degree.levelDoctoral
thesis.degree.namePh.D.
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.67 KB
Format:
Plain Text
Description: