Strichartz Estimates for Wave and Schrödinger Equations on Hyperbolic Trapped Domains

dc.contributor.advisorSilverstone, Harris J.en_US
dc.contributor.authorSun, Hongtanen_US
dc.contributor.committeeMemberSogge, Christopher D.en_US
dc.contributor.committeeMemberShiffman, Bernarden_US
dc.contributor.committeeMemberLindblad, Hansen_US
dc.contributor.committeeMemberProsperetti, Andreaen_US
dc.date.accessioned2015-09-16T03:34:50Z
dc.date.available2015-09-16T03:34:50Z
dc.date.created2014-08en_US
dc.date.issued2014-07-22en_US
dc.date.submittedAugust 2014en_US
dc.description.abstractIn this thesis, I will establish the mixed norm Strichartz type estimates for the wave and Schr odinger equations on certain Riemannian manifold. Here the manifold is the exterior domain of a smooth, normally hyperbolic trapped obstacle in n dimensional Euclidean space. I studied the case when n is greater than or equal to 3 and it is odd. As for the normally hyperbolic trapped obstacles, I got local Strichartz estimates for wave and Schr odinger equations with some loss of derivatives for the initial data. I also got a global Strichartz type estimates for the wave equation. In this case, I need two di erent LpLq mixed norms of the forcing term to bound the solution of the inhomogeneous equation.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttp://jhir.library.jhu.edu/handle/1774.2/37854
dc.languageen
dc.publisherJohns Hopkins University
dc.subjectStrichartz estimatesen_US
dc.subjectHyperbolic trapped domainen_US
dc.subjectwave equationsen_US
dc.titleStrichartz Estimates for Wave and Schrödinger Equations on Hyperbolic Trapped Domainsen_US
dc.typeThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.grantorJohns Hopkins Universityen_US
thesis.degree.grantorKrieger School of Arts and Sciencesen_US
thesis.degree.levelDoctoralen_US
thesis.degree.namePh.D.en_US
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.68 KB
Format:
Plain Text
Description: